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Abstract

We call the digraph D an m-coloured digraph if the arcs of D are
coloured with m colours. A directed path (or a directed cycle) is called
monochromatic if all of its arcs are coloured alike. A directed cycle is
called quasi-monochromatic if with at most one exception all of its arcs
are coloured alike.

A set N ⊆ V (D) is said to be a kernel by monochromatic paths if
it satisfies the following two conditions:

(i) for every pair of different vertices u, v ∈ N there is no monochro-
matic directed path between them and

(ii) for every vertex x ∈ V (D)−N there is a vertex y ∈ N such that
there is an xy-monochromatic directed path.

In this paper it is proved that if D is an m-coloured bipartite tour-
nament such that: every directed cycle of length 4 is quasi-monochro-
matic, every directed cycle of length 6 is monochromatic, and D has
no induced particular 6-element bipartite tournament T̃6, then D has
a kernel by monochromatic paths.

Keywords: kernel, kernel by monochromatic paths, bipartite tourna-
ment.

2000 Mathematics Subject Classification: 05C20.



286 H. Galeana-Sánchez and R. Rojas-Monroy

1. Introduction

For general concepts we refer the reader to [1]. Let D be a digraph, and
let V (D) and A(D) denote the sets of vertices and arcs of D, respec-
tively. An arc (u1, u2) ∈ A(D) is called asymmetrical (resp. symmetrical) if
(u2, u1) /∈ A(D) (resp. (u2, u1) ∈ A(D)). The asymmetrical part of D (resp.
symmetrical part of D) which is denoted by Asym(D) (resp. Sym(D)) is
the spanning subdigraph of D whose arcs are the asymmetrical (resp. sym-
metrical) arcs of D. If S is a nonempty subset of V (D) then the subdigraph
D[S] induced by S is the digraph having vertex set S, and whose arcs are
those arcs of D joining vertices of S.

A set I ⊆ V (D) is independent if A(D[I]) = ∅. A kernel N of D is an
independent set of vertices such that for each z ∈ V (D) − N there exists a
zN -arc in D, that is an arc from z to some vertex in N . A digraph D is called
kernel-prefect digraph when every induced subdigraph of D has a kernel.
Sufficient conditions for the existence of kernels in a digraph have been inves-
tigated by several authors, Von Neumann and Morgenstern [14], Richardson
[11], Duchet and Meyniel [3] and Galeana-Sánchez and Neumann-Lara [4].
The concept of kernel is very useful in applications. Clearly, the concept of
kernel by monochromatic paths generalizes those of kernel.

A digraph D is called a bipartite tournament if its set of vertices can
be partitioned into two sets V1 and V2 such that: (i) every arc of D has an
endpoint in V1 and the other endpoint in V2, and (ii) for all x1 ∈ V1 and
for all x2 ∈ V2, we have |{(x1, x2), (x2, x1)} ∩ A(D)| = 1. We will write
D = (V1, V2) to indicate the partition.

If C = (z0, z1, . . . , zn, z0) is a directed cycle and if zi, zj ∈ V (C) with
i ≤ j we denote by (zi,C, zj) the zizj-directed path contained in C, and
`(zi,C, zj) will denote its length; similarly `(C) will denote the length of C.

If D is an m-coloured digraph, then the closure of D, denoted by
C(D) is the m-coloured multidigraph defined as follows: V (C(D)) = V (D),
A(C(D)) = A(D)∪{(u, v) with colour i | there exists an uv-monochromatic
directed path coloured i contained in D}.

Notice that for any digraph D, C(C(D)) ∼= C(D) and D has a kernel by
monochromatic paths if and only if C(D) has a kernel.

In [13] Sands et al. have proved that any 2-coloured digraph has a ker-
nel by monochromatic paths; in particular they proved that any 2-coloured
tournament has a kernel by monochromatic paths. They also raised the fol-
lowing problem: Let T be a 3-coloured tournament such that every directed
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cycle of length 3 is quasi-monochromatic; must C(T ) have a kernel? (This
question remains open.) In [12] Shen Minggang proved that if in the problem
we ask that every transitive tournament of order 3 be quasi-monochromatic,
the answer will be yes; and the result is best possible for m-coloured tour-
naments with m ≥ 5. In 2004 [9] presented a 4-coloured tournament T such
that every directed cycle of order 3 is quasi-monochromatic; but T has no
kernel by monochromatic paths. The known sufficient conditions for the
existence of kernel by monochromatic paths in m-coloured (m ≥ 3) tour-
naments (or nearly tournaments), ask for the monochromaticity or quasi-
monochromaticity of certain subdigraphs. In [5] it was proved that if T is an
m-coloured tournament such that every directed cycle of length at most 4 is
quasi-monochromatic then C(T ) is kernel-perfect. A generalization of this
result was obtained by Hahn, Ille and Woodrow in [10]; they proved that if
T is an m-coloured tournament such that every directed cycle of length k is
quasi-monochromatic and T has no polychromatic directed cycles of length
`, ` < k, for some k ≥ 4, then T has a kernel by monochromatic paths.
(A directed cycle is polychromatic if it uses at least three different colours in
its arcs). Results similar to those in [12] and [5] were proved for the digraph
obtained from a tournament by the deletion of a single arc, in [7] and [6], re-
spectively. Kernels by monochromatic paths in bipartite tournaments were
studied in [8]; where it is proved that if T is a bipartite tournament such that
every directed cycle of length 4 is monochromatic, then T has a kernel by
monochromatic paths.

We prove that if T is a bipartite tournament such that every directed
cycle of length 4 is quasi-monochromatic, every directed cycle of length 6
is monochromatic and T has no induced subtournament isomorphic to T̃6,
then T has a kernel by monochromatic paths.

T̃6 is the bipartite tournament defined as follows:

V (T̃6) = {u, v, w, x, y, z},

A(T̃6) = {(u,w), (v, w), (w, x), (w, z), (x, y), (y, u), (y, v), (z, y)} with
{(u,w), (w, x), (y, u), (z, y)} coloured 1 and {(v, w), (w, z), (x, y), (y, v)}
coloured 2. (See Figure 1).

We will need the following result.

Theorem 1.1 Duchet [2]. If D is a digraph such that every directed cycle

has at least one symmetrical arc, then D is a kernel-perfect digraph.
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Figure 1

2. The Main Result

The following lemmas will be useful in the proof of the main result.

Lemma 2.1. Let D = (V1, V2) be a bipartite tournament and C = (u0,
u1, . . . , un) a directed walk in D. For {i, j} ⊆ {0, 1, . . . , n}, (ui, uj) ∈ A(D)
or (uj , ui) ∈ A(D) if and only if j − i ≡ 1(mod 2).

Lemma 2.2. For a bipartite tournament D = (V1, V2), every closed directed

walk of length at most 6 in D is a directed cycle of D.

Lemma 2.3. Let D be an m-coloured bipartite tournament such that ev-

ery directed cycle of length 4 is quasi-monochromatic and every directed

cycle of length 6 is monochromatic. If for u, v ∈ V (D) there exists a uv-
monochromatic directed path and there is no vu-monochromatic directed path

(in D), then at least one of the following conditions hold:

(i) (u, v) ∈ A(D),

(ii) there exists (in D) a uv-directed path of length 2,

(iii) there exists a uv-monochromatic directed path of length 4.

