MONOCHROMATIC PATHS AND QUASI-MONOCHROMATIC CYCLES IN EDGE-COLOURED BIPARTITE TOURNAMENTS

Hortensia Galeana-SÁnchez
Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad Universitaria, México, D.F. 04510, México
AND
Rocío Rojas-Monroy
Facultad de Ciencias
Universidad Autónoma del Estado de México
Instituto Literario No. 100, Centro
50000, Toluca, Edo. de México, México

Abstract

We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. A directed cycle is called quasi-monochromatic if with at most one exception all of its arcs are coloured alike.

A set $N \subseteq V(D)$ is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices $u, v \in N$ there is no monochromatic directed path between them and (ii) for every vertex $x \in V(D)-N$ there is a vertex $y \in N$ such that there is an $x y$-monochromatic directed path. In this paper it is proved that if D is an m-coloured bipartite tournament such that: every directed cycle of length 4 is quasi-monochromatic, every directed cycle of length 6 is monochromatic, and D has no induced particular 6 -element bipartite tournament \widetilde{T}_{6}, then D has a kernel by monochromatic paths. Keywords: kernel, kernel by monochromatic paths, bipartite tournament. 2000 Mathematics Subject Classification: 05C20.

1. Introduction

For general concepts we refer the reader to [1]. Let D be a digraph, and let $V(D)$ and $A(D)$ denote the sets of vertices and arcs of D, respectively. An arc $\left(u_{1}, u_{2}\right) \in A(D)$ is called asymmetrical (resp. symmetrical) if $\left(u_{2}, u_{1}\right) \notin A(D)$ (resp. $\left.\left(u_{2}, u_{1}\right) \in A(D)\right)$. The asymmetrical part of D (resp. symmetrical part of D) which is denoted by $\operatorname{Asym}(D)($ resp. $\operatorname{Sym}(D))$ is the spanning subdigraph of D whose arcs are the asymmetrical (resp. symmetrical) arcs of D. If S is a nonempty subset of $V(D)$ then the subdigraph $D[S]$ induced by S is the digraph having vertex set S, and whose arcs are those arcs of D joining vertices of S.

A set $I \subseteq V(D)$ is independent if $A(D[I])=\emptyset$. A kernel N of D is an independent set of vertices such that for each $z \in V(D)-N$ there exists a $z N$-arc in D, that is an arc from z to some vertex in N. A digraph D is called kernel-prefect digraph when every induced subdigraph of D has a kernel. Sufficient conditions for the existence of kernels in a digraph have been investigated by several authors, Von Neumann and Morgenstern [14], Richardson [11], Duchet and Meyniel [3] and Galeana-Sánchez and Neumann-Lara [4]. The concept of kernel is very useful in applications. Clearly, the concept of kernel by monochromatic paths generalizes those of kernel.

A digraph D is called a bipartite tournament if its set of vertices can be partitioned into two sets V_{1} and V_{2} such that: (i) every arc of D has an endpoint in V_{1} and the other endpoint in V_{2}, and (ii) for all $x_{1} \in V_{1}$ and for all $x_{2} \in V_{2}$, we have $\left|\left\{\left(x_{1}, x_{2}\right),\left(x_{2}, x_{1}\right)\right\} \cap A(D)\right|=1$. We will write $D=\left(V_{1}, V_{2}\right)$ to indicate the partition.

If $\mathcal{C}=\left(z_{0}, z_{1}, \ldots, z_{n}, z_{0}\right)$ is a directed cycle and if $z_{i}, z_{j} \in V(\mathbb{C})$ with $i \leq j$ we denote by $\left(z_{i}, \mathcal{C}, z_{j}\right)$ the $z_{i} z_{j}$-directed path contained in \mathcal{C}, and $\ell\left(z_{i}, \mathrm{e}, z_{j}\right)$ will denote its length; similarly $\ell(\mathcal{C})$ will denote the length of \mathcal{C}.

If D is an m-coloured digraph, then the closure of D, denoted by $\mathfrak{C}(D)$ is the m-coloured multidigraph defined as follows: $V(\mathbb{C}(D))=V(D)$, $A(\mathbb{C}(D))=A(D) \cup\{(u, v)$ with colour $i \mid$ there exists an $u v$-monochromatic directed path coloured i contained in $D\}$.

Notice that for any digraph $D, \mathcal{C}(\mathcal{C}(D)) \cong \mathcal{C}(D)$ and D has a kernel by monochromatic paths if and only if $\mathcal{C}(D)$ has a kernel.

In [13] Sands et al. have proved that any 2-coloured digraph has a kernel by monochromatic paths; in particular they proved that any 2 -coloured tournament has a kernel by monochromatic paths. They also raised the following problem: Let T be a 3 -coloured tournament such that every directed
cycle of length 3 is quasi-monochromatic; must $\mathcal{C}(T)$ have a kernel? (This question remains open.) In [12] Shen Minggang proved that if in the problem we ask that every transitive tournament of order 3 be quasi-monochromatic, the answer will be yes; and the result is best possible for m-coloured tournaments with $m \geq 5$. In 2004 [9] presented a 4-coloured tournament T such that every directed cycle of order 3 is quasi-monochromatic; but T has no kernel by monochromatic paths. The known sufficient conditions for the existence of kernel by monochromatic paths in m-coloured $(m \geq 3)$ tournaments (or nearly tournaments), ask for the monochromaticity or quasimonochromaticity of certain subdigraphs. In [5] it was proved that if T is an m-coloured tournament such that every directed cycle of length at most 4 is quasi-monochromatic then $\mathcal{C}(T)$ is kernel-perfect. A generalization of this result was obtained by Hahn, Ille and Woodrow in [10]; they proved that if T is an m-coloured tournament such that every directed cycle of length k is quasi-monochromatic and T has no polychromatic directed cycles of length $\ell, \ell<k$, for some $k \geq 4$, then T has a kernel by monochromatic paths. (A directed cycle is polychromatic if it uses at least three different colours in its arcs). Results similar to those in [12] and [5] were proved for the digraph obtained from a tournament by the deletion of a single arc, in [7] and [6], respectively. Kernels by monochromatic paths in bipartite tournaments were studied in [8]; where it is proved that if T is a bipartite tournament such that every directed cycle of length 4 is monochromatic, then T has a kernel by monochromatic paths.

