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Abstract

A coloring of a graph G is an acyclic coloring if the union of any two
color classes induces a forest. It is proved that the acyclic chromatic
number of direct product of two trees T1 and T2 equals min{∆(T1)+1,
∆(T2)+1}. We also prove that the acyclic chromatic number of direct
product of two complete graphs Km and Kn is mn − m − 2, where
m ≥ n ≥ 4. Several bounds for the acyclic chromatic number of direct
products are given and in connection to this some questions are raised.
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1. Introduction

The direct product G × H of graphs G and H is the graph with vertex
set V (G) × V (H). Vertices (x1, y1) and (x2, y2) are adjacent in G × H if
x1x2 ∈ E(G) and y1y2 ∈ E(H). The direct product is one of the four
standard graph products and has been studied from various points of view
(see [8]).
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One of the most notorious open problems for direct products of graphs is
the Hedetniemi’s conjecture, which claims that

χ(G × H) = min{χ(G), χ(H)} .

The conjecture was partially confirmed by El-Zahar and Sauer in [7], where
they proved that the product of two four chromatic graphs is four chromatic.
Many other results on the conjecture are collected in a survey by Zhu [13].
The fractional chromatic number of direct products was considered in [12].

Acyclic colorings were introduced by Grünbaum [5]. He conjectured that
planar graphs are acyclically 5-colorable. The conjecture is a generalization
of Stein’s theorem about (1, 2, 2)-partition of planar graphs, and was later
confirmed by Borodin [4]. Many other classes of graphs were studied later:
acyclic colorings of graphs on surfaces, locally planar graphs and random
graphs were considered [1, 2, 11]. The acyclic chromatic number of Cartesian
products of trees and cycles was established in [9] and [10].

An n-coloring of a graph G is a function f : V (G) → {1, . . . , n}. We say
that f is a coloring if it is an n-coloring for some n. A coloring of a graph
is a proper coloring if any two neighboring vertices receive distinct colors,
and it is an acyclic coloring if it is proper and union of any two color classes
induces a forest. The acyclic chromatic number of a graph G, denoted as
χa(G), is the least n such that the graph G is acyclically n-colorable.

A proper coloring of a graph is a distance-two coloring if any two vertices
at distance two receive distinct colors. We denote by χ2(G) the least n such
that the graph G admits a distance-two coloring with n colors.

A G-layer in G × H is a set of vertices Gy = {(x, y)|x ∈ V (G)}, where
y ∈ V (H), and an H-layer is Gx = {(x, y)|y ∈ V (H)}, where x ∈ V (G).
The neighborhood of a vertex v ∈ V (G) is a set of vertices N(v) = {u ∈
V (G)|uv ∈ E(G)} and N [v] = N(v) ∪ {v}. By ∆(G) we denote the largest
degree over all vertices in G.

2. Bounds for Acyclic Chromatic Number of Direct Products

Lemma 2.1. For any graphs G and H, χa(G × H) ≥ min{∆(G) + 1,
∆(H) + 1}.

Proof. Let x ∈ V (G) and y ∈ V (H) be vertices with degG(x) = ∆(G)
and degH(y) = ∆(H). Let ∆(G) = α and ∆(H) = β and let x1, . . . , xα be
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neighbors of x in G and y1, . . . , yβ neighbors of y in H. The lemma is clear if
α = 1 and β = 1, since in this case the direct product will have at least one
edge and therefore χa(G) ≥ 2 (and it is trivial if α = 0 or β = 0), so assume
that α, β ≥ 2. Consider the subgraph of G × H induced by N [x] × N [y].
It follows from the definition of the direct product that for every i ≤ α
and j ≤ β, the vertex (xi, y) is adjacent to (x, yj). Therefore the complete
bipartite graph Kα,β is a subgraph of N [x] × N [y].

Suppose that f is an acyclic coloring of G×H. If vertices (xi, y) receive
pairwise distinct colors, then clearly f is a coloring with at least ∆(G) + 1
colors, since every vertex (x, yj) is colored by a color different from the col-
ors of (xi, y). Otherwise there exist a, b ≤ α, such that f(xa, y) = f(xb, y).
If also f(x, yc) = f(x, yd) for some c, d ≤ β, then (xa, y)(x, yc)(xb, y)(x, yd)
is a bichromatic 4-cycle, a contradiction. Therefore, in this case, the ver-
tices (x, yj) receive pairwise distinct colors and f is a coloring with at least
∆(H) + 1 colors.