Proof. Let D, u, v be as in the hypothesis. If there exists a uv-directed
path of odd length, then it follows from Lemma 2.1 that (u, v) ∈ A(D) or
(v, u) ∈ A(D). Since there is no vu-monochromatic directed path in D,
then (u, v) ∈ A(D) and Lemma 2.3 holds. So, we will assume that every
uv-directed path has even length. We proceed by induction on the length
of a uv-monochromatic directed path.

Clearly Lemma 2.3 holds when there exists a uv-monochromatic direc-
ted path of length at most 4. Suppose that T = (u = u0, u1, u2, u3, u4, u5,
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u6 = v) is a uv-monochromatic directed path of length 6. It follows from
Lemma 2.1 that (u, u5) ∈ A(D) or (u5, u) ∈ A(D) and also (u1, v) ∈ A(D)
or (v, u1) ∈ A(D). If (u, u5) ∈ A(D) or (u1, v) ∈ A(D) then we obtain a
uv-directed path of length two, and we are done. So, we will assume that
(u5, u) ∈ A(D) and (v, u1) ∈ A(D). Thus (u = u0, u1, u2, u3, u4, u5, u0 = u)
is a directed cycle of length 6 which is monochromatic and has the same
colour as T . Also (u1, u2, u3, u4, u5, u6 = v, u1) is a directed cycle coloured as
T . Hence (v = u6, u1, u2, u3, u4, u5, u0 = u) is a vu-monochromatic directed
path, a contradiction. Suppose that Lemma 2.3 holds when there exists a
uv-monochromatic directed path of even length ` with 6 ≤ ` ≤ 2n. Now
assume that there exists a uv-monochromatic directed path say T = (u =
u0, u1, . . . , u2(n+1) = v) with `(T ) = 2(n + 1); we may assume w.l.o.g. that
T is coloured 1.

From Lemma 2.1 we have that for each i ∈ {0, 1, . . . , 2(n + 1) − 5},
(ui+5, ui) ∈ A(D) or (ui, ui+5) ∈ A(D). We will analyze two possible cases:

Case a. For each i ∈ {0, 1, . . . , 2(n + 1) − 5}, (ui+5, ui) ∈ A(D).

In this case C6 = (ui, ui+1, ui+2, ui+3, ui+4, ui+5, ui) is a directed cycle
with `(C6) = 6; so it is monochromatic and coloured 1 (as (ui, ui+1) is
coloured 1). Let k ∈ {1, 2, 3, 4, 5} such that k ≡ 2(n + 1) (mod 5), then
(v = u2(n+1), u2(n+1)−5, u2(n+1)−10, . . . , uk) ∪ (uk, T, u5) ∪ (u5, u0) is a vu-
monochromatic directed path in D, a contradiction.

Case b. For some i ∈ {0, 1, . . . , 2(n + 1) − 5}, (ui, ui+5) ∈ A(D).

Notice that from Lemma 2.1, there exists an arc between u1 and u2(n+1) and
also there exists an arc between u0 and u2n+1. If (u1, u2(n+1)) ∈ A(D) or
(u0, u2n+1) ∈ A(D), then we obtain a uv-directed path of length two, and
we are done. So, we will assume that (u2(n+1), u1) ∈ A(D) and (u2n+1, u0) ∈
A(D). Observe that: If for some i ∈ {1, . . . , 2(n + 1) − 5}, (u2(n+1), ui) ∈
A(D) and the arcs (u2(n+1), ui) and (u2n+1, u0) are coloured 1, then (v =
u2(n+1), ui) ∪ (ui, T, u2n+1) ∪ (u2n+1, u0) is a vu-directed path coloured 1,
contradicting the hypothesis. Hence we have:

(a) If for some i ∈ {1, 2, . . . , 2(n + 1)− 5} we have (u2(n+1), ui) ∈ A(D),
then (u2(n+1), ui) is not coloured 1 or (u2n+1, u0) is not coloured 1.

Case b.1. (u2n+1, u0) is not coloured 1.

Recall that for some i ∈ {0, 1, . . . , 2(n + 1) − 5}, (ui, ui+5) ∈ A(D). Let
{i0, j0} ⊆ {0, 1, . . . , 2(n + 1)} be such that j0 − i0 = max{j − i | {i, j} ⊆
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{0, 1, . . . , 2(n + 1)} and (ui, uj) ∈ A(D)}; clearly j0 − i0 ≥ 5. Now we will
analyze several possibilities:

Case b.1.1. i0 ≥ 2 and j0 ≤ 2n.
Since (ui0 , uj0) ∈ A(D), it follows from Lemma 2.1 that j0 − i0 ≡ 1(mod 2)
so (j0+2)−(i0−2) ≡ 1(mod 2) and ((ui0−2, uj0+2) ∈ A(D) or (uj0+2, ui0−2) ∈
A(D)); the selection of {i0, j0} implies (uj0+2, ui0−2) ∈ A(D). Thus
(ui0−2, ui0−1, ui0 , uj0 , uj0+1, uj0+2, ui0−2) is a directed cycle of length 6
and hence monochromatically coloured 1. Now (u0, T, ui0) ∪ (ui0 , uj0) ∪
(uj0 , T, u2(n+1) = v) is a uv-monochromatic directed path whose length is
less than `(T ). Then the assertion of Lemma 2.3 follows from the inductive
hypothesis.

Case b.1.2. i0 = 0.
When j0 ≤ 2n− 3; it follows from Lemma 2.1 and the choice of {i0, j0} that
(uj0+4, ui0 = u0) ∈ A(D). Thus (u0 = ui0 , uj0 , uj0+1, uj0+2, uj0+3, uj0+4, u0)
is a monochromatic directed cycle (it has length 6), coloured 1. Hence
(ui0 , uj0) ∪ (uj0 , T, v) is a uv-monochromatic directed path whose length
is less than `(T ) and the assertion follows from the inductive hypothesis.
When j0 ≥ 2n − 1, we have j0 = 2n − 1 (recall (u2n+1, u0) ∈ A(D), j0 −
i0 ≡ 1(mod 2), i0 = 0). So, (u0 = ui0 , uj0 = u2n−1, u2n, u2n+1, u0) is a
directed cycle of length 4 which by hypothesis is quasi-monochromatic. Since
(u2n+1, u0) is not coloured 1, then (ui0 , uj0) is coloured 1, and (u = ui0 , uj0 =
u2n−1, u2n, u2n+1, u2n+2 = v) is a uv-monochromatic directed path coloured
1 of length 4.

Case b.1.3. i0 = 1.
When j0 ≤ 2n − 2, we have (uj0+4, ui0 = u1) ∈ A(D) (Lemma 2.1 and
the choice of {i0, j0}). Thus (u1 = ui0 , uj0 , uj0+1, uj0+2, uj0+3, uj0+4, ui0)
is a directed cycle of length 6 (monochromatic and coloured 1). Hence
(u = u0, T, ui0)∪ (ui0 , uj0)∪ (uj0 , T, v) is a uv-monochromatic directed path
whose length is less than `(T ); so the assertion follows from the inductive
hypothesis.

