Discussiones Mathematicae Graph Theory 28 (2008) 375–378

Note

SOLUTION TO THE PROBLEM OF KUBESA

MARIUSZ MESZKA

Faculty of Applied Mathematics AGH University of Science and Technology Mickiewicza 30, 30–059, Kraków, Poland

e-mail: meszka@agh.edu.pl

Abstract

An infinite family of T-factorizations of complete graphs K_{2n} , where 2n = 56k and k is a positive integer, in which the set of vertices of T can be split into two subsets of the same cardinality such that degree sums of vertices in both subsets are not equal, is presented. The existence of such T-factorizations provides a negative answer to the problem posed by Kubesa.

Keywords: tree, T-factorization, degree sequence.

2000 Mathematics Subject Classification: 05C70, 05C05, 05C07.

1. INTRODUCTION

Let K_{2n} be the complete graph on 2n vertices and T be its spanning tree. A *T*-factorization of K_{2n} is a collection of edge disjoint factors T_1, T_2, \ldots, T_n of K_{2n} , each of which being isomorphic to T.

At the workshop in Krynica in 2004 D. Fronček presented the following problem originally posed by M. Kubesa [2].

Problem. Suppose that there exists a *T*-factorization of K_{2n} . Is it true that the vertex set of *T* can be split into two subsets, V_1 and V_2 , such that $|V_1| = |V_2| = n$ and $\sum_{v \in V_1} \deg(v) = \sum_{v \in V_2} \deg(v)$?

Notice that there is no requirement on connectness or disconnectness of graphs induced by V_1 or V_2 .

Recently, N.D. Tan [3] solved the problem in the affirmative for two narrow classes of trees.

2. Constructions

A tree which becomes a star after removal of its pendant edges is called a *snowflake*. Its central vertex (ie. the central vertex of a star obtained in such a way) is called a *root*, whilst remaining vertices of degrees greater than one are called *inner vertices*.

We define a family of snowlakes \tilde{T}_{2n} of order 2n = 56k, for every positive integer k. There are 7 vertices of degrees: 28k - 18, 28k - 20, 11, 10, 8, 7, 7, the remaining 56k - 7 are leaves. The vertex of degree 11 is the root of \tilde{T}_{2n} .

Lemma 1. For every positive integer k, the complete graph K_{56k} has T_{56k} -factorization.

Proof. The snowflake \tilde{T}_{56k} is defined by listing its edges; we use the notation $u \prec u_1, u_2, \ldots, u_m$ if all the vertices u_1, u_2, \ldots, u_m are adjacent to u. Consider two cases.

Case I. k = 1. Let $V(K_{56}) = U \cup X \cup Y \cup Z$, where $U = \{u_0, u_1, \ldots, u_{13}\}$, $X = \{x_0, x_1, \ldots, x_{13}\}$, $Y = \{y_0, y_1, \ldots, y_{13}\}$ and $Z = \{z_0, z_1, \ldots, z_{13}\}$. Edges of K_{56} with both endvertices either in U or X or Y or Z are called *pure* edges; the remaining ones are *mixed* edges. To indicate a required \tilde{T}_{56} factorization we prescribe 28 snowflakes split into two classes: $\{T_i : i = 0, 1, \ldots, 13\}$ and $\{T'_i : i = 0, 1, \ldots, 13\}$, each T_i and T'_i being isomorphic to \tilde{T}_{56} .