We prove that if T is a bipartite tournament such that every directed cycle of length 4 is quasi-monochromatic, every directed cycle of length 6 is monochromatic and T has no induced subtournament isomorphic to \widetilde{T}_{6}, then T has a kernel by monochromatic paths.
\widetilde{T}_{6} is the bipartite tournament defined as follows:
$V\left(\widetilde{T}_{6}\right)=\{u, v, w, x, y, z\}$,
$A\left(\widetilde{T}_{6}\right)=\{(u, w),(v, w),(w, x),(w, z),(x, y),(y, u),(y, v),(z, y)\}$ with $\{(u, w),(w, x),(y, u),(z, y)\}$ coloured 1 and $\{(v, w),(w, z),(x, y),(y, v)\}$ coloured 2. (See Figure 1).

We will need the following result.

Theorem 1.1 Duchet [2]. If D is a digraph such that every directed cycle has at least one symmetrical arc, then D is a kernel-perfect digraph.

Figure 1

2. The Main Result

The following lemmas will be useful in the proof of the main result.
Lemma 2.1. Let $D=\left(V_{1}, V_{2}\right)$ be a bipartite tournament and $C=\left(u_{0}\right.$, $\left.u_{1}, \ldots, u_{n}\right)$ a directed walk in D. For $\{i, j\} \subseteq\{0,1, \ldots, n\},\left(u_{i}, u_{j}\right) \in A(D)$ or $\left(u_{j}, u_{i}\right) \in A(D)$ if and only if $j-i \equiv 1(\bmod 2)$.

Lemma 2.2. For a bipartite tournament $D=\left(V_{1}, V_{2}\right)$, every closed directed walk of length at most 6 in D is a directed cycle of D.

Lemma 2.3. Let D be an m-coloured bipartite tournament such that every directed cycle of length 4 is quasi-monochromatic and every directed cycle of length 6 is monochromatic. If for $u, v \in V(D)$ there exists a uvmonochromatic directed path and there is no vu-monochromatic directed path (in D), then at least one of the following conditions hold:
(i) $(u, v) \in A(D)$,
(ii) there exists (in D) a uv-directed path of length 2 ,
(iii) there exists a uv-monochromatic directed path of length 4.

Proof. Let D, u, v be as in the hypothesis. If there exists a $u v$-directed path of odd length, then it follows from Lemma 2.1 that $(u, v) \in A(D)$ or $(v, u) \in A(D)$. Since there is no $v u$-monochromatic directed path in D, then $(u, v) \in A(D)$ and Lemma 2.3 holds. So, we will assume that every $u v$-directed path has even length. We proceed by induction on the length of a $u v$-monochromatic directed path.

Clearly Lemma 2.3 holds when there exists a $u v$-monochromatic directed path of length at most 4 . Suppose that $T=\left(u=u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right.$,
$u_{6}=v$) is a $u v$-monochromatic directed path of length 6 . It follows from Lemma 2.1 that $\left(u, u_{5}\right) \in A(D)$ or $\left(u_{5}, u\right) \in A(D)$ and also $\left(u_{1}, v\right) \in A(D)$ or $\left(v, u_{1}\right) \in A(D)$. If $\left(u, u_{5}\right) \in A(D)$ or $\left(u_{1}, v\right) \in A(D)$ then we obtain a $u v$-directed path of length two, and we are done. So, we will assume that $\left(u_{5}, u\right) \in A(D)$ and $\left(v, u_{1}\right) \in A(D)$. Thus $\left(u=u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{0}=u\right)$ is a directed cycle of length 6 which is monochromatic and has the same colour as T. Also ($u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}=v, u_{1}$) is a directed cycle coloured as T. Hence $\left(v=u_{6}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{0}=u\right)$ is a $v u$-monochromatic directed path, a contradiction. Suppose that Lemma 2.3 holds when there exists a $u v$-monochromatic directed path of even length ℓ with $6 \leq \ell \leq 2 n$. Now assume that there exists a $u v$-monochromatic directed path say $T=(u=$ $\left.u_{0}, u_{1}, \ldots, u_{2(n+1)}=v\right)$ with $\ell(T)=2(n+1)$; we may assume w.l.o.g. that T is coloured 1 .