When j0 ≥ 2n, we have j0 = 2n (as j0 − i0 ≡ 1(mod 2), i0 = 1 and
(u2n+2, u1) ∈ A(D)). Hence (u1 = ui0 , uj0 = u2n, u2n+1, u0, u1) is a di-
rected cycle of length 4, from the hypothesis it is quasi-monochromatic
and (u2n+1, u0) is not coloured 1, so (ui0 , uj0) is coloured 1. Therefore
(u0, u1 = ui0 , uj0 = u2n, u2n+1, u2n+2 = v) is a uv-monochromatic directed
path, coloured 1, of length 4.
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Case b.1.4. j0 = 2n + 1.
When i0 ≥ 4, we have (u2n+1 = uj0 , ui0−4) ∈ A(D) (j0 − i0 ≡ 1(mod 2),
j0 − (i0 − 4) ≡ 1 (mod 2), and the choice of {i0, j0}). Therefore (ui0 , uj0 =
u2n+1, ui0−4, ui0−3, ui0−2, ui0−1, ui0) is a directed cycle of length 6 (and
thus it is monochromatic) coloured 1. Thus (u = u0, T, ui0) ∪ (ui0 , uj0) ∪
(uj0 , T, v) is a uv-directed path coloured 1, whose length is less than `(T );
so the assertion follows from the inductive hypothesis.

When i0 ≤ 2, we have i0 = 2 (as j0 − i0 ≡ 1(mod 2), j0 = 2n + 1,
and (u2n+1, u0) ∈ A(D)). Hence (u2 = ui0 , uj0 = u2n+1, u0, u1, u2) is quasi-
monochromatic (as it has length 4). Since (u2n+1, u0) is not coloured 1, it
follows that (ui0 , uj0) is coloured 1. We conclude that (u0, u1, u2 = ui0 , uj0 =
u2n+1, u2n+2 = v) is a uv-directed path coloured 1 of length 4.

Case b.1.5. j0 = 2n + 2.
When i0 ≥ 5, we have (u2n+2 = uj0 , ui0−4) ∈ A(D) (arguing as in b.1.4).
Thus (ui0 , uj0 , ui0−4, ui0−3, ui0−2, ui0−1, ui0) is monochromatic (as it is a di-
rected cycle of length 6). Hence (u, T, ui0) ∪ (ui0 , uj0) ∪ (uj0 , T, v) is a uv-
monochromatic directed path with length less than `(T ); and the result
follows from the inductive hypothesis.

When i0 ≤ 3, we have i0 = 3 (as j0 − i0 ≡ 1(mod 2) and (u2n+2, u1) ∈
A(D)). Hence (u3 = ui0 , uj0 = u2n+2, u1, u2, u3) is quasi-monochromatic.
If (ui0 , u2n+2) is coloured 1, then (u0, u1, u2, u3 = ui0 , u2n+2 = v) is a uv-
monochromatic directed path of length 4. So we will assume that (ui0 , u2n+2)
is not coloured 1, and hence (u2n+2, u1) is coloured 1.

If (ui, u0) ∈ A(D) for some i ∈ {3, . . . , 2n + 1}, then (ui, u0) is not
coloured 1 (otherwise (v = u2n+2, u1)∪ (u1, T, ui)∪ (ui, u) is a vu-monochro-
matic directed path, contradicting our hypothesis).

Now observe that (u0, u5) ∈ A(D); otherwise (u5, u0) ∈ A(D) and
(u0, u1, u2, u3, u4, u5, u0) is monochromatic which implies (u5, u0) is coloured
1, a contradiction.

Let k0 = max{i ∈ {5, 6, . . . , 2n − 1} | (u0, ui) ∈ A(D)}. Then, we have
(u0, uk0

) ∈ A(D) and (uk0+2, u0) ∈ A(D); moreover (uk0+2, u0) is not colour-
ed 1. Since (u0, uk0

, uk0+1, uk0+2, u0) is quasi-monochromatic and (uk0+2, u0)
is not coloured 1, we have (u0, uk0

) is coloured 1. Thus (u = u0, uk0
) ∪

(uk0
, T, u2(n+1) = v) is a uv-monochromatic directed path whose length is

less than `(T ); so the assertion follows from the inductive hypothesis.

Case b.2. In view of assertion (a) and case b.1, we may assume that: If
(u2(n+1), ui) ∈ A(D) for some i ∈ {1, 2, . . . , 2(n + 1) − 5} then (u2(n+1), ui)
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is not coloured 1.
— (u2(n+1), u1) is not coloured 1: It follows from the fact (u2(n+1), u1) ∈

A(D).
— (u2(n+1)−5, u2(n+1)) ∈ A(D): Otherwise it follows from Lemma 2.1 that
(u2(n+1), u2(n+1)−5) ∈ A(D), now (u2(n+1)−5, T, u2(n+1))∪(u2(n+1), u2(n+1)−5)
is monochromatic coloured 1 (note that it is a directed cycle of length 6 and
it has arcs in T ), and then (u2(n+1), u2(n+1)−5) is coloured 1, contradicting
our assumption.

Let i0 = max{i ∈ {0, 1, 2, . . . , 2(n+1)−7} | (u2(n+1) , ui) ∈ A(D)} (notice
that i0 is well defined as (u2(n+1), u1) ∈ A(D)). Therefore (u2(n+1), ui0) ∈
A(D), (ui0+2, u2(n+1)) ∈ A(D) and (u2(n+1), ui0) is not coloured 1. Now we
have the directed cycle of length 4 (u2(n+1), ui0 , ui0+1, ui0+2, u2(n+1)) which
is quasi-monochromatic with (u2(n+1), ui0) not coloured 1; and (ui0 , ui0+1),
(ui0+1, ui0+2) coloured 1; so (ui0+2, u2(n+1)) is coloured 1. Thus, (u =
u0, T, ui0+2) ∪ (ui0+2, u2(n+1) = v) is a uv-directed path coloured 1 whose
length is less than `(T ); so the assertion follows from the inductive
hypothesis.

Theorem 2.1. Let D be an m-coloured bipartite tournament. Assume that

every directed cycle of length 4 is quasi-monochromatic, every directed cycle

of length 6 is monochromatic and D has no subtournament isomorphic to

T̃6. Then C(D) is a kernel-perfect digraph.

Proof. We will prove that every directed cycle contained in C(D) has
at least one symmetrical arc. Then Theorem 2.1 will follow from The-
orem 1.1. We proceed by contradiction, suppose that there exists C =
(u0, u1, . . . , un, u0) a directed cycle contained in Asym(C(D)). Therefore,
n ≥ 2. For each i ∈ {0, 1, . . . , n} there exists a uiui+1-monochromatic di-
rected path contained in D, and there is no ui+1ui-monochromatic directed
path contained in D. Thus, it follows from Lemma 2.3 that at least one of
the following assertions hold:

(i) (ui, ui+1) ∈ A(D),

(ii) there exists a uiui+1-directed path of length 2,

(iii) there exists a uiui+1-monochromatic directed path of length 4. Through-
out the proof the indices of the vertices of C are taken modn + 1.

For each i ∈ {0, 1, . . . , n} let
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Ti =





(ui, ui+1) if (ui, ui+1) ∈ A(D),

a uiui+1-directed path of length 2, when (ui, ui+1) /∈ A(D)

and such a path exists,

a uiui+1-monochromatic directed path of length 4, otherwise.

Let C ′ =
⋃n

i=0 Ti. Clearly C ′ is a closed directed walk; let C ′ = (z0, z1, . . . ,
zk, z0). We define the function ϕ : {0, 1, . . . , k} → V (C) as follows: If Ti =
(ui = zi0 , zi0+1, . . . , zi0+r = ui+1) with r ∈ {1, 2, 4}, then ϕ(j) = zi0 for each
j ∈ {i0, i0 + 1, . . . , i0 + r − 1}. We will say that the index i of the vertex zi

of C ′ is a principal index when zi = ϕ(i). We will denote by Ip the set of
principal indices.

