Note

SOLUTION TO THE PROBLEM OF KUBESA

Mariusz Meszka
Faculty of Applied Mathematics
AGH University of Science and Technology Mickiewicza 30, 30-059, Kraków, Poland
e-mail: meszka@agh.edu.pl

Abstract

An infinite family of T-factorizations of complete graphs $K_{2 n}$, where $2 n=56 k$ and k is a positive integer, in which the set of vertices of T can be split into two subsets of the same cardinality such that degree sums of vertices in both subsets are not equal, is presented. The existence of such T-factorizations provides a negative answer to the problem posed by Kubesa.

Keywords: tree, T-factorization, degree sequence.
2000 Mathematics Subject Classification: 05C70, 05C05, 05C07.

1. Introduction

Let $K_{2 n}$ be the complete graph on $2 n$ vertices and T be its spanning tree. A T-factorization of $K_{2 n}$ is a collection of edge disjoint factors $T_{1}, T_{2}, \ldots, T_{n}$ of $K_{2 n}$, each of which being isomorphic to T.

At the workshop in Krynica in 2004 D. Fronček presented the following problem originally posed by M. Kubesa [2].

Problem. Suppose that there exists a T-factorization of $K_{2 n}$. Is it true that the vertex set of T can be split into two subsets, V_{1} and V_{2}, such that $\left|V_{1}\right|=\left|V_{2}\right|=n$ and $\sum_{v \in V_{1}} \operatorname{deg}(v)=\sum_{v \in V_{2}} \operatorname{deg}(v) ?$

Notice that there is no requirement on connectness or disconnectness of graphs induced by V_{1} or V_{2}.

Recently, N.D. Tan [3] solved the problem in the affirmative for two narrow classes of trees.

2. Constructions

A tree which becomes a star after removal of its pendant edges is called a snowflake. Its central vertex (ie. the central vertex of a star obtained in such a way) is called a root, whilst remaining vertices of degrees greater than one are called inner vertices.

We define a family of snowlakes $\tilde{T}_{2 n}$ of order $2 n=56 k$, for every positive integer k. There are 7 vertices of degrees: $28 k-18,28 k-20,11,10,8,7,7$, the remaining $56 k-7$ are leaves. The vertex of degree 11 is the root of $\tilde{T}_{2 n}$.

Lemma 1. For every positive integer k, the complete graph $K_{56 k}$ has $\tilde{T}_{56 k}$ factorization.

Proof. The snowflake $\tilde{T}_{56 k}$ is defined by listing its edges; we use the notation $u \prec u_{1}, u_{2}, \ldots, u_{m}$ if all the vertices $u_{1}, u_{2}, \ldots, u_{m}$ are adjacent to u. Consider two cases.

Case I. $k=1$. Let $V\left(K_{56}\right)=U \cup X \cup Y \cup Z$, where $U=\left\{u_{0}, u_{1}, \ldots, u_{13}\right\}$, $X=\left\{x_{0}, x_{1}, \ldots, x_{13}\right\}, Y=\left\{y_{0}, y_{1}, \ldots, y_{13}\right\}$ and $Z=\left\{z_{0}, z_{1}, \ldots, z_{13}\right\}$. Edges of K_{56} with both endvertices either in U or X or Y or Z are called pure edges; the remaining ones are mixed edges. To indicate a required \tilde{T}_{56} factorization we prescribe 28 snowflakes split into two classes: $\left\{T_{i}: i=\right.$ $0,1, \ldots, 13\}$ and $\left\{T_{i}^{\prime}: i=0,1, \ldots, 13\right\}$, each T_{i} and T_{i}^{\prime} being isomorphic to \tilde{T}_{56}.