From Lemma 2.1 we have that for each $i \in\{0,1, \ldots, 2(n+1)-5\}$, $\left(u_{i+5}, u_{i}\right) \in A(D)$ or $\left(u_{i}, u_{i+5}\right) \in A(D)$. We will analyze two possible cases:

Case a. For each $i \in\{0,1, \ldots, 2(n+1)-5\},\left(u_{i+5}, u_{i}\right) \in A(D)$.
In this case $C_{6}=\left(u_{i}, u_{i+1}, u_{i+2}, u_{i+3}, u_{i+4}, u_{i+5}, u_{i}\right)$ is a directed cycle with $\ell\left(C_{6}\right)=6$; so it is monochromatic and coloured 1 (as $\left(u_{i}, u_{i+1}\right)$ is coloured 1). Let $k \in\{1,2,3,4,5\}$ such that $k \equiv 2(n+1)(\bmod 5)$, then $\left(v=u_{2(n+1)}, u_{2(n+1)-5}, u_{2(n+1)-10}, \ldots, u_{k}\right) \cup\left(u_{k}, T, u_{5}\right) \cup\left(u_{5}, u_{0}\right)$ is a $v u$ monochromatic directed path in D, a contradiction.

Case b. For some $i \in\{0,1, \ldots, 2(n+1)-5\},\left(u_{i}, u_{i+5}\right) \in A(D)$.
Notice that from Lemma 2.1, there exists an arc between u_{1} and $u_{2(n+1)}$ and also there exists an arc between u_{0} and $u_{2 n+1}$. If $\left(u_{1}, u_{2(n+1)}\right) \in A(D)$ or $\left(u_{0}, u_{2 n+1}\right) \in A(D)$, then we obtain a $u v$-directed path of length two, and we are done. So, we will assume that $\left(u_{2(n+1)}, u_{1}\right) \in A(D)$ and $\left(u_{2 n+1}, u_{0}\right) \in$ $A(D)$. Observe that: If for some $i \in\{1, \ldots, 2(n+1)-5\},\left(u_{2(n+1)}, u_{i}\right) \in$ $A(D)$ and the arcs $\left(u_{2(n+1)}, u_{i}\right)$ and $\left(u_{2 n+1}, u_{0}\right)$ are coloured 1, then $(v=$ $\left.u_{2(n+1)}, u_{i}\right) \cup\left(u_{i}, T, u_{2 n+1}\right) \cup\left(u_{2 n+1}, u_{0}\right)$ is a $v u$-directed path coloured 1 , contradicting the hypothesis. Hence we have:
(a) If for some $i \in\{1,2, \ldots, 2(n+1)-5\}$ we have $\left(u_{2(n+1)}, u_{i}\right) \in A(D)$, then $\left(u_{2(n+1)}, u_{i}\right)$ is not coloured 1 or $\left(u_{2 n+1}, u_{0}\right)$ is not coloured 1 .

Case b.1. $\left(u_{2 n+1}, u_{0}\right)$ is not coloured 1 .
Recall that for some $i \in\{0,1, \ldots, 2(n+1)-5\},\left(u_{i}, u_{i+5}\right) \in A(D)$. Let $\left\{i_{0}, j_{0}\right\} \subseteq\{0,1, \ldots, 2(n+1)\}$ be such that $j_{0}-i_{0}=\max \{j-i \mid\{i, j\} \subseteq$
$\{0,1, \ldots, 2(n+1)\}$ and $\left.\left(u_{i}, u_{j}\right) \in A(D)\right\}$; clearly $j_{0}-i_{0} \geq 5$. Now we will analyze several possibilities:

Case b.1.1. $i_{0} \geq 2$ and $j_{0} \leq 2 n$.
Since $\left(u_{i_{0}}, u_{j_{0}}\right) \in A(D)$, it follows from Lemma 2.1 that $j_{0}-i_{0} \equiv 1(\bmod 2)$ so $\left(j_{0}+2\right)-\left(i_{0}-2\right) \equiv 1(\bmod 2)$ and $\left(\left(u_{i_{0}-2}, u_{j_{0}+2}\right) \in A(D)\right.$ or $\left(u_{j_{0}+2}, u_{i_{0}-2}\right) \in$ $A(D)$); the selection of $\left\{i_{0}, j_{0}\right\}$ implies $\left(u_{j_{0}+2}, u_{i_{0}-2}\right) \in A(D)$. Thus $\left(u_{i_{0}-2}, u_{i_{0}-1}, u_{i_{0}}, u_{j_{0}}, u_{j_{0}+1}, u_{j_{0}+2}, u_{i_{0}-2}\right)$ is a directed cycle of length 6 and hence monochromatically coloured 1. Now $\left(u_{0}, T, u_{i_{0}}\right) \cup\left(u_{i_{0}}, u_{j_{0}}\right) \cup$ $\left(u_{j_{0}}, T, u_{2(n+1)}=v\right)$ is a $u v$-monochromatic directed path whose length is less than $\ell(T)$. Then the assertion of Lemma 2.3 follows from the inductive hypothesis.

Case b.1.2. $i_{0}=0$.