I. First observe that for each i ∈ {0, 1, . . . , k} we have {i, i + 1, i + 2,
i + 3} ∩ Ip 6= ∅. Assume w.l.o.g. that 0 ∈ Ip and z0 = u0. In what follows,
the indices of the vertices of C ′ will be taken modulo k + 1.

Case a. k = 3.
In this case C ′ is a directed cycle of length 4 and hence it is quasi-monochro-
matic. Since n ≥ 2, then u1 ∈ {z1, z2} and un ∈ {z2, z3}. And it is easy to
see that there exists a ui+1ui-monochromatic directed path in D, for some
i ∈ {0, 1, . . . , n}, a contradiction.

Case b. k = 5.
In this case C ′ is a directed cycle of length 6, and then it is monochromatic,
which clearly implies that there exists a u1u0-monochromatic directed path
in D, a contradiction.

Case c. k ≥ 7.
We will prove several assertions.

1(c). For each i ∈ {0, 1, . . . , k} ∩ Ip we have (zi, zi+5) ∈ A(D).
Since (i + 5) − i ≡ 1(mod 2), it follows that (zi, zi+5) ∈ A(D) or (zi+5, zi) ∈
A(D). Assume, for a contradiction that (zi+5, zi) ∈ A(D). Therefore
(zi, zi+1, zi+2, zi+3, zi+4, zi+5, zi) is monochromatic. Now let j ∈ {0, 1, . . . , n}
be such that uj = zi, then uj+1 ∈ {zi+1, zi+2, zi+4}. So there exists a uj+1uj-
monochromatic directed path, a contradiction.

2(c). For each i ∈ {0, . . . , k} such that i + 5 ∈ Ip we have (zi, zi+5) ∈
A(D).
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Assume, for a contradiction that (zi+5, zi) ∈ A(D). Then (zi, zi+1, zi+2, zi+3,
zi+4, zi+5, zi) is monochromatic. Let j ∈ {0, . . . , n} be such that uj = zi+5,
thus uj−1 ∈ {zi+1, zi+3, zi+4} and there exists a ujuj−1-monochromatic
directed path, a contradiction.

3(c). For each i ∈ {5, . . . , k−2} such that i ≡ 1(mod 4) we have (z0, zi) ∈
A(D). We proceed by contradiction; suppose that for some i ∈ {5, . . . , k−2}
we have i ≡ 1(mod 4) and (zi, z0) ∈ A(D). Since 0 ∈ Ip, it follows from 1(c)
that (z0, z5) ∈ A(D) and then i ≥ 9.

Let i0 = min{j ∈ {5, . . . , k − 6} | j ≡ 1(mod 4) and (zj+4, z0) ∈ A(D)}
(notice that i0 is well defined, as i ≥ 9). Thus (z0, zi0−4) ∈ A(D), (z0, zi0) ∈
A(D) and (zi0+4, z0) ∈ A(D). Now C2 = (z0, zi0 , zi0+1, zi0+2, zi0+3, zi0+4, z0)
is a directed cycle of length 6 and hence it is monochromatic, w.l.o.g we will
assume that it is coloured 1. Now we consider two cases:

3(c).1. i0 ∈ Ip.

In this case zi0 = uj for some j ∈ {3, . . . , n} and from the definition of C ′,
uj+1 ∈ {zi0+1, zi0+2, zi0+4}. In any case, there exists a uj+1uj-monochro-
matic directed path contained in C, a contradiction.

3(c).2. i0 /∈ Ip.

In this case, we have from observation I that {i0−3, i0−2, i0−1}∩Ip 6= ∅, let
` ∈ {i0−3, i0−2, i0−1}∩Ip and uj ∈ V (C) such that uj = z`. From 1(c) we
have (z`, z`+5) ∈ A(D) and ` + 5 ∈ {i0 + 2, i0 + 3, i0 + 4} which implies that
C3 = (zi0−4, C

′, z`)∪(z`, z`+5)∪(z`+5, C
′, zi0+4)∪(zi0+4, z0, zi0−4) is a closed

directed walk of length 6 (as (zi0−4, C
′, zi0+4) ∪ (zi0+4, z0, zi0−4) is a closed

directed walk of length 10). It follows from Lemma 2.2 that C 3 is a directed
cycle and the hypothesis implies that it is monochromatic. Since (zi0+4, z0) ∈
A(C2) ∩ A(C3), we have that C3 is coloured 1. Now from the definition of
C ′ we have uj+1 ∈ {z`+1, z`+2, z`+4} ⊆ {zi0−2, zi0−1, zi0 , zi0+1, zi0+2, zi0+3}.

When uj+1 ∈ {zi0 , zi0+1, zi0+2, zi0+3}, we obtain that (zi0 , C
2, z0) ∪

(z0, C
3, z`) contains a uj+1uj-monochromatic directed path, a contradiction.

When uj+1 ∈ {zi0−2, zi0−1}, we take i1 ∈ {i0 − 2, i0 − 1} such that uj+1

= zi1 . From 1(c) we have (zi1 , zi1+5) ∈ A(D) where zi1+5 ∈ {zi0+3, zi0+4},
thus C4 = (zi0−4, C

′, zi1)∪ (zi1 , zi1+5)∪ (zi1+5, C
′, zi0+4)∪ (zi0+4, z0, zi0−4) is

a directed cycle of length 6 (notice that (zi0−4, C
′, zi0+4) ∪ (zi0+4, z0, zi0−4)

is a closed directed walk of length 10). From the hypothesis we have that
C4 is monochromatic. Since (zi0+4, z0) ∈ A(C4) ∩A(C3) we obtain that C4

is coloured 1.
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Finally, since {uj , uj+1} ⊆ V (C4) we have a uj+1uj-monochromatic directed
path, a contradiction.

4(c). For any i ∈ {3, . . . , k−4} such that i ≡ k(mod 4) we have (zi, z0) ∈
A(D). Since i ≡ k(mod 4) and k ≡ 1(mod 2) we have i ≡ 1(mod 2), and
from Lemma 2.1 we obtain (z0, zi) ∈ A(D) or (zi, z0) ∈ A(D).

Assume, for a contradiction that (z0, zi) ∈ A(D), for some i ∈ {3, . . . ,
k − 4} such that i ≡ k(mod4).

Since 0 ∈ Ip, it follows from 2(c) that (zk−4, z0) ∈ A(D), and thus i ≤
k−8. Let i0 = max{i ∈ {7, . . . , k−4} | i ≡ k(mod 4) and (z0, zi−4) ∈ A(D)}
therefore (z0, zi0−4) ∈ A(D), (zi0 , z0) ∈ A(D) and (zi0+4, z0) ∈ A(D). So
C2 = (z0, zi0−4, zi0−3, zi0−2, zi0−1, zi0 , z0) is a directed cycle of length 6 and
hence it is monochromatic, w.l.o.g. assume that it is coloured 1.

When i0 ∈ Ip, we have zi0 = uj for some j ∈ {2, . . . , n − 2}. From the
definition of C ′ we have uj−1 ∈ {zi0−1, zi0−2, zi0−4} and then there exists a
ujuj−1-monochromatic directed path contained in C2, a contradiction.