We construct the first class. The vertex u_{12} of degree 11 is the root of T_0 and its inner vertices: $u_0, x_1, x_2, y_0, y_1, z_7$ have degrees 8, 8, 7, 10, 7, 10, respectively. The remaining pendant edges are: $u_{12} \prec u_1, u_2, u_4, u_7, u_{11}$; $u_0 \prec x_8, x_9, x_{11}, x_{12}, x_{13}, y_4, y_5; x_1 \prec u_5, u_9, u_{10}, u_{13}, y_3, y_8, y_{10}; x_2 \prec x_3, x_4,$ $x_5, x_6, x_7, x_{10}; y_0 \prec u_6, u_8, z_0, z_1, z_2, z_3, z_4, z_6, z_9; y_1 \prec y_2, y_6, y_7, y_{11}, y_{12}, y_{13};$ $z_7 \prec u_3, x_0, y_9, z_5, z_8, z_{10}, z_{11}, z_{12}, z_{13}$. Snowflakes T_1, T_2, \ldots, T_{13} can be obtained from T_0 by applying the cyclic permutation $\varphi = (0, 1, \ldots, 13)$ in parallel on the indices of vertices in the sets U, X, Y and Z. One can easily check that the lengths 1, 2, 3, 4, 5, 6 of all pure edges in K_{56} have been already covered, as well as the following lengths of mixed edges for types: UX: 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13; UY: 2, 3, 4, 5, 6, 8; UZ: 4, 9; XY: 2, 7, 9;XZ: 7; YZ: 0, 1, 2, 3, 4, 6, 9, 12.

To construct the second class we need the snowflake T'_0 . Let the vertex u_7 of degree 11 be the root and $x_0, x_8, y_2, y_3, z_0, z_1$ be the inner vertices of degrees 8, 8, 7, 7, 10, 10, respectively. The remaining pendant edges are: $u_7 \prec u_0, z_3, z_4, z_5, z_6; x_0 \prec x_7, y_0, y_8, y_{10}, y_{11}, y_{12}, y_{13}; x_8 \prec z_2, z_8, z_9, z_{10}, y_{11}, y_{12}, y_{13}; x_8 \prec z_2, z_8, z_9, z_{10}, y_{11}, y_{12}, y_{13}; y_{13}, y_{12}, y_{13}, y_{13}$ $z_{11}, z_{12}, z_{13}; y_2 \prec x_1, x_{10}, x_{11}, x_{12}, x_{13}, y_9; y_3 \prec u_2, u_3, u_4, u_5, u_6, u_{10}; z_0 \prec u_{10}; z_0 \sqcup u_{10}; z_0 \sqcup$ $u_8, u_9, u_{11}, u_{12}, u_{13}, y_1, y_6, y_7, z_7; z_1 \prec u_1, x_2, x_3, x_4, x_5, x_6, x_9, y_4, y_5.$ Six snowflakes T'_i , for $i = 2, 4, \ldots, 12$, can be obtained from T'_0 by applying ith power of φ in parallel on the sets U, X, Y and Z. Thus the length 7 of all pure edges is covered completely and still remaining lengths of mixed edges, except the lengths 0 of type UX and 5 of type YZ, are covered in a half. Seven remaining snowflakes T'_j for j = 1, 3, ..., 13 are obtained from T'_0 by replacing the edges $u_0 u_7$, $x_0 x_7$, $y_2 y_9$ and $z_0 z_7$ with the edges $u_0 x_0$, $u_7 x_7$, $y_2 z_7$ and $y_9 z_0$, respectively, and then by applying the permutation $(\varphi)^j$ in parallel on the sets U, X, Y and Z. Notice that such a replacement does not result in changing the structure of snowflake, i.e., all T'_{i} are isomorphic to T'_{0} . In this way we cover all remaining lengths of mixed edges.

Case II. $k \geq 2$. Let $V(K_{56k}) = \bigcup_{l=1}^{k} (U^l \cup X^l \cup Y^l \cup Z^l)$, where $U^l = \{u_0^l, u_1^l, \dots, u_{13}^l\}, X = \{x_0^l, x_1^l, \dots, x_{13}^l\}, Y = \{y_0^l, y_1^l, \dots, y_{13}^l\}$ and $Z = \{z_0^l, z_1^l, \dots, z_{13}^l\}, l = 1, 2, \dots, k$. In what follows subscripts should be read modulo 14.