When $j_{0} \leq 2 n-3$; it follows from Lemma 2.1 and the choice of $\left\{i_{0}, j_{0}\right\}$ that $\left(u_{j_{0}+4}, u_{i_{0}}=u_{0}\right) \in A(D)$. Thus $\left(u_{0}=u_{i_{0}}, u_{j_{0}}, u_{j_{0}+1}, u_{j_{0}+2}, u_{j_{0}+3}, u_{j_{0}+4}, u_{0}\right)$ is a monochromatic directed cycle (it has length 6), coloured 1. Hence $\left(u_{i_{0}}, u_{j_{0}}\right) \cup\left(u_{j_{0}}, T, v\right)$ is a $u v$-monochromatic directed path whose length is less than $\ell(T)$ and the assertion follows from the inductive hypothesis. When $j_{0} \geq 2 n-1$, we have $j_{0}=2 n-1$ (recall $\left(u_{2 n+1}, u_{0}\right) \in A(D), j_{0}-$ $\left.i_{0} \equiv 1(\bmod 2), i_{0}=0\right)$. So, $\left(u_{0}=u_{i_{0}}, u_{j_{0}}=u_{2 n-1}, u_{2 n}, u_{2 n+1}, u_{0}\right)$ is a directed cycle of length 4 which by hypothesis is quasi-monochromatic. Since $\left(u_{2 n+1}, u_{0}\right)$ is not coloured 1 , then $\left(u_{i_{0}}, u_{j_{0}}\right)$ is coloured 1 , and $\left(u=u_{i_{0}}, u_{j_{0}}=\right.$ $\left.u_{2 n-1}, u_{2 n}, u_{2 n+1}, u_{2 n+2}=v\right)$ is a $u v$-monochromatic directed path coloured 1 of length 4.

Case b.1.3. $i_{0}=1$.
When $j_{0} \leq 2 n-2$, we have $\left(u_{j_{0}+4}, u_{i_{0}}=u_{1}\right) \in A(D)$ (Lemma 2.1 and the choice of $\left.\left\{i_{0}, j_{0}\right\}\right)$. Thus $\left(u_{1}=u_{i_{0}}, u_{j_{0}}, u_{j_{0}+1}, u_{j_{0}+2}, u_{j_{0}+3}, u_{j_{0}+4}, u_{i_{0}}\right)$ is a directed cycle of length 6 (monochromatic and coloured 1). Hence $\left(u=u_{0}, T, u_{i_{0}}\right) \cup\left(u_{i_{0}}, u_{j_{0}}\right) \cup\left(u_{j_{0}}, T, v\right)$ is a $u v$-monochromatic directed path whose length is less than $\ell(T)$; so the assertion follows from the inductive hypothesis.

When $j_{0} \geq 2 n$, we have $j_{0}=2 n\left(\right.$ as $j_{0}-i_{0} \equiv 1(\bmod 2), i_{0}=1$ and $\left.\left(u_{2 n+2}, u_{1}\right) \in A(D)\right)$. Hence $\left(u_{1}=u_{i_{0}}, u_{j_{0}}=u_{2 n}, u_{2 n+1}, u_{0}, u_{1}\right)$ is a directed cycle of length 4 , from the hypothesis it is quasi-monochromatic and $\left(u_{2 n+1}, u_{0}\right)$ is not coloured 1 , so $\left(u_{i_{0}}, u_{j_{0}}\right)$ is coloured 1. Therefore $\left(u_{0}, u_{1}=u_{i_{0}}, u_{j_{0}}=u_{2 n}, u_{2 n+1}, u_{2 n+2}=v\right)$ is a $u v$-monochromatic directed path, coloured 1 , of length 4.

Case b.1.4. $j_{0}=2 n+1$.
When $i_{0} \geq 4$, we have $\left(u_{2 n+1}=u_{j_{0}}, u_{i_{0}-4}\right) \in A(D)\left(j_{0}-i_{0} \equiv 1(\bmod 2)\right.$, $j_{0}-\left(i_{0}-4\right) \equiv 1(\bmod 2)$, and the choice of $\left.\left\{i_{0}, j_{0}\right\}\right)$. Therefore $\left(u_{i_{0}}, u_{j_{0}}=\right.$ $u_{2 n+1}, u_{i_{0}-4}, u_{i_{0}-3}, u_{i_{0}-2}, u_{i_{0}-1}, u_{i_{0}}$) is a directed cycle of length 6 (and thus it is monochromatic) coloured 1. Thus $\left(u=u_{0}, T, u_{i_{0}}\right) \cup\left(u_{i_{0}}, u_{j_{0}}\right) \cup$ $\left(u_{j_{0}}, T, v\right)$ is a $u v$-directed path coloured 1 , whose length is less than $\ell(T)$; so the assertion follows from the inductive hypothesis.

When $i_{0} \leq 2$, we have $i_{0}=2\left(\right.$ as $j_{0}-i_{0} \equiv 1(\bmod 2), j_{0}=2 n+1$, and $\left.\left(u_{2 n+1}, u_{0}\right) \in A(D)\right)$. Hence $\left(u_{2}=u_{i_{0}}, u_{j_{0}}=u_{2 n+1}, u_{0}, u_{1}, u_{2}\right)$ is quasimonochromatic (as it has length 4). Since $\left(u_{2 n+1}, u_{0}\right)$ is not coloured 1 , it follows that $\left(u_{i_{0}}, u_{j_{0}}\right)$ is coloured 1 . We conclude that $\left(u_{0}, u_{1}, u_{2}=u_{i_{0}}, u_{j_{0}}=\right.$ $\left.u_{2 n+1}, u_{2 n+2}=v\right)$ is a $u v$-directed path coloured 1 of length 4.

Case b.1.5. $j_{0}=2 n+2$.
When $i_{0} \geq 5$, we have $\left(u_{2 n+2}=u_{j_{0}}, u_{i_{0}-4}\right) \in A(D)$ (arguing as in b.1.4). Thus $\left(u_{i_{0}}, u_{j_{0}}, u_{i_{0}-4}, u_{i_{0}-3}, u_{i_{0}-2}, u_{i_{0}-1}, u_{i_{0}}\right)$ is monochromatic (as it is a directed cycle of length 6$)$. Hence $\left(u, T, u_{i_{0}}\right) \cup\left(u_{i_{0}}, u_{j_{0}}\right) \cup\left(u_{j_{0}}, T, v\right)$ is a $u v$ monochromatic directed path with length less than $\ell(T)$; and the result follows from the inductive hypothesis.