When i0 /∈ Ip, then from I we have {i0 − 3, i0 − 2, i0 − 1} ∩ Ip 6= ∅. Let
` ∈ {i0 − 3, i0 − 2, i0 − 1} ∩ Ip, so uj = z` for some uj ∈ V (C). From 1(c) it
follows (z`, z`+5) ∈ A(D) and ` + 5 ∈ {i0 + 2, i0 + 3, i0 + 4}.

Now C3 = (zi0−4, C
′, z`)∪ (z`, z`+5)∪ (z`+5, C

′, zi0+4)∪ (zi0+4, z0, zi0−4)
is a directed cycle of length 6 (as (zi0−4, C

′, zi0+4) ∪ (zi0+4, z0, zi0−4) is a
closed directed walk of length 10), and then it is monochromatic. Since
(z0, zi0−4) ∈ A(C2) ∩ A(C3) we have C3 is coloured 1. Observe that uj+1 ∈
{z`+1, z`+2, z`+4} ⊆ {zi0−2, zi0−1, zi0 , zi0+1, zi0+2, zi0+3}. If uj+1 ∈ {zi0−2,
zi0−1, zi0} then there exists a uj+1uj-monochromatic directed path contained
in C2, a contradiction.

If uj+1 ∈ {zi0+1, zi0+2, zi0+3}, then we take i1 ∈ {i0 + 1, i0 + 2, i0 + 3}
such that uj+1 = zi1 . From 2(c), (zi1−5, zi1) ∈ A(D), where zi1−5 ∈ {zi0−4,
zi0−3, zi0−2}. Now, C4 = (zi0−4, C

′, zi1−5) ∪ (zi1−5, zi1) ∪ (zi1 , C ′, zi0+4) ∪
(zi0+4, z0, zi0−4) is a directed cycle of length 6 (as (zi0−4, C

′, zi0+4)∪ (zi0+4,
z0, zi0−4) is a closed directed walk of length 10), so it is monochromatic
and coloured 1 (because (z0, zi0−4) ∈ A(C4) ∩ A(C2)). We conclude that
(uj+1 = zi1 , C

4, zi0−4) ∪ (zi0−4, C
2, z` = uj) contains a uj+1uj-monochro-

matic directed path, a contradiction.

Now we will analyze the two possible cases:

Case c.1. k ≡ 1(mod 4).
Since 0 ∈ Ip, it follows from 2(c) that (zk−4, z0) ∈ A(D). On the other hand,
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we have k−4 ≡ 1(mod 4), and from 3(c), (z0, zk−4) ∈ A(D), a contradiction
(as D is a bipartite tournament).

Case c.2. k ≡ 3(mod 4).
First, we prove several assertions:

5(c.2). For any i ∈ {3, . . . , k − 4} such that i ≡ 3(mod 4) we have
(zi, z0) ∈ A(D).

This assertion follows from 4(c) as i ≡ k(mod4).

6(c.2). For any i, j ∈ {0, . . . , k} such that i ∈ Ip and j − i ≡ 1(mod 4),
we have (zi, zj) ∈ A(D).

Let r ∈ {0, 1, . . . , n} be such that ur = zi, now we rename the vertices
of C in such a way that C starts at ur. Joining the corresponding directed
paths (Ti) between the vertices of C, we obtain a closed directed walk C

′
=

(z0, z1, . . . , zk, z0) which is the same as C ′ where the vertices where renamed
as follows: for each t ∈ {0, . . . , k} zt = zt+i, thus z0 = zi. Let j ∈ {0, . . . , k}
be such that j − i ≡ 1(mod 4). It follows from 3(c) that (z0, zj−i) ∈ A(D)
and that means (zi, zj) ∈ A(D) (as z0 = zi and zj−i = zj).

7(c.2). For any i, j ∈ {0, . . . , k} such that i ∈ Ip and j − i ≡ 3(mod 4),
we have (zj , zi) ∈ A(D).

We proceed as in 6(c.2), to obtain C
′
. Taking j ∈ {0, . . . , k} such

that j − i ≡ 3(mod 4), we obtain from 5(c.2) that (zj−i, z0) ∈ A(D); i.e.,
(zj , zi) ∈ A(D).

8(c.2). For any i ∈ {0, . . . , k} we have (zi, zi−3) ∈ A(D).
We proceed by contradiction, suppose that for some i ∈ {0, . . . , k} we have
(zi−3, zi) ∈ A(D). Since i − (i − 3) ≡ 3(mod 4), we have from 7(c.2) that
i−3 /∈ Ip; and since (i−3)− i ≡ 1(mod 4), we obtain from 6(c.2) that i /∈ Ip.
From I, {i − 3, i − 2, i − 1, i} ∩ Ip 6= ∅. Thus {i − 2, i − 1} ∩ Ip 6= ∅.

And here we consider the two possible cases:

Case 8(c.2) a. i − 2 ∈ Ip.
Let j ∈ {0, . . . , n} be such that zi−2 = uj. We have (zi+1, zi−2 = uj) ∈ A(D)
(this follows directly from 7(c.2), observating that i+1−(i−2) ≡ 3(mod 4)),
also (zi−2, zi−5) ∈ A(D) (from 6(c.2), just observe that (i − 5) − (i − 2) ≡
1(mod 4)). Now we have C2 = (uj = zi−2, zi−5, zi−4, zi−3, zi, zi+1, zi−2 = uj)
is a directed cycle of length 6 and from the hypothesis it is monochromatic,
assume w.l.o.g. that it is coloured 1. From the definition of C ′, uj−1 ∈
{zi−6, zi−4, zi−3}. Since i − 3 /∈ Ip we obtain uj−1 ∈ {zi−6, zi−4}.
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When uj−1 = zi−4, we obtain {uj−1, uj} ⊂ V (C2). Thus there exists
a ujuj−1-monochromatic directed path contained in C2, a contradiction.
When uj−1 = zi−6, we have (zi+1, zi−6 = uj−1) ∈ A(D) (from 7(c.2) as
(i+1)− (i−6) ≡ 3(mod 4)). So C3 = (uj−1 = zi−6, zi−5, zi−4, zi−3, zi, zi+1,
zi−6 = uj−1) is a directed cycle of length 6 and hence it is monochromatic;
moreover it is coloured 1 (because (zi−3, zi) ∈ A(C2) ∩ A(C3)). Therefore,
(uj = zi−2, C

2, zi+1) ∪ (zi+1, zi−6 = uj−1) is a ujuj−1-monochromatic di-
rected path, a contradiction.

Case 8(c.2) b. i − 1 ∈ Ip.

Let j ∈ {0, . . . , n} be such that zi−1 = uj. We have (zi+2, zi−1 = uj) ∈ A(D)
(this follows from 7(c.2), as i + 2 − (i − 1) ≡ 3(mod 4)), and (zi−1, zi−4) ∈
A(D) (this follows from 6(c.2), because (i−4)− (i−1) ≡ 1(mod 4)). There-
fore C2 = (uj = zi−1, zi−4, zi−3, zi, zi+1, zi+2, zi−1 = uj) is a directed cycle
of length 6, hence it is monochromatic say coloured 1. From the definition
of C ′, we have uj+1 ∈ {zi, zi+1, zi+3}; moreover uj+1 ∈ {zi+1, zi+3} because
i /∈ Ip. If uj+1 = zi+1, then {uj , uj+1} ⊆ V (C2) and thus there exists a
uj+1uj-monochromatic directed path, a contradiction. Hence uj+1 = zi+3.
Now observe that (uj+1 = zi+3, zi−4) ∈ A(D) (this follows from 6(c.2) as
i−4− (i+3) ≡ 1(mod 4)). Therefore C3 = (uj+1 = zi+3, zi−4, zi−3, zi, zi+1,
zi+2, zi+3 = uj+1) is a directed cycle of length 6 and it is coloured 1 (because
(zi−3, zi) ∈ A(C2)∩A(C3)). We conclude that (uj+1 = zi+3, zi−4)∪(zi−4, C

2,
zi−1 = uj) is a uj+1uj-monochromatic directed path, a contradiction.

