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Abstract

A subset D of the vertex set of a graph G is a (k, p)-dominating
set if every vertex v ∈ V (G) \ D is within distance k to at least p
vertices in D. The parameter γk,p(G) denotes the minimum cardinality
of a (k, p)-dominating set of G. In 1994, Bean, Henning and Swart
posed the conjecture that γk,p(G) ≤ p

p+k
n(G) for any graph G with

δk(G) ≥ k + p − 1, where the latter means that every vertex is within
distance k to at least k + p − 1 vertices other than itself. In 2005,
Fischermann and Volkmann confirmed this conjecture for all integers
k and p for the case that p is a multiple of k. In this paper we show that
γ2,2(G) ≤ (n(G)+1)/2 for all connected graphs G and characterize all
connected graphs with γ2,2 = (n+1)/2. This means that for k = p = 2
we characterize all connected graphs for which the conjecture is true
without the precondition that δ2 ≥ 3.
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1. Terminology and Introduction

In this paper we consider simple, finite and undirected graphs G = (V,E)
with vertex set V and edge set E. The number of vertices |V | is called the
order of G and is denoted by n(G).
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If there is an edge between two vertices u, v ∈ V , then we denote the edge
by uv. Furthermore, we call the vertex v a neighbor of u and say that uv
is incident with u. The neighborhood of a vertex u is defined as the set
{v | uv ∈ E} and is usually denoted by N(u). For a vertex v ∈ V we define
the degree of v as d(v) = |N(v)|. If d(v) = 1, then the vertex v is called a leaf

of G. The minimum degree of G is denoted by δ(G) = min{d(v) | v ∈ V (G)}.

For any positive integer k and any graph G the k-th power Gk of G is
the graph with vertex set V (G) where two different vertices are adjacent if
and only if the distance between them is at most k in G. Furthermore, the
minimum k-degree δk(G) of G is defined by δk(G) = δ(Gk).

Let X ⊆ V be a subset of the vertex set of a graph G = (V,E). Then
G − X denotes the graph that is obtained by removing all vertices of X
and all edges that are incident with at least one vertex of X from G. The
diameter of a graph is defined as the maximum distance between all pairs
of vertices.

For two positive integers k and p a subset D of the vertex of a graph G is
a (k, p)-dominating set of G if every vertex v ∈ V (G) \D is within distance
k to at least p vertices in D. The parameter γk,p(G) denotes the minimum
cardinality of a (k, p)-dominating set of G and is called the (k, p)-domination

number.

This domination concept is a generalization of the two concepts distance

domination and p-domination. For p = 1 a (k, p)-dominating set of G is
called a distance-k dominating set and for k = 1 a (k, p)-dominating set of
G is called a p-dominating set.

For other graph terminologies we refer the reader to the monographs by
Haynes, Hedetniemi and Slater [4, 5].

In 1994, Bean, Henning and Swart [1] posed the following conjecture for
the (k, p)-domination number γk,p.

Conjecture 1. (Bean, Henning & Swart [1] 1994). Let k and p be arbitrary
positive integers and let G be a graph of minimum k-degree δk(G) ≥ k+p−1.
Then

γk,p(G) ≤
p

p + k
n(G).

This conjecture is valid for p = 1 and all integers k ≥ 1 as proved by
Meir and Moon [6] in 1975 (the distance-k domination number is called
k-covering number in [6]). The conjecture is also true for k = 1 and all
integers p ≥ 1 as proved by Cockayne, Gamble and Shepherd [2] in 1985.
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In 2005, Fischermann and Volkmann [3] confirmed that the conjecture is
valid for all integers k and p, where p is a multiple of k, and presented
weaker statements in the remaining cases.

Note that if k = p = 2, then Conjecture 1 requires that δ2(G) ≥ 3. In
this paper, we shall show that the conjecture is true for k = p = 2 without
the precondition that δ2(G) ≥ 3 for all connected graphs with the exception
of the following class.

Definition 2. A spider is a graph G with vertex set V = {x} ∪ {yi | i =
1, 2, . . . , k} ∪ {zi | i = 1, 2, . . . , k} and edge set E = {xyi | i = 1, 2, . . . , k} ∪
{yizi | i = 1, 2, . . . , k}, where k ≥ 1 is an integer. The vertex x is called the
centre of G.

In particular, note that if G is a spider, then δ2(G) = 2. We can calculate
the (2, 2)-domination number of spiders as follows.

Theorem 3. If G is a spider with n vertices, then γ2,2(G) = n+1

2
.

Proof. Let G be a spider as defined in Definition 2. Then it is easy to see
that {x} ∪ {yi | i = 1, 2, . . . , k} is a (2, 2)-dominating set of G.

It remains to proof that there exists no (2, 2)-dominating set D of G
such that |D| < n+1

2
. Assume to the contrary that D is a (2, 2)-dominating

set of G such that |D| < n+1

2
. Note that for each pair yi, zi of vertices of

G the vertex yi or the vertex zi or both belong to D. Since |D| < n+1

2
, it

follows that |D∩{yi, zi}| = 1 for each i = 1, 2, . . . , k. If D = {z1, z2, . . . , zk},
then y1 is not (2, 2)-dominated by D, a contradiction. Otherwise let i be an
integer such that yi ∈ D. But then zi is not (2, 2)-dominated by D, again a
contradiction. This completes the proof of this theorem.

To prove our main result we need the following graph operations.

Definition 4. Let G be a connected graph and let x be a vertex of G.

(i) The graph Gx is obtained from G by adding two leaves as neighbors to
x, i.e., V (Gx) = V (G) ∪ {y, z} and E(Gx) = E(G) ∪ {xy, xz}.