When $i_{0} \leq 3$, we have $i_{0}=3\left(\operatorname{as} j_{0}-i_{0} \equiv 1(\bmod 2)\right.$ and $\left(u_{2 n+2}, u_{1}\right) \in$ $A(D))$. Hence $\left(u_{3}=u_{i_{0}}, u_{j_{0}}=u_{2 n+2}, u_{1}, u_{2}, u_{3}\right)$ is quasi-monochromatic. If $\left(u_{i_{0}}, u_{2 n+2}\right)$ is coloured 1, then $\left(u_{0}, u_{1}, u_{2}, u_{3}=u_{i_{0}}, u_{2 n+2}=v\right)$ is a $u v$ monochromatic directed path of length 4 . So we will assume that $\left(u_{i_{0}}, u_{2 n+2}\right)$ is not coloured 1 , and hence $\left(u_{2 n+2}, u_{1}\right)$ is coloured 1 .

If $\left(u_{i}, u_{0}\right) \in A(D)$ for some $i \in\{3, \ldots, 2 n+1\}$, then $\left(u_{i}, u_{0}\right)$ is not coloured 1 (otherwise $\left(v=u_{2 n+2}, u_{1}\right) \cup\left(u_{1}, T, u_{i}\right) \cup\left(u_{i}, u\right)$ is a $v u$-monochromatic directed path, contradicting our hypothesis).

Now observe that $\left(u_{0}, u_{5}\right) \in A(D)$; otherwise $\left(u_{5}, u_{0}\right) \in A(D)$ and $\left(u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{0}\right)$ is monochromatic which implies $\left(u_{5}, u_{0}\right)$ is coloured 1, a contradiction.

Let $k_{0}=\max \left\{i \in\{5,6, \ldots, 2 n-1\} \mid\left(u_{0}, u_{i}\right) \in A(D)\right\}$. Then, we have $\left(u_{0}, u_{k_{0}}\right) \in A(D)$ and $\left(u_{k_{0}+2}, u_{0}\right) \in A(D)$; moreover $\left(u_{k_{0}+2}, u_{0}\right)$ is not coloured 1. Since $\left(u_{0}, u_{k_{0}}, u_{k_{0}+1}, u_{k_{0}+2}, u_{0}\right)$ is quasi-monochromatic and $\left(u_{k_{0}+2}, u_{0}\right)$ is not coloured 1, we have $\left(u_{0}, u_{k_{0}}\right)$ is coloured 1. Thus $\left(u=u_{0}, u_{k_{0}}\right) \cup$ $\left(u_{k_{0}}, T, u_{2(n+1)}=v\right)$ is a $u v$-monochromatic directed path whose length is less than $\ell(T)$; so the assertion follows from the inductive hypothesis.

Case b.2. In view of assertion (a) and case b.1, we may assume that: If $\left(u_{2(n+1)}, u_{i}\right) \in A(D)$ for some $i \in\{1,2, \ldots, 2(n+1)-5\}$ then $\left(u_{2(n+1)}, u_{i}\right)$
is not coloured 1 .

- $\left(u_{2(n+1)}, u_{1}\right)$ is not coloured 1: It follows from the fact $\left(u_{2(n+1)}, u_{1}\right) \in$ $A(D)$.
$-\left(u_{2(n+1)-5}, u_{2(n+1)}\right) \in A(D)$: Otherwise it follows from Lemma 2.1 that $\left(u_{2(n+1)}, u_{2(n+1)-5}\right) \in A(D)$, now $\left(u_{2(n+1)-5}, T, u_{2(n+1)}\right) \cup\left(u_{2(n+1)}, u_{2(n+1)-5}\right)$ is monochromatic coloured 1 (note that it is a directed cycle of length 6 and it has arcs in T), and then $\left(u_{2(n+1)}, u_{2(n+1)-5}\right)$ is coloured 1 , contradicting our assumption.

Let $i_{0}=\max \left\{i \in\{0,1,2, \ldots, 2(n+1)-7\} \mid\left(u_{2(n+1)}, u_{i}\right) \in A(D)\right\}$ (notice that i_{0} is well defined as $\left.\left(u_{2(n+1)}, u_{1}\right) \in A(D)\right)$. Therefore $\left(u_{2(n+1)}, u_{i_{0}}\right) \in$ $A(D),\left(u_{i_{0}+2}, u_{2(n+1)}\right) \in A(D)$ and $\left(u_{2(n+1)}, u_{i_{0}}\right)$ is not coloured 1 . Now we have the directed cycle of length $4\left(u_{2(n+1)}, u_{i_{0}}, u_{i_{0}+1}, u_{i_{0}+2}, u_{2(n+1)}\right)$ which is quasi-monochromatic with $\left(u_{2(n+1)}, u_{i_{0}}\right)$ not coloured 1 ; and $\left(u_{i_{0}}, u_{i_{0}+1}\right)$, $\left(u_{i_{0}+1}, u_{i_{0}+2}\right)$ coloured 1 ; so $\left(u_{i_{0}+2}, u_{2(n+1)}\right)$ is coloured 1 . Thus, $(u=$ $\left.u_{0}, T, u_{i_{0}+2}\right) \cup\left(u_{i_{0}+2}, u_{2(n+1)}=v\right)$ is a $u v$-directed path coloured 1 whose length is less than $\ell(T)$; so the assertion follows from the inductive hypothesis.