In order to construct 28k factors, each isomorphic to T_{56k} , we proceed in the following way. First, for every snowflake T_i , $i = 0, 1, \ldots, 13$, in the \tilde{T}_{56} -factorization of K_{56} constructed in Case I we make k copies T_i^l , l = $1, 2, \ldots, k$, by copying every edge st of T_i into k edges $s^l t^l$, each being an edge of appropriate T_i^l , where $s, t \in U \cup X \cup Y \cup Z$. Moreover, for every T_i^l among 14k trees obtained in this way, where $i = 0, 1, \ldots, 13$ and $l = 1, 2, \ldots, k$, we add 56(k-1) edges: $u_i^l \prec u_j^p, x_j^p, y_j^r, z_j^r, y_i^l \prec u_j^r, x_j^r, y_j^p, z_j^p$, where $l . Thus every <math>T_i^l$ is a snowflake with the root u_{12+i}^l of degree 11, and six inner vertices $u_i^l, x_{1+i}^l, x_{2+i}^l, y_i^l, y_{1+i}^l, z_{7+i}^l$ od degrees 28k - 20, 8, 7, 28k - 18, 7, 10, respectively.

Similarly, for every snowflake T'_i constructed in Case I, i = 0, 1, ..., 13, we built k copies T'_i , l = 1, 2, ..., k, by copying every edge st of T'_i into kedges $s^l t^l$, $s, t \in U \cup X \cup Y \cup Z$. Analogously to the above, for every T'_i of 14k trees just obtained, i = 0, 1, ..., 13 and l = 1, 2, ..., k, new 56(k - 1)edges are added: $x^l_i \prec u^p_j, x^p_j, y^r_j, z^r_j, z^l_i \prec u^r_j, x^r_j, y^p_j, z^p_j$, where l , $<math>1 \le r < l, j = 0, 1, ..., 13$. Every T'^l_i obtained in this way is a snowflake with the root u_{7+i}^l of degree 11, and six inner vertices x_i^l , x_{8+i}^l , y_{2+i}^l , y_{3+i}^l , z_i^l , z_{1+i}^l of degrees 28k - 20, 8, 7, 7, 28k - 18, 10, respectively.

Lemma 2. For every set $\overline{V} \subset V(\widetilde{T}_{56k}) = V(K_{56k})$ such that $|\overline{V}| = 28k$, $\sum_{v \in \overline{V}} \deg(v) \neq 56k - 1$.

Proof. One can check that there are only four sequences of length 28k whose terms are degrees of \tilde{T}_{56k} and whose sum of terms is 56k - 1:

- (1) $28k 18, 10, 10, 1, 1, \dots, 1,$
- (2) $28k 18, 7, 7, 7, 1, 1, \dots, 1,$
- (3) $28k 20, 11, 11, 1, 1, \dots, 1,$
- (4) $28k 20, 8, 8, 7, 1, 1, \dots, 1.$

None of these sequences is a subsequence of degree sequence of T_{56k} . Thus the assertion holds.

Notice that every of the sequences (1)–(4) indeed appears as a set of degrees for some vertex in factors of \tilde{T}_{56k} -factorization of K_{56k} . It is easily seen that all terms of (1) are degrees of the vertex z_i^l in \tilde{T}_{56k} -factorization, similarly (2) is a set of degrees for y_i^l , (3) for u_i^l and (4) for x_i^l , $i = 0, 1, \ldots, 13$, $l = 1, 2, \ldots, k$.

It is still possible that a similar example for the order 2n < 56 exists. Nevertheless, a computer was used to check that in that case 2n cannot be smaller than 38.

Acknowledgment

Several helpful discussions with D. Froncek and T. Kovářová [1] concerning the Problem are gratefully acknowledged.

References

- [1] D. Fronček and T. Kovářová, Personal communication, 2004–6.
- [2] D. Fronček and M. Kubesa, Problem presented at the Workshop in Krynica 2004, Discuss. Math. Graph Theory 26 (2006) 351.
- [3] N.D. Tan, On a problem of Fronček and Kubesa, Australas. J. Combin. 40 (2008) 237-246.

Received 9 January 2008 Revised 11 February 2008 Accepted 11 February 2008