We construct the first class. The vertex u_{12} of degree 11 is the root of T_{0} and its inner vertices: $u_{0}, x_{1}, x_{2}, y_{0}, y_{1}, z_{7}$ have degrees $8,8,7,10,7,10$, respectively. The remaining pendant edges are: $u_{12} \prec u_{1}, u_{2}, u_{4}, u_{7}, u_{11}$; $u_{0} \prec x_{8}, x_{9}, x_{11}, x_{12}, x_{13}, y_{4}, y_{5} ; x_{1} \prec u_{5}, u_{9}, u_{10}, u_{13}, y_{3}, y_{8}, y_{10} ; x_{2} \prec x_{3}, x_{4}$, $x_{5}, x_{6}, x_{7}, x_{10} ; y_{0} \prec u_{6}, u_{8}, z_{0}, z_{1}, z_{2}, z_{3}, z_{4}, z_{6}, z_{9} ; y_{1} \prec y_{2}, y_{6}, y_{7}, y_{11}, y_{12}, y_{13}$; $z_{7} \prec u_{3}, x_{0}, y_{9}, z_{5}, z_{8}, z_{10}, z_{11}, z_{12}, z_{13}$. Snowflakes $T_{1}, T_{2}, \ldots, T_{13}$ can be obtained from T_{0} by applying the cyclic permutation $\varphi=(0,1, \ldots, 13)$ in parallel on the indices of vertices in the sets U, X, Y and Z. One can easily check that the lengths $1,2,3,4,5,6$ of all pure edges in K_{56} have been already covered, as well as the following lengths of mixed edges for types: $U X: 2,3,4,5,6,8,9,10,11,12,13 ; U Y: 2,3,4,5,6,8 ; U Z: 4,9 ; X Y: 2,7,9 ;$ $X Z: 7 ; Y Z: 0,1,2,3,4,6,9,12$.

To construct the second class we need the snowflake T_{0}^{\prime}. Let the vertex u_{7} of degree 11 be the root and $x_{0}, x_{8}, y_{2}, y_{3}, z_{0}, z_{1}$ be the inner vertices of degrees $8,8,7,7,10,10$, respectively. The remaining pendant edges are: $u_{7} \prec u_{0}, z_{3}, z_{4}, z_{5}, z_{6} ; x_{0} \prec x_{7}, y_{0}, y_{8}, y_{10}, y_{11}, y_{12}, y_{13} ; x_{8} \prec z_{2}, z_{8}, z_{9}, z_{10}$, $z_{11}, z_{12}, z_{13} ; y_{2} \prec x_{1}, x_{10}, x_{11}, x_{12}, x_{13}, y_{9} ; y_{3} \prec u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{10} ; z_{0} \prec$ $u_{8}, u_{9}, u_{11}, u_{12}, u_{13}, y_{1}, y_{6}, y_{7}, z_{7} ; z_{1} \prec u_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{9}, y_{4}, y_{5}$. Six snowflakes T_{i}^{\prime}, for $i=2,4, \ldots, 12$, can be obtained from T_{0}^{\prime} by applying i th power of φ in parallel on the sets U, X, Y and Z. Thus the length 7 of all pure edges is covered completely and still remaining lengths of mixed edges, except the lengths 0 of type $U X$ and 5 of type $Y Z$, are covered in a half. Seven remaining snowflakes T_{j}^{\prime} for $j=1,3, \ldots, 13$ are obtained from T_{0}^{\prime} by replacing the edges $u_{0} u_{7}, x_{0} x_{7}, y_{2} y_{9}$ and $z_{0} z_{7}$ with the edges $u_{0} x_{0}, u_{7} x_{7}, y_{2} z_{7}$ and $y_{9} z_{0}$, respectively, and then by applying the permutation $(\varphi)^{j}$ in parallel on the sets U, X, Y and Z. Notice that such a replacement does not result in changing the structure of snowflake, i.e., all T_{j}^{\prime} are isomorphic to T_{0}^{\prime}. In this way we cover all remaining lengths of mixed edges.

Case II. $k \geq 2$. Let $V\left(K_{56 k}\right)=\bigcup_{l=1}^{k}\left(U^{l} \cup X^{l} \cup Y^{l} \cup Z^{l}\right)$, where $U^{l}=\left\{u_{0}^{l}, u_{1}^{l}, \ldots, u_{13}^{l}\right\}, X=\left\{x_{0}^{l}, x_{1}^{l}, \ldots, x_{13}^{l}\right\}, Y=\left\{y_{0}^{l}, y_{1}^{l}, \ldots, y_{13}^{l}\right\}$ and $Z=\left\{z_{0}^{l}, z_{1}^{l}, \ldots, z_{13}^{l}\right\}, l=1,2, \ldots, k$. In what follows subscripts should be read modulo 14.