Theorem 2.1. Let D be an m-coloured bipartite tournament. Assume that every directed cycle of length 4 is quasi-monochromatic, every directed cycle of length 6 is monochromatic and D has no subtournament isomorphic to T_{6}. Then $\mathcal{C}(D)$ is a kernel-perfect digraph.

Proof. We will prove that every directed cycle contained in $\mathcal{C}(D)$ has at least one symmetrical arc. Then Theorem 2.1 will follow from Theorem 1.1. We proceed by contradiction, suppose that there exists $C=$ $\left(u_{0}, u_{1}, \ldots, u_{n}, u_{0}\right)$ a directed cycle contained in $\operatorname{Asym}(\mathcal{C}(D))$. Therefore, $n \geq 2$. For each $i \in\{0,1, \ldots, n\}$ there exists a $u_{i} u_{i+1}$-monochromatic directed path contained in D, and there is no $u_{i+1} u_{i}$-monochromatic directed path contained in D. Thus, it follows from Lemma 2.3 that at least one of the following assertions hold:
(i) $\left(u_{i}, u_{i+1}\right) \in A(D)$,
(ii) there exists a $u_{i} u_{i+1}$-directed path of length 2 ,
(iii) there exists a $u_{i} u_{i+1}$-monochromatic directed path of length 4. Throughout the proof the indices of the vertices of C are taken $\bmod n+1$.

For each $i \in\{0,1, \ldots, n\}$ let
$T_{i}=\left\{\begin{array}{l}\left(u_{i}, u_{i+1}\right) \text { if }\left(u_{i}, u_{i+1}\right) \in A(D), \\ \text { a } u_{i} u_{i+1} \text {-directed path of length 2, when }\left(u_{i}, u_{i+1}\right) \notin A(D) \\ \text { and such a path exists, } \\ \text { a } u_{i} u_{i+1} \text {-monochromatic directed path of length } 4, \text { otherwise } .\end{array}\right.$
Let $C^{\prime}=\bigcup_{i=0}^{n} T_{i}$. Clearly C^{\prime} is a closed directed walk; let $C^{\prime}=\left(z_{0}, z_{1}, \ldots\right.$, $\left.z_{k}, z_{0}\right)$. We define the function $\varphi:\{0,1, \ldots, k\} \rightarrow V(C)$ as follows: If $T_{i}=$ $\left(u_{i}=z_{i_{0}}, z_{i_{0}+1}, \ldots, z_{i_{0}+r}=u_{i+1}\right)$ with $r \in\{1,2,4\}$, then $\varphi(j)=z_{i_{0}}$ for each $j \in\left\{i_{0}, i_{0}+1, \ldots, i_{0}+r-1\right\}$. We will say that the index i of the vertex z_{i} of C^{\prime} is a principal index when $z_{i}=\varphi(i)$. We will denote by I_{p} the set of principal indices.
I. First observe that for each $i \in\{0,1, \ldots, k\}$ we have $\{i, i+1, i+2$, $i+3\} \cap I_{p} \neq \emptyset$. Assume w.l.o.g. that $0 \in I_{p}$ and $z_{0}=u_{0}$. In what follows, the indices of the vertices of C^{\prime} will be taken modulo $k+1$.

Case a. $k=3$.
In this case C^{\prime} is a directed cycle of length 4 and hence it is quasi-monochromatic. Since $n \geq 2$, then $u_{1} \in\left\{z_{1}, z_{2}\right\}$ and $u_{n} \in\left\{z_{2}, z_{3}\right\}$. And it is easy to see that there exists a $u_{i+1} u_{i}$-monochromatic directed path in D, for some $i \in\{0,1, \ldots, n\}$, a contradiction.

Case b. $k=5$.
In this case C^{\prime} is a directed cycle of length 6 , and then it is monochromatic, which clearly implies that there exists a $u_{1} u_{0}$-monochromatic directed path in D, a contradiction.

Case c. $k \geq 7$.
We will prove several assertions.
1(c). For each $i \in\{0,1, \ldots, k\} \cap I_{p}$ we have $\left(z_{i}, z_{i+5}\right) \in A(D)$.
Since $(i+5)-i \equiv 1(\bmod 2)$, it follows that $\left(z_{i}, z_{i+5}\right) \in A(D)$ or $\left(z_{i+5}, z_{i}\right) \in$ $A(D)$. Assume, for a contradiction that $\left(z_{i+5}, z_{i}\right) \in A(D)$. Therefore $\left(z_{i}, z_{i+1}, z_{i+2}, z_{i+3}, z_{i+4}, z_{i+5}, z_{i}\right)$ is monochromatic. Now let $j \in\{0,1, \ldots, n\}$ be such that $u_{j}=z_{i}$, then $u_{j+1} \in\left\{z_{i+1}, z_{i+2}, z_{i+4}\right\}$. So there exists a $u_{j+1} u_{j}-$ monochromatic directed path, a contradiction.

2(c). For each $i \in\{0, \ldots, k\}$ such that $i+5 \in I_{p}$ we have $\left(z_{i}, z_{i+5}\right) \in$ $A(D)$.