9(c.2). If for some i ∈ {0, . . . , k} we have (zi−1, zi) and (zi, zi+1) have
different colours, then i ∈ Ip.

From I we have {i − 3, i − 2, i − 1, i} ∩ Ip 6= ∅. Let r0 = min{r ∈
{0, 1, 2, 3} | i − r ∈ Ip} and let j ∈ {0, 1, . . . , n} be such that zi−r0

= uj ;
so we have uj ∈ {zi−3, zi−2, zi−1, zi}. From the definition of C ′, uj+1 ∈
{zi−r0+1, zi−r0+2, zi−r0+4} ⊆ {zi−2, zi−1, zi, zi+1, zi+2, zi+3, zi+4}. Now con-
sider ` ∈ {i − r0 + 1, i − r0 + 2, i − r0 + 4} such that uj+1 = z`. From
the definition of r0 and since ` ∈ Ip, we have ` /∈ {i − 2, i − 1, i}, i.e.,
uj+1 ∈ {zi+1, zi+2, zi+3, zi+4}.

If Tj has length 4, then Tj is monochromatic; and hence {(zi−1, zi),
(zi, zi+1)} 6⊆ A(Tj), and zi = uj, zi+4 = uj+1. Thus i ∈ Ip.

If Tj has length 1, then zi = uj , i.e., i ∈ Ip.

If Tj has length 2, then uj ∈ {zi−1, zi}. When uj = zi clearly i ∈ Ip.

When uj = zi−1, we have uj+1 = zi+1. From 8(c.2) we obtain (zi+2,
zi−1) ∈ A(D) and thus C2 = (uj = zi−1, zi, zi+1 = uj+1, zi+2, zi−1 = uj) is
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a directed cycle of length 4 (which from the hypothesis is quasi-monochro-
matic). Since (zi−1, zi) and (zi, zi+1) have different colours, we conclude that
(uj+1, C

2, uj) is a uj+1uj-monochromatic directed path, a contradiction.

10(c.2). There exists a change of colour in C ′; i.e., there exists i ∈
{0, . . . , k} such that (zi−1, zi) and (zi, zi+1) have different colours.

Otherwise C ′ is monochromatic, and for any j ∈ {0, . . . , n}, there exists
a uj+1uj-monochromatic directed path, a contradiction.

We will assume w.l.o.g. that (zi−1, zi) is coloured 1 and (zi, zi+1) is
coloured 2.

11(c.2). i ∈ Ip.

It follows directly from 9(c.2) and our assumption. Let j ∈ {0, . . . , n} be
such that zi = uj .

12(c.2). {(zi+2, zi−1), (zi+1, zi−2), (zi, zi−3), (zi+3, zi)} ⊆ A(D).

This follows directly from 8(c.2).

13(c.2). (zi+1, zi+2) and (zi+2, zi−1) have the same colour, say a, with
a ∈ {1, 2}.

Let C2 = (zi−1, zi = uj , zi+1, zi+2, zi−1) from 12(c.2), it is a directed
cycle of length 4 and then it is quasi-monochromatic. Since (zi−1, zi) and
(zi, zi+1) are coloured 1 and 2 respectively, 13(c.2) follows.

14(c.2). (zi+1, zi−2) and (zi−2, zi−1) have the same colour, say b, with
b ∈ {1, 2}. The proof is similar to that of 13(c.2) by considering the directed
cycle of length 4, C3 = (zi−2, zi−1, zi = uj, zi+1, zi−2).

15(c.2). {i − 1, i + 1} ∩ Ip = ∅.

First suppose for a contradiction that i − 1 ∈ Ip. From the definition of
C ′, and since zi = uj, we have zi−1 = uj−1. From 13(c.2) (zi+1, zi+2)
and (zi+2, zi−1) have the same colour a ∈ {1, 2}. If a = 2, then (zi =
uj , zi+1, zi+2, zi−1 = uj−1) is a ujuj−1-monochromatic directed path, a con-
tradiction. If a = 1, then from 9(c.2) we have i + 1 ∈ Ip. So, zi+1 = uj+1

and (uj+1 = zi+1, zi+2, zi−1, zi = uj) is a uj+1uj-monochromatic directed
path, a contradiction.

Now, suppose for a by contradiction that i + 1 ∈ Ip. Thus zi+1 = uj+1.
From 14(c.2) we have (zi+1, zi−2) and (zi−2, zi−1) have the same colour b,
with b ∈ {1, 2}. If b = 1 then (uj+1 = zj+1, zi−2, zi−1, zi = uj) is a uj+1uj-
monochromatic directed path, a contradiction. If b = 2 then from 9(c.2) we
have i − 1 ∈ Ip, but we have proved that this leads to a contradiction.
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16(c.2). (zi+1, zi+2) is coloured 2.
Otherwise (zi, zi+1) and (zi+1, zi+2) have different colours and from 9(c.2)
i + 1 ∈ Ip, contradicting 15(c.2).

17(c.2). (zi−2, zi−1) is coloured 1.

Otherwise (zi−2, zi−1) and (zi−1, zi) have different colours, and from 9(c.2)
i − 1 ∈ Ip, contradicting 15(c.2).

18(c.2). (zi+2, zi−1) is coloured 2.
This follows directly from 13(c.2) and 16(c.2).

19(c.2). (zi+1, zi−2) is coloured 1.
Follows directly from 14(c.2) and 17(c.2). Now we will analyze the two
possible cases: i + 2 /∈ Ip or i + 2 ∈ Ip.

Case c.2.1. i + 2 /∈ Ip.
In this case, we have from the definition of C ′ that i+4 ∈ Ip and zi+4 = uj+1.
And we have the following assertions: 1(c.2.1) to 11(c.2.1).

1(c.2.1). (zi+2, zi+3) and (zi+3, zi+4) are coloured 2.

Since uj+1 = zi+4, then Tj = (uj = zi, zi+1, zi+2, zi+3, zi+4 = uj+1) is
monochromatic; moreover it is coloured 2 (as (zi, zi+1) is coloured 2).

2(c.2.1). (zi+4, zi−3) ∈ A(D).
This follows from 6(c.2) because i − 3 − (i + 4) ≡ 1(mod 4).

3(c.2.1). (zi−1, zi+4) ∈ A(D).
The assertion follows from 7(c.2) as i − 1 − (i + 4) ≡ 3(mod 4).

4(c.2.1). {(zi+4, zi+1), (zi+3, zi)} ⊆ A(D).
Is a direct consequence of 8(c.2).

5(c.2.1). (zi+4, zi+1) is not coloured 1.
Assuming for a contradiction that (zi+4, zi+1) is coloured 1, we obtain that
(uj+1 = zi+4, zi+1, zi−2, zi−1, zi = uj) is a uj+1uj-monochromatic directed
path, a contradiction.

6(c.2.1). (zi−1, zi+4) is coloured 1.