(ii) The graph Gx is obtained from G by adding a path yz of length 1
to G such that y is a neighbor of x, i.e., V (Gx) = V (G) ∪ {y, z} and
E(Gx) = E(G) ∪ {xy, yz}.
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2. Results

We first prove a structural result.

Theorem 5. Let G be a connected graph and let D be a (1, 1)- and (2, 2)-
dominating set of G. If x is an arbitrary vertex of G, then either D∪{x} or

D ∪ {y} is a (1, 1)- and (2, 2)-dominating set of Gx and D ∪ {z} is a (1, 1)-
and (2, 2)-dominating set of Gx.

Proof. Let x be an arbitrary vertex of G and let D be a (1, 1)- and (2, 2)-
dominating set of G.

We first consider Gx. If x ∈ D, then both neighbors of y in Gx belong
to D ∪{z}. Otherwise x has a neighbor v ∈ D which naturally has distance
2 from y. Therefore D ∪ {z} is a (1, 1)- and (2, 2)-dominating set of Gx.

We now consider Gx. If x ∈ D, then, since z is a neighbor of x and has
distance 2 from y, the set D ∪ {y} is a (1, 1)- and (2, 2)-dominating set of
Gx. Otherwise x has a neighbor v ∈ D which naturally has distance 2 from
y and z. Therefore D ∪ {x} is a (1, 1)- and (2, 2)-dominating set of Gx.

Our main result follows.

Theorem 6. If T is a tree on n ≥ 3 vertices, then there exists a minimum

(1, 1)- and (2, 2)-dominating set D of T such that |D| ≤ n+1

2
. In addition,

equality holds if and only if T is a spider.

Proof. We shall prove the proposition by induction on n.

The only tree T with n = 3 vertices is the path xyz of length 2. This
means that T is a spider and two arbitrary vertices of T are a (1, 1)- and
(2, 2)-dominating set of T .

If T is a tree with n = 4 vertices, then either T is the path of length 3
or T is a star. In the first case the two leaves of T and in the latter case the
centre of T and an arbitrary other vertex are a (1, 1)- and (2, 2)-dominating
set of T .

Let T be a tree on n = 5 vertices. If T is the path v1v2v3v4v5 of length
4, then T is a spider and {v1, v3, v5} is a (1, 1)- and (2, 2)-dominating set
of T . If T has diameter 3, then the two vertices that are not leaves form a
(1, 1)- and (2, 2)-dominating set of T . In the remaining case T has diameter
2 and thus, T is a star. Then the centre of T and another arbitrary vertex
of T form a (1, 1)- and (2, 2)-dominating set of T .
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Now let T be a tree on n ≥ 6 vertices. Note that each spider has an odd
number of vertices. In addition, note that there exists a vertex x in T such
that either

(1) two leaves y, z of T are neighbors of x or

(2) the vertex x is not a leaf and there exists a vertex y with d(y) = 2 that
has x and a leaf z as neighbors.

Let x, y, z be vertices of T that fulfill either (1) or (2). By the induction
hypothesis, the tree T −{y, z} has a minimum (1, 1)- and (2, 2)-dominating
set D such that

|D| ≤
n(T − {y, z}) + 1

2
=

n − 1

2
.

If x, y, z fulfill (1), then, by Theorem 5, D ∪ {x} or D ∪ {y} is a (1, 1)-
and (2, 2)-dominating set of T = (T − {y, z})x. If x, y, z fulfill (2), then, by
Theorem 5, D∪{z} is a (1, 1)- and (2, 2)-dominating set of T = (T−{y, z})x.

If T − {y, z} is not a spider in one of the cases above, then, by the
induction hypothesis, |D| ≤ n−2

2
and thus,

|D ∪ {x}| ≤ |D ∪ {y}| = |D ∪ {z}| = |D| + 1 ≤
n

2
.

Suppose now that T −{y, z} is a spider for all vertices x, y, z that fulfill (1)
or (2). In this case we shall show that T itself is a spider or a path P7 of
order 7 which has a (1, 1)- and (2, 2)-dominating set of size 3. Let T −{y, z}
be a spider as defined in Definition 2.

Assume that x, y, z fulfill (1). Then there exists an integer i such that
T − {yi, zi} is not a spider, a contradiction.

So assume now that x, y, z fulfill (2). Note that k ≥ 2, since |V (T )| ≥ 6.
If k ≥ 3 or k = 2 and T 6= P7, then either there exists an integer i such

that T − {yi, zi} is not a spider, again a contradiction, or the centre of T is
the only neighbor of y in T . But in the latter case it is immediate that T is
a spider.

If k = 2 and T = P7, then let T = v1v2 . . . v7. In this case {v1, v4, v7}
is a (1, 1)- and (2, 2)-dominating set of T , which completes the proof of this
theorem.

Theorem 6 immediately implies the following corollaries.

Corollary 7. If T is a tree on n ≥ 3 vertices, then γ2,2(T ) ≤ n+1

2
with

equality if and only if T is a spider.
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Corollary 8. If G is a connected graph on n ≥ 3 vertices, then there exists

a minimum (1, 1)- and (2, 2)-dominating set D of G such that |D| ≤ n+1

2
.

In addition, equality holds if and only if G is a spider.

Proof. If G has a spanning tree that is not a spider, then the inequality
is true by Theorem 6. Otherwise either G itself is a spider or G is a cycle
v1v2v3v4v5v1 of length 5. In the latter case {v1, v3} is a (1, 1)- and (2, 2)-
dominating set of G with the required cardinality.

Corollary 9. If G is a connected graph on n ≥ 3 vertices, then γ2,2(G) ≤
n+1

2
with equality if and only if G is a spider.
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