Assume, for a contradiction that $\left(z_{i+5}, z_{i}\right) \in A(D)$. Then $\left(z_{i}, z_{i+1}, z_{i+2}, z_{i+3}\right.$, $\left.z_{i+4}, z_{i+5}, z_{i}\right)$ is monochromatic. Let $j \in\{0, \ldots, n\}$ be such that $u_{j}=z_{i+5}$, thus $u_{j-1} \in\left\{z_{i+1}, z_{i+3}, z_{i+4}\right\}$ and there exists a $u_{j} u_{j-1}$-monochromatic directed path, a contradiction.

3(c). For each $i \in\{5, \ldots, k-2\}$ such that $i \equiv 1(\bmod 4)$ we have $\left(z_{0}, z_{i}\right) \in$ $A(D)$. We proceed by contradiction; suppose that for some $i \in\{5, \ldots, k-2\}$ we have $i \equiv 1(\bmod 4)$ and $\left(z_{i}, z_{0}\right) \in A(D)$. Since $0 \in I_{p}$, it follows from 1(c) that $\left(z_{0}, z_{5}\right) \in A(D)$ and then $i \geq 9$.

Let $i_{0}=\min \left\{j \in\{5, \ldots, k-6\} \mid j \equiv 1(\bmod 4)\right.$ and $\left.\left(z_{j+4}, z_{0}\right) \in A(D)\right\}$ (notice that i_{0} is well defined, as $i \geq 9$). Thus $\left(z_{0}, z_{i_{0}-4}\right) \in A(D),\left(z_{0}, z_{i_{0}}\right) \in$ $A(D)$ and $\left(z_{i_{0}+4}, z_{0}\right) \in A(D)$. Now $C^{2}=\left(z_{0}, z_{i_{0}}, z_{i_{0}+1}, z_{i_{0}+2}, z_{i_{0}+3}, z_{i_{0}+4}, z_{0}\right)$ is a directed cycle of length 6 and hence it is monochromatic, w.l.o.g we will assume that it is coloured 1 . Now we consider two cases:

$$
\text { 3(c).1. } i_{0} \in I_{p} .
$$

In this case $z_{i_{0}}=u_{j}$ for some $j \in\{3, \ldots, n\}$ and from the definition of C^{\prime}, $u_{j+1} \in\left\{z_{i_{0}+1}, z_{i_{0}+2}, z_{i_{0}+4}\right\}$. In any case, there exists a $u_{j+1} u_{j}$-monochromatic directed path contained in C, a contradiction.

$$
3(\mathrm{c}) .2 . \quad i_{0} \notin I_{p} .
$$

In this case, we have from observation I that $\left\{i_{0}-3, i_{0}-2, i_{0}-1\right\} \cap I_{p} \neq \emptyset$, let $\ell \in\left\{i_{0}-3, i_{0}-2, i_{0}-1\right\} \cap I_{p}$ and $u_{j} \in V(C)$ such that $u_{j}=z_{\ell}$. From 1(c) we have $\left(z_{\ell}, z_{\ell+5}\right) \in A(D)$ and $\ell+5 \in\left\{i_{0}+2, i_{0}+3, i_{0}+4\right\}$ which implies that $C^{3}=\left(z_{i_{0}-4}, C^{\prime}, z_{\ell}\right) \cup\left(z_{\ell}, z_{\ell+5}\right) \cup\left(z_{\ell+5}, C^{\prime}, z_{i_{0}+4}\right) \cup\left(z_{i_{0}+4}, z_{0}, z_{i_{0}-4}\right)$ is a closed directed walk of length 6 (as $\left(z_{i_{0}-4}, C^{\prime}, z_{i_{0}+4}\right) \cup\left(z_{i_{0}+4}, z_{0}, z_{i_{0}-4}\right)$ is a closed directed walk of length 10). It follows from Lemma 2.2 that C^{3} is a directed cycle and the hypothesis implies that it is monochromatic. Since $\left(z_{i_{0}+4}, z_{0}\right) \in$ $A\left(C^{2}\right) \cap A\left(C^{3}\right)$, we have that C^{3} is coloured 1 . Now from the definition of C^{\prime} we have $u_{j+1} \in\left\{z_{\ell+1}, z_{\ell+2}, z_{\ell+4}\right\} \subseteq\left\{z_{i_{0}-2}, z_{i_{0}-1}, z_{i_{0}}, z_{i_{0}+1}, z_{i_{0}+2}, z_{i_{0}+3}\right\}$.

When $u_{j+1} \in\left\{z_{i_{0}}, z_{i_{0}+1}, z_{i_{0}+2}, z_{i_{0}+3}\right\}$, we obtain that $\left(z_{i_{0}}, C^{2}, z_{0}\right) \cup$ $\left(z_{0}, C^{3}, z_{\ell}\right)$ contains a $u_{j+1} u_{j}$-monochromatic directed path, a contradiction.