We have that (zi+1, zi−2, zi−1, zi+4, zi+1) is quasi-monochromatic (because
it is a directed cycle of length 4). From 19(c.2) (zi+1, zi−2) is coloured 1,
from 17(c.2), (zi−2, zi−1) is coloured 1; and from 5(c.2.1) (zi+4, zi+1) is not
coloured 1. So, (zi−1, zi+4) is coloured 1.

7(c.2.1). (zi+4, zi+1) is coloured 2.
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We have that: (zi+1, zi+2, zi−1, zi+4, zi+1) is quasi-monochromatic (from the
hypothesis), (zi+1, zi+2) is coloured 2 (16(c.2)), (zi+2, zi−1) is coloured 2
(18(c.2)) and (zi−1, zi+4) is coloured 1 (6(c.2.1)).

8(c.2.1). (zi−3, zi+2) ∈ A(D).

Assume, for a contradiction that (zi−3, zi+2) /∈ A(D). Then (zi+2, zi−3) ∈
A(D) and (zi+2, zi−3, zi−2, zi−1, zi, zi+1, zi+2) is a directed cycle of length 6.
From the hypothesis we have that it must be monochromatic, but it has two
arcs coloured 1 ((zi−2, zi−1) and (zi−1, zi)) and two arcs coloured 2 ((zi, zi+1)
and (zi+1, zi+2)), a contradiction.

9(c.2.1). (zi−2, zi+3) ∈ A(D).

Assuming for a contadiction that (zi−2, zi+3) /∈ A(D), we obtain (zi+3, zi−2)
∈ A(D) and (zi+3, zi−2, zi−1, zi, zi+1, zi+2, zi+3) is a directed cycle of
length 6. It has two arcs coloured 1 ((zi−2, zi−1) and (zi−1, zi)) and two
arcs coloured 2 ((zi, zi+1) and (zi+1, zi+2)), contradicting the hypothesis.

10(c.2.1). (zi+3, zi) is not coloured 2.

Assume, for a contradiction that (zi+3, zi) is coloured 2, then (uj+1 = zi+4,
zi+1, zi+2, zi+3, zi = uj) is a uj+1uj-monochromatic directed path, a con-
tradiction.

11(c.2.1). The arcs (zi−2, zi+3) and (zi+3, zi) are coloured 1.

We have (zi+3, zi, zi+1, zi−2, zi+3) a directed cycle of length 4, thus it is quasi-
monochromatic. Since (zi, zi+1) is coloured 2 and (zi+1, zi−2) is coloured 1
(19(c.2)), then (zi−2, zi+3) and (zi+3, zi) are both coloured 1 or are both
coloured 2. And from 10(c.2.1) (zi+3, zi) is not coloured 2.

12(c.2.1). (zi+4, zi−3) and (zi−3, zi−2) are both coloured 1 or are both
coloured 2.

We have (zi−2, zi+3, zi+4, zi−3, zi−2) is quasi-monochromatic; (zi−2, zi+3)
is coloured 1 (11(c.2.1)) and (zi+3, zi+4) is coloured 2 (1(c.2.1)).

If (zi+4, zi−3) and (zi−3, zi−2) are both coloured 1, then (uj+1 = zi+4,
zi−3, zi−2, zi−1, zi = uj) is a uj+1uj-monochromatic directed path (coloured
1), a contradiction. If (zi+4, zi−3) and (zi−3, zi−2) are both coloured 2, then
(zi−1, zi+4, zi−3, zi−2, zi−1) is a directed cycle of length 4 with two arcs
coloured 1 and two arcs coloured 2, a contradiction to the hypothesis. So
case (c.2.1) is not possible.

Case c.2.2. i + 2 ∈ Ip.

Since i + 1 /∈ Ip, then zi+2 = uj+1. We have the following assertions:
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1(c.2.2). (zi+2, zi−5) ∈ A(D).

This follows from 6(c.2), as (i − 5) − (i + 2) ≡ 1(mod 4).

2(c.2.2). (zi−3, zi+2) ∈ A(D).

Since (i − 3) − (i + 2) ≡ 3(mod 4), the assertion follows from 7(c.2).

3(c.2.2). (zi−4, zi+1) ∈ A(D).

Assume, for a contradiction that (zi−4, zi+1) /∈ A(D). Then (zi+1, zi−4) ∈
A(D) and (zi−4, zi−3, zi−2, zi−1, zi, zi+1, zi−4) is monochromatic (as it is
a directed cycle of length 6), but (zi−1, zi) is coloured 1 and (zi, zi+1) is
coloured 2, a contradiction.

4(c.2.2). (zi−1, zi−4) ∈ A(D).

It follows from 8(c.2).

5(c.2.2). (zi−5, zi) ∈ A(D).

Since (i − 5) − i ≡ 3(mod 4) then the assertion follows from 7(c.2).

6(c.2.2). (zi−2, zi−5) ∈ A(D).

This follows from 8(c.2).

7(c.2.2). The arcs (zi, zi−3) and (zi−3, zi+2) are both coloured 2.

We have (zi−1, zi, zi−3, zi+2, zi−1) a directed cycle of length 4, thus it is quasi-
monochromatic. Since (zi−1, zi) is coloured 1 and (zi+2, zi−1) is coloured 2
then (zi, zi−3) and (zi−3, zi+2) are both coloured 1 or are both coloured 2.
If they are both coloured 2, then we are done.

Now suppose that (zi, zi−3) and (zi−3, zi+2) are both coloured 1. There-
fore (zi+2, zi−1, zi−4, zi−3, zi+2) is quasi-monochromatic. Since (zi+2, zi−1)
is coloured 2 and (zi−3, zi+2) is coloured 1, then (zi−1, zi−4) and (zi−4, zi−3)
are both coloured 1 or are both coloured 2.

We will analyze the two possible cases:

Case 7(c.2.2)a. The arcs (zi−1, zi−4) and (zi−4, zi−3) are both coloured 2.

In this case we have (zi−3, zi−2) is coloured 2 because (zi−1, zi−4, zi−3, zi−2,
zi−1) is quasi-monochromatic, (zi−2, zi−1) is coloured 1 and (zi−1, zi−4) and
(zi−4, zi−3) are both coloured 2.

So, it follows from 9(c.2) that i − 2 ∈ Ip. Since i − 1 /∈ Ip (15(c.2))
then zi−2 = uj−1. Thus (uj = zi, zi+1, zi+2, zi−1, zi−4, zi−3, zi−2 = uj−1) is
a ujuj−1-directed path coloured 2, a contradiction. So case 7(c.2.2)a is not
possible.
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Case 7(c.2.2)b. The arcs (zi−1, zi−4) and (zi−4, zi−3) are both coloured 1.

In this case we have (zi−3, zi−2) is not coloured 1 (otherwise (uj = zi, zi−3,
zi−2, zi−1, zi−4) is a directed walk coloured 1 which contains {zi−2, zi−4};
and from the definition of C ′, uj−1 ∈ {zi−2, zi−4} thus there exists a ujuj−1-
monochromatic directed path; a contradiction). Now from 9(c.2) we have
{i − 3, i − 2} ⊆ Ip. Since i − 1 /∈ Ip we have zi−2 = uj−1 and zi−3 = uj−2.
Therefore (uj−1 = zi−2, zi−1, zi−4, zi−3 = uj−2) is a uj−1uj−2-monochromatic
directed path (coloured 1), a contradiction.

We conclude that the arcs (zi, zi−3) and (zi−3, zi+2) are both coloured 2.

8(c.2.2). (zi−3, zi−2) is coloured 1.