It follows from Lemma 2.1 that an upper bound for χa(G × H) in terms
of χa(G) and χa(H) is not possible. Clearly, such a bound would fail for
products of trees, since for any tree T , χa(T ) = 2 and ∆(T ) can be arbitrary
large.

Alon, McDiarmid and Reed proved that for every graph G, χa(G) ≤
⌈

50∆(G)4/3
⌉

(see [1]). Since ∆(G × H) = ∆(G)∆(H), it follows from this

result, that χa(G×H) ≤ d50∆(G)4/3∆(H)4/3e. We think that an improve-
ment of this bound is possible, therefore we suggest the following problem.

Problem 2.2. Find a sharp upper bound for χa(G × H) in terms of ∆(G)
and ∆(H).

Lemma 2.3. For any tree T and any graph G, χa(G × T ) ≤ χ2(G).

Proof. Let T be a tree and G an arbitrary graph. Suppose that f is a
distance-two coloring of G and let

f ′ : V (G × T ) → {1, . . . , n}

be the coloring induced by f , that is

f ′(x, y) = f(x)

for all x ∈ V (G) and y ∈ V (T ). We claim that f ′ is an acyclic coloring of
G×T . Assume on the contrary that C = (x1, y1)(x2, y2) . . . (x2n, y2n)(x1, y1)
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is a bichromatic cycle in G×T . Then f ′(x2k−1, y2k−1) = i and f ′(x2k, y2k) =
j, i 6= j, and therefore f(x2k−1) = i and f(x2k) = j (for k = 1, . . . , n/2).
Since f is a distance-two coloring, we find that xm = xm+2 for m = 1, . . . , n.
It follows that C is of the form (x1, y1)(x2, y2) . . . (x1, y2n−1)(x2, y2n)(x1, y1).
If yk 6= yl for k 6= l, then y1y2 . . . y2ny1 is a cycle in T . Otherwise there exist
k and l, k 6= l, such that yk = yl and therefore ykyk+1 . . . yl is a cycle in T ,
a contradiction in either case. We conclude that f ′ is an acyclic coloring
of G × T .

In the following theorem we show that bounds from Lemma 2.1 and Lemma
2.3 are sharp for products of trees.

Theorem 2.4. Let T1 and T2 be two trees. Then χa(T1 × T2) = min{∆(T1)
+1,∆(T2) + 1}.

Proof. By Lemma 2.1 it suffices to prove that χa(T1 × T2) ≤ min{∆(T1)
+1,∆(T2) + 1}. We claim that χ2(T ) = ∆(T ) + 1 for any tree T . To prove
this, run a BFS algorithm on T and color the children of each vertex by
pairwise distinct colors that are different also from the color of their father
and forefather. Clearly, the obtained coloring f is a distance-two coloring
and it needs exactly ∆(T ) + 1 colors. It follows from Lemma 2.3, that
χa(T1 × T2) ≤ min{∆(T1) + 1,∆(T2) + 1}.

Observation 2.5. The direct product of an n-cycle and a complete graph

on two vertices is either a 2n-cycle, if n is odd or a disjoint union of two

n-cycles, if n is even. Conversely, the projection of a cycle in G × K2 to

V (G) is a cycle in G.

Consider the direct product G×K2 and suppose that f : V (G) → {1, . . . , n}
is an acyclic coloring of G. Let V (K2) = {u, v} and let f ′ : V (G × K2) →
{1, . . . , n} be the coloring induced by f , more precisely

f ′(g, u) = f ′(g, v) = f(g)

for every g ∈ V (G). We claim that f ′ is an acyclic coloring of G × K2.
Indeed, if (x1, u)(x2, v) . . . (xn, v)(x1, u) is a bichromatic cycle in G × K2,
then f ′(x2k−1, u) = i and f ′(x2k, v) = j (for k = 1, . . . , n/2) and herefrom
f(x2k−1) = i and f(x2k) = j. Since x1x2 . . . xnx1 is a cycle in G we conclude
that the coloring f is not acyclic. We have proved the following lemma.
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Lemma 2.6. For any graph G,χa(G × K2) ≤ χa(G).

We follow with a lower bound for χa(G × K2).

Theorem 2.7. For any graph G,χa(G × K2) ≥

√

χa(G)+1/8
2 + 1

4 .

Proof. Let G × K2 be a direct product and f an acyclic n-coloring of
G × K2. Let V (K2) = {u, v} and

Fi,j = {g ∈ V (G) | f(g, u) = i, f(g, v) = j}.