In order to construct $28 k$ factors, each isomorphic to $\tilde{T}_{56 k}$, we proceed in the following way. First, for every snowflake $T_{i}, i=0,1, \ldots, 13$, in the \tilde{T}_{56}-factorization of K_{56} constructed in Case I we make k copies $T_{i}^{l}, l=$ $1,2, \ldots, k$, by copying every edge $s t$ of T_{i} into k edges $s^{l} t^{l}$, each being an edge of appropriate T_{i}^{l}, where $s, t \in U \cup X \cup Y \cup Z$. Moreover, for every T_{i}^{l} among $14 k$ trees obtained in this way, where $i=0,1, \ldots, 13$ and $l=1,2, \ldots, k$, we add $56(k-1)$ edges: $u_{i}^{l} \prec u_{j}^{p}, x_{j}^{p}, y_{j}^{r}, z_{j}^{r}, y_{i}^{l} \prec u_{j}^{r}, x_{j}^{r}, y_{j}^{p}, z_{j}^{p}$, where $l<p \leq k, 1 \leq r<l, j=0,1, \ldots, 13$. Thus every T_{i}^{l} is a snowflake with the root u_{12+i}^{l} of degree 11 , and six inner vertices $u_{i}^{l}, x_{1+i}^{l}, x_{2+i}^{l}, y_{i}^{l}$, y_{1+i}^{l}, z_{7+i}^{l} od degrees $28 k-20,8,7,28 k-18,7,10$, respectively.

Similarly, for every snowflake T_{i}^{\prime} constructed in Case $\mathrm{I}, i=0,1, \ldots, 13$, we built k copies $T_{i}^{\prime l}, l=1,2, \ldots, k$, by copying every edge st of T_{i}^{\prime} into k edges $s^{l} t^{l}, s, t \in U \cup X \cup Y \cup Z$. Analogously to the above, for every T_{i}^{l} of $14 k$ trees just obtained, $i=0,1, \ldots, 13$ and $l=1,2, \ldots, k$, new $56(k-1)$ edges are added: $x_{i}^{l} \prec u_{j}^{p}, x_{j}^{p}, y_{j}^{r}, z_{j}^{r}, z_{i}^{l} \prec u_{j}^{r}, x_{j}^{r}, y_{j}^{p}, z_{j}^{p}$, where $l<p \leq k$, $1 \leq r<l, j=0,1, \ldots, 13$. Every $T_{i}^{\prime l}$ obtained in this way is a snowflake
with the root u_{7+i}^{l} of degree 11, and six inner vertices $x_{i}^{l}, x_{8+i}^{l}, y_{2+i}^{l}, y_{3+i}^{l}$, z_{i}^{l}, z_{1+i}^{l} od degrees $28 k-20,8,7,7,28 k-18,10$, respectively.

Lemma 2. For every set $\bar{V} \subset V\left(\tilde{T}_{56 k}\right)=V\left(K_{56 k}\right)$ such that $|\bar{V}|=28 k$, $\sum_{v \in \bar{V}} \operatorname{deg}(v) \neq 56 k-1$.

Proof. One can check that there are only four sequences of length $28 k$ whose terms are degrees of $\tilde{T}_{56 k}$ and whose sum of terms is $56 k-1$:
(1) $28 k-18,10,10,1,1, \ldots, 1$,
(2) $28 k-18,7,7,7,1,1, \ldots, 1$,
(3) $28 k-20,11,11,1,1, \ldots, 1$,
(4) $28 k-20,8,8,7,1,1, \ldots, 1$.

None of these sequences is a subsequence of degree sequence of $\tilde{T}_{56 k}$. Thus the assertion holds.

Notice that every of the sequences (1)-(4) indeed appears as a set of degrees for some vertex in factors of $\tilde{T}_{56 k}$-factorization of $K_{56 k}$. It is easily seen that all terms of (1) are degrees of the vertex z_{i}^{l} in $\tilde{T}_{56 k}$-factorization, similarly (2) is a set of degrees for y_{i}^{l}, (3) for u_{i}^{l} and (4) for $x_{i}^{l}, i=0,1, \ldots, 13$, $l=1,2, \ldots, k$.

It is still possible that a similar example for the order $2 n<56$ exists. Nevertheless, a computer was used to check that in that case $2 n$ cannot be smaller than 38.

Acknowledgment

Several helpful discussions with D. Froncek and T. Kovářrová [1] concerning the Problem are gratefully acknowledged.

References

[1] D. Fronček and T. Kovářová, Personal communication, 2004-6.
[2] D. Fronček and M. Kubesa, Problem presented at the Workshop in Krynica 2004, Discuss. Math. Graph Theory 26 (2006) 351.
[3] N.D. Tan, On a problem of Fronček and Kubesa, Australas. J. Combin. 40 (2008) 237-246.

Received 9 January 2008
Revised 11 February 2008
Accepted 11 February 2008