We have (zi−2, zi−1, zi, zi−3, zi−2) which is quasi-monochromatic; (zi, zi−3)
coloured 2 and ((zi−2, zi−1) and (zi−1, zi)) coloured 1.

9(c.2.2). (zi−2, zi−5) and (zi−5, zi) are both coloured 1.

(zi−2, zi−5) and (zi−5, zi) are both coloured 1 or are both coloured 2: this is
because (zi, zi−3, zi−2, zi−5, zi) is quasi-monochromatic with (zi, zi−3)
coloured 2 and (zi−3, zi−2) coloured 1.

Assume, for a contradiction that (zi−2, zi−5) and (zi−5, zi) are both
coloured 2.

Denote by a the colour of the arc (zi+2, zi−5). We have a 6= 2 (otherwise
(uj+1 = zi+2, zi−5, zi = uj) is a uj+1uj-monochromatic directed path, a
contradiction). Now, (zi−5, zi−4) and (zi−4, zi−3) are both coloured b with
b ∈ {1, 2} (this is because (zi−5, zi−4, zi−3, zi−2, zi−5) is quasi-monochro-
matic with (zi−3, zi−2) coloured 1 and (zi−2, zi−5) coloured 2). If b = 1
then a = 1 (notice that (zi+2, zi−5, zi−4, zi−3, zi+2) is quasi-monochromatic;
with (zi−3, zi+2) coloured 2 and ((zi−5, zi−4) and (zi−4, zi−3)) coloured 1; so
a = 1). Thus (uj+1 = zi+2, zi−5, zi−4, zi−3, zi−2, zi−1, zi = uj) is a uj+1uj-
monochromatic directed path (coloured 1), a contradiction. If b = 2, then
i − 3 ∈ Ip (from 9(c.2)) and from the definition of C ′, i − 2 ∈ Ip. Thus
zi−2 = uj−1, zi−3 = uj−2 and (uj−1 = zi−2, zi−5, zi−4, zi−3 = uj−2) is a
uj−1uj−2-monochromatic directed path (coloured 2), a contradiction.

10(c.2.2). (zi+2, zi−5) is coloured 2.

(zi, zi+1, zi+2, zi−5, zi) is quasi-monochromatic with (zi−5, zi) coloured 1 and
((zi, zi+1) and (zi+1, zi+2)) coloured 2.

11(c.2.2). (zi−4, zi−3) is not coloured 2.

Assume, for a contradiction that (zi−4, zi−3) coloured 2. Then i − 3 ∈ Ip.
On the other hand we have i − 4 ∈ Ip (because (zi−5, zi−4, zi−3, zi−2, zi−5)
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is quasi-monochromatic with (zi−4, zi−3) coloured 2 and ((zi−3, zi−2) and
(zi−2, zi−5)) coloured 1; so (zi−5, zi−4) is coloured 1 and then (from 9(c.2))
i−4 ∈ Ip). Now, from the definition of C ′, we have zi−3 = ur and zi−4 = ur−1

for some r ∈ {1, 2, . . . , n}. Thus (ur = zi−3, zi−2, zi−5, zi−4 = ur−1) is a
urur−1-monochromatic directed path (coloured 1), a contradiction.

12(c.2.2). (zi−5, zi−4) is coloured 2.

(zi−5, zi−4, zi−3, zi+2, zi−5) is quasi-monochromatic; with ((zi−3, zi+2) and
(zi+2, zi−5)) coloured 2 and (zi−4, zi−3) not coloured 2.

13(c.2.2). (zi−4, zi+1) is coloured 1.

(zi+1, zi−2, zi−5, zi−4, zi+1) is quasi-monochromatic with (zi−5, zi−4) coloured
2 and ((zi+1, zi−2) and (zi−2, zi−5)) coloured 1.

14(c.2.2). D[{zi, zi+1, zi+2, zi−5, zi−4, zi−2}] is isomorphic to T̃6.

Let f : {zi, zi+1, zi+2, zi−5, zi−4, zi−2} → V (T̃6) defined as follows: f(zi) = x,
f(zi+1) = y, f(zi+2) = v, f(zi−5) = w, f(zi−4) = z, f(zi−2) = u is an
isomorphism.

Assertion 14(c.2.2) contradicts the hypothesis, so case c(2.2) is not pos-
sible; also case c.2 is not possible.

As a direct consequence of Theorem 2.1, we have the following result:

Theorem 2.2. Let D be an m-coloured bipartite tournament. Assume that

every directed cycle of length 4 is quasi-monochromatic, every directed cycle

of length 6 is monochromatic and D has no subtournament isomorphic to

T̃6. Then D has a kernel by monochromatic paths.

Remark 2.1. The hypothesis that every directed cycle of length 6 is mono-
chromatic in Theorem 2.1 is tight.

Let D be the 3-coloured bipartite tournament defined in [8] as follows:
V (D) = {u, v, w, x, y, z}, A(D) = {(u, x), (x, v), (v, y), (y, w), (w, z), (z, u),
(x,w), (y, u), (z, v)}; the arcs (x,w), (w, z) and (z, u) coloured 1; the arcs
(y, u), (u, x) and (x, v), coloured 2; and the arcs (z, v), (v, y) and (y, w)
coloured 3. D has a directed cycle of length 6 which is not monochro-
matic, every directed cycle of length 4 in D is quasi-monochromatic, D has
no subtournament isomorphic to T̃6 and C(D) is a complete multidigraph
which has no kernel.
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Remark 2.2. The hypothesis that every directed cycle of length 6 in a bi-
partite tournament D is monochromatic, does not imply that every directed
cycle of length 4 in D is quasi-monochromatic.

Proof. Let T = (U,W ) be the 2-coloured bipartite tournament defined as
follows: U = {u, v, w, x, y} and W = {a, b, c, d, e}. In T , C1 = (u, a, v, b, w,
c, u) is a directed cycle of length 6 coloured 1, C2 = (x, d, y, e, x) is a directed
cycle of length 4 coloured 2. T has arcs from U ∩ V (C1) to W ∩ V (C2)
coloured 1 and finally T contains the arcs (u, b), (a,w), (c, w) coloured 1
(see Figure 2). C1 is the only directed cycle of length 6 contained in T ,
and it is monochromatic. And C2 is a directed cycle of length 4 that is not
quasi-monochromatic.

Figure 2

Remark 2.3. For each m there exists an m-coloured Hamiltonian bipartite
tournament such that: every directed cycle of length 4 is quasi-monochro-
matic; every directed cycle of length 6 is monochromatic and D has no
subtournament isomorphic to T̃6.

Proof. Let D = (V1, V2) be the m-coloured bipartite tournament defined
as follows:
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V (D) =
6⋃

i=1
Xi where Xi = {xi,1, xi,2, . . . , xi,m},

V1 = X1 ∪ X3 ∪ X5, V2 = X2 ∪ X4 ∪ X6,

A(D) =
5⋃

i=1
X ′

i ∪
`∈{1,2,3}

X3
` ∪ X0

6 where X
′

i = {(xi,j, xi+1,j) | j ∈ {1, . . . ,m}},

X3
` = {(x`,j , x`+3,j) | j ∈ {1, . . . ,m}}, X0

6

= {(x6,i, x1,i+1) | i ∈ {1, . . . ,m − 1}} ∪ {(x6,m, x1,1)},

where (x1,i, x2,i) is coloured i; and any other arc of D is coloured 1 and in
any direction.
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