For every cycle with vertices in Fi,j we have an even cycle in G × K2 (see
Observation 2.5), such that all even vertices of the cycle are colored by i
and odd vertices by j. Since f is an acyclic coloring of G×K2 we infer that
the graph induced by Fi,j is a forest (for 1 ≤ i, j ≤ n). Moreover, it follows
directly from the definition of the direct product that Fi,i is an independent
set (for 1 ≤ i ≤ n). Consider the forests Fi,j and Fk,` and the edges

Ei,j,k,` = {uv |u ∈ Fi,j , v ∈ Fk,`}

with one end vertex in Fi,j and the other in Fk,`. We claim that the sub-
graph H of G with the vertex set Fi,j ∪ Fk,` and the edge set Ei,j,k,` is a
forest. Indeed, a cycle in H induces an even cycle in G × K2 (see Obser-
vation 2.5) with even vertices colored by i (resp. j) and odd vertices by
` (resp. k).

Let f ′ be a coloring of G such that each forest Fi,j , i 6= j is colored by
two colors and each independent set Fi,i by one color, so that f ′(u) 6= f ′(v)
if u and v are vertices of two distinct sets Fi,j (1 ≤ i, j ≤ n). Clearly, f ′ is
a coloring with 2n2 − n colors. Since the graphs induced by Fi,j are forests
and there is no cycle with edges in Ei,j,k,` (1 ≤ i, j, k, ` ≤ n) we infer that
the coloring f ′ is acyclic. We have proved that χa(G × K2) = n implies
χa(G) ≤ 2n2 − n which implies the desired lower bound.

Since G × K2 and K2 × H are subgraphs of G × H we have the following
corollary.

Corollary 2.8. For any nontrivial graphs G and H, χa(G × H) ≥

max{

√

χa(G)+1/8
2 + 1

4 ,

√

χa(H)+1/8
2 + 1

4} .
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In Figure 1 we present a graph G for which χa(G ×K2) < χa(G). We draw
two copies of G which correspond to the two layers of G × K2, the edges
of G × K2 are not drawn for clearity reasons. It is easy to see that the
given coloring is an acyclic 3-coloring of G × K2. Moreover, the graph G
is not acyclically 3-colorable. We also mention that the lower bound from
Theorem 2.7 is not sharp for acyclically 2 and 3-colorable products. In fact
χa(G×K2) = 2 implies that G×K2 does not have any cycles, which in turn
implies that G has no cycles (see Observation 2.5) and hence χa(G) = 2. It
turns out that if χa(G×K2) = 3, then χa(G) ≤ 5, we do not give the proof
of this.

Figure 1. A graph G, with χa(G) = 4 and χa(G × K2) = 3.

Question 2.9. Is χa(G × K2) ≥ c χa(G) for some constant c > 0?

Question 2.10. Is χa(G × H) ≥ min{χa(G), χa(H)} for every graphs G
and H?

3. Direct Products of Complete Graphs

In this section we give the acyclic chromatic number for products of complete
graphs.

Theorem 3.1. The acyclic chromatic number of direct product of complete

graphs is

χa(Km × Kn) =























n if m = 2,
5 if m = n = 3,
6 if m = 4 and n = 3,
2m − 1 if m > 4 and n = 3,
mn − m − 2 if m ≥ n ≥ 4.
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Proof. Let V (Km) = {x1, x2, . . . , xm} and V (Kn) = {y1, y2, . . . , yn}.

We first prove that χa(K2 × Kn) = n. By Lemma 2.6 we have to show
that χa(K2×Kn) ≥ n. Suppose that there is an acyclic coloring f of K2×Kn

with less than n colors. Then at least two vertices in a Kn-layer receive the
same color. Without loss of generality let f(x1, y1) = f(x1, y2) = 1. Since
the vertices (x2, yi), 3 ≤ i ≤ n are adjacent to (x1, y1) and (x1, y2), we find
that they must be colored by pairwise distinct colors, so let f(x2, yi) = i−1
for 3 ≤ i ≤ n. Since the vertex (x2, y2) can not receive the color 1, we may
assume that f(x2, y2) = 2. This forces f(x1, yi) = f(x2, yi) for 4 ≤ i ≤ n.
Therefore f(x2, y1) = 2 and f(x1, y3) = 1, to provide a proper coloring.
The obtained coloring is not acyclic since the first three vertices of both
Kn-layers form a bichromatic 6-cycle, a contradiction.

Note that K3×K3 = C32C3. It is known that χa(C32C3) = 5 (see [9]).

Next, consider the case when m = 4 and n = 3. In Table 1 an acyclic
coloring of K4×K3 is depicted, thus χa(K4×K3) ≤ 6. Suppose that 5 colors
suffice. Then one color appears four times or two colors appear three times.
The same color can be used only within one layer (otherwise the coloring is
not proper). Hence in the case when one color appears four times (in a K4-
layer), all vertices of the other two K4-layers must receive pairwise distinct
colors, hence we need 9 colors in this case. The remaining case is when
two colors appear three times. Two K3-layers, each colored by one color,
imply a bichromatic 6-cycle. If there are two K4-layers with three vertices
of the same color we obtain either a bichromatic 4-cycle or a bichromatic
6-cycle. But we obtain a bichromatic 4-cycle also in the last case with a
monochromatic K3-layer and three vertices of the same color in a K4-layer.
Hence we need at least 6 colors to color K4×K3 acyclically and the formula
holds in this case.

Table 1. An optimal acyclic coloring of K4 × K3.

1 1 2 2

3 4 4 3

5 6 5 6

Next, we show that χa(Km×Kn) = mn−m−2 for m ≥ n ≥ 4. For this case
an optimal acyclic coloring of Km × Kn is depicted in Table 2, where rows
correspond to Km-layers and columns correspond to Kn-layers and vertices
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denoted by ∗ are colored by pairwise distinct colors, where each of them is
colored by a color > m + 2. We need mn − m − 2 colors for this coloring.

To prove the optimality of the coloring given in 2 we show that we need
at least mn − m − 2 colors to color Km × Kn acyclically.

Table 2. An optimal acyclic coloring of Km × Kn.

1 3 ∗ ∗ ∗ ∗

1 4 5 6 · · · m + 2

2 4 ∗ ∗ ∗ ∗

2 3 5 6 · · · m + 2

∗ ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...

∗ ∗ ∗ ∗ ∗ ∗

Case 1. If there exists a Kn-layer with at least four vertices of the same
color, then all vertices of all other Kn-layers must be colored by pairwise
distinct colors (as soon as we color any two vertices of

⋃m
i=2 Kxi

n by the same
color, we obtain a bichromatic 4-cycle). Thus we need at least (m−1)n colors
in this case.

Case 2. Suppose that a color appears three times in a Kn-layer. Without
loss of generality assume that three vertices of Kx1

n are colored by 1.

Case 2.1. If additional two vertices of Kx1

n are colored by the same color
(6= 1), then we need at least m(n−1) colors to color the vertices of

⋃m
i=2 Kxi

n ,
since they must be colored by pairwise distinct colors.

Case 2.2. Otherwise the vertices in Kx1

n are colored by colors 1, 2, . . . ,
n − 2, where only the color 1 appears three times.

Case 2.2.1. Suppose that none of the colors 1, 2, . . . , n − 2 appears
in

⋃m
i=2 Kxi

n . Since three vertices of Kx1

n are colored by 1, we find that
no color appears in different Kn-layers of

⋃m
i=2 Kxi

n (otherwise we obtain a
bichromatic 4-cycle). Moreover, in every layer Kxi

n , i ≥ 2, there is at most
one color which appears twice and no color appears three times (otherwise
we obtain a bichromatic 4 or 6-cycle). Therefore we need at least (m − 1)
(n − 1) + n − 2 = mn − m − 1 colors to color Km × Kn acyclically.
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Case 2.2.2. Suppose that one of the colors 1, 2, . . . , n−2 appears in K xi

n

for some i ≥ 2. Then assume, without loss of generality, that a vertex of K x2

n

is colored by 2 and therefore vertices of
⋃m

i=3 Kxi

n are colored by pairwise
distinct colors. Moreover, a color used in

⋃m
i=3 Kxi

n can not repeat in Kx2

n

(otherwise a bichromatic 4-cycle would exist) and at most one color of K x2

n

appears twice in Kx2

n . Hence we need (m− 2)n + n− 1 = mn−n− 1 colors
in this case.

Case 3. Suppose that no color appears three times in a Kn-layer.

Case 3.1. Suppose that at least three colors appear twice in a Kn-layer,
without loss of generality assume Kx1

n . Then vertices of
⋃m

i=2 Kxi

n must be
colored by pairwise distinct colors, hence we need at least (m − 1)n colors.

Case 3.2. If two colors appear twice in a Kn-layer then there are at
most three Kn-layers with two colors repeated twice. If there are three Kn-
layers with two colors repeated twice, then we may without loss of generality
assume that we have the coloring depicted in Table 3. Observe that as
soon as we color any two other vertices with the same color, we obtain a
bichromatic 4-cycle. In this case mn − 6 colors are needed.

Table 3. The coloring from the Case 3.2.

...
...

...
...

∗ ∗ ∗ ∗ . . .

2 3 6 ∗ . . .

2 4 5 ∗ . . .

1 4 6 ∗ . . .

1 3 5 ∗ . . .

Case 3.2.1. Now suppose that two colors appear twice in at most two
Kn-layers (and at least in one Kn-layer).

Assume that vertices of Kx1

n are colored by colors 1, 2, . . . , n− 2, where
only the colors 1 and 2 appear twice. Again, there is no color that repeats in
two different Kxi

n -layers for i ≥ 2. If none of the colors 1, 2, . . . , n−2 appears
in

⋃m
i=2 Kxi

n then we need at least 2(n − 2) + (m − 2)(n − 1) = mn− m − 2
colors. If one of the colors 1, 2, . . . , n − 2 appears in Kxi

n for i ≥ 2, then we
find by analogous arguments as in Case 2.2.2 that mn − n − 2 colors are
needed.



332 S. Špacapan and A. Tepeh Horvat

Case 3.2.2. Finally, assume that in every Kn-layer there is at most one
color which appears twice. Since the direct product is commutative and
m ≥ n we can also assume that in every Km-layer there is at most one color
which appears twice. Clearly, if there are less than three Kn-layers or less
than three Km-layers, such that two vertices in this layer receive the same
color, then the coloring uses at least mn − m − 2 colors. So assume, that
at least three Km and three Kn-layers have two vertices of the same color.
Then one of the situations below will occur; note that these are (up to an
isomorphism) the only possible cases.

Case a

...
...

...

∗ ∗ ∗ . . .

3 3 ∗ . . .

2 2 ∗ . . .

1 1 ∗ . . .

Case b

...
...

...

∗ ∗ ∗ . . .

3 * 3 . . .

2 2 ∗ . . .

1 1 ∗ . . .

Case c

...
...

...

∗ ∗ ∗ . . .

∗ 3 3 . . .

2 ∗ 2 . . .

1 1 ∗ . . .

Case d

...
...

...
...

∗ ∗ ∗ ∗ . . .

3 ∗ ∗ 3 . . .

2 ∗ 2 ∗ . . .

1 1 ∗ ∗ . . .

In Case a only the first two Kn-layers admit two vertices of the same color.
If the third Kn-layer in Case b have two vertices of the same color, then
in no other Kn-layer a color appears twice. In Case c, the vertices where a
color repeats in a Kn-layer are precisely those marked with ∗. But in this
case only the first three Kn and the first three Km-layers have two vertices
of the same color, hence mn − 6 ≥ mn − m − 2 colors are needed. In Case

d, if the first Kn-layer has two vertices of the same color, then none of the
other Kn-layers has. Otherwise second, third and fourth Kn-layer and first
three Km-layers have two vertices of the same color and none of the others.
In this case again mn − 6 colors are needed.

Table 4. An optimal acyclic coloring of Km × K3.

1 2 3 . . . m

1 2 3 . . . m

1 ∗ ∗ . . . ∗

Finally, we show that χa(Km × K3) = 2m − 1 for m > 4. In Table 4 an
acyclic coloring of Km × K3 is given. Vertices denoted by ∗ are colored by
pairwise distinct colors, where each of them is colored by a color greater
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than m. Since this coloring uses 2m − 1 colors, χa(Km × K3) ≤ 2m − 1 for
m > 4. The proof that χa(Km × K3) ≥ 2m − 1 basically follows the case
analysis of the previous case and is left to the reader.

We mention that χa(G×H) ≤ mn−m−2 for any graphs G and H of order
m and n, m ≥ n ≥ 4 and that the coloring given in Table 2 is an acyclic
coloring of G × H.
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[5] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973)
390–412.

[6] D. Duffus, B. Sands and R.E. Woodrow, On the chromatic number of the

product of graphs, J. Graph Theory 9 (1985) 487–495.

[7] M. El-Zahar and N. Sauer, The chromatic number of the product of two 4-
chromatic graphs is 4, Combinatorica 5 (1985) 121–126.
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