When $u_{j+1} \in\left\{z_{i_{0}-2}, z_{i_{0}-1}\right\}$, we take $i_{1} \in\left\{i_{0}-2, i_{0}-1\right\}$ such that u_{j+1} $=z_{i_{1}}$. From 1(c) we have $\left(z_{i_{1}}, z_{i_{1}+5}\right) \in A(D)$ where $z_{i_{1}+5} \in\left\{z_{i_{0}+3}, z_{i_{0}+4}\right\}$, thus $C^{4}=\left(z_{i_{0}-4}, C^{\prime}, z_{i_{1}}\right) \cup\left(z_{i_{1}}, z_{i_{1}+5}\right) \cup\left(z_{i_{1}+5}, C^{\prime}, z_{i_{0}+4}\right) \cup\left(z_{i_{0}+4}, z_{0}, z_{i_{0}-4}\right)$ is a directed cycle of length 6 (notice that $\left(z_{i_{0}-4}, C^{\prime}, z_{i_{0}+4}\right) \cup\left(z_{i_{0}+4}, z_{0}, z_{i_{0}-4}\right)$ is a closed directed walk of length 10). From the hypothesis we have that C^{4} is monochromatic. Since $\left(z_{i_{0}+4}, z_{0}\right) \in A\left(C^{4}\right) \cap A\left(C^{3}\right)$ we obtain that C^{4} is coloured 1 .

Finally, since $\left\{u_{j}, u_{j+1}\right\} \subseteq V\left(C^{4}\right)$ we have a $u_{j+1} u_{j}$-monochromatic directed path, a contradiction.

4(c). For any $i \in\{3, \ldots, k-4\}$ such that $i \equiv k(\bmod 4)$ we have $\left(z_{i}, z_{0}\right) \in$ $A(D)$. Since $i \equiv k(\bmod 4)$ and $k \equiv 1(\bmod 2)$ we have $i \equiv 1(\bmod 2)$, and from Lemma 2.1 we obtain $\left(z_{0}, z_{i}\right) \in A(D)$ or $\left(z_{i}, z_{0}\right) \in A(D)$.

Assume, for a contradiction that $\left(z_{0}, z_{i}\right) \in A(D)$, for some $i \in\{3, \ldots$, $k-4\}$ such that $i \equiv k(\bmod 4)$.

Since $0 \in I_{p}$, it follows from 2(c) that $\left(z_{k-4}, z_{0}\right) \in A(D)$, and thus $i \leq$ $k-8$. Let $i_{0}=\max \left\{i \in\{7, \ldots, k-4\} \mid i \equiv k(\bmod 4)\right.$ and $\left.\left(z_{0}, z_{i-4}\right) \in A(D)\right\}$ therefore $\left(z_{0}, z_{i_{0}-4}\right) \in A(D),\left(z_{i_{0}}, z_{0}\right) \in A(D)$ and $\left(z_{i_{0}+4}, z_{0}\right) \in A(D)$. So $C^{2}=\left(z_{0}, z_{i_{0}-4}, z_{i_{0}-3}, z_{i_{0}-2}, z_{i_{0}-1}, z_{i_{0}}, z_{0}\right)$ is a directed cycle of length 6 and hence it is monochromatic, w.l.o.g. assume that it is coloured 1 .

When $i_{0} \in I_{p}$, we have $z_{i_{0}}=u_{j}$ for some $j \in\{2, \ldots, n-2\}$. From the definition of C^{\prime} we have $u_{j-1} \in\left\{z_{i_{0}-1}, z_{i_{0}-2}, z_{i_{0}-4}\right\}$ and then there exists a $u_{j} u_{j-1}$-monochromatic directed path contained in C^{2}, a contradiction.

When $i_{0} \notin I_{p}$, then from I we have $\left\{i_{0}-3, i_{0}-2, i_{0}-1\right\} \cap I_{p} \neq \emptyset$. Let $\ell \in\left\{i_{0}-3, i_{0}-2, i_{0}-1\right\} \cap I_{p}$, so $u_{j}=z_{\ell}$ for some $u_{j} \in V(C)$. From 1(c) it follows $\left(z_{\ell}, z_{\ell+5}\right) \in A(D)$ and $\ell+5 \in\left\{i_{0}+2, i_{0}+3, i_{0}+4\right\}$.

Now $C^{3}=\left(z_{i_{0}-4}, C^{\prime}, z_{\ell}\right) \cup\left(z_{\ell}, z_{\ell+5}\right) \cup\left(z_{\ell+5}, C^{\prime}, z_{i_{0}+4}\right) \cup\left(z_{i_{0}+4}, z_{0}, z_{i_{0}-4}\right)$ is a directed cycle of length 6 (as $\left(z_{i_{0}-4}, C^{\prime}, z_{i_{0}+4}\right) \cup\left(z_{i_{0}+4}, z_{0}, z_{i_{0}-4}\right)$ is a closed directed walk of length 10), and then it is monochromatic. Since $\left(z_{0}, z_{i_{0}-4}\right) \in A\left(C^{2}\right) \cap A\left(C^{3}\right)$ we have C^{3} is coloured 1 . Observe that $u_{j+1} \in$ $\left\{z_{\ell+1}, z_{\ell+2}, z_{\ell+4}\right\} \subseteq\left\{z_{i_{0}-2}, z_{i_{0}-1}, z_{i_{0}}, z_{i_{0}+1}, z_{i_{0}+2}, z_{i_{0}+3}\right\}$. If $u_{j+1} \in\left\{z_{i_{0}-2}\right.$, $\left.z_{i_{0}-1}, z_{i_{0}}\right\}$ then there exists a $u_{j+1} u_{j}$-monochromatic directed path contained in C^{2}, a contradiction.

If $u_{j+1} \in\left\{z_{i_{0}+1}, z_{i_{0}+2}, z_{i_{0}+3}\right\}$, then we take $i_{1} \in\left\{i_{0}+1, i_{0}+2, i_{0}+3\right\}$ such that $u_{j+1}=z_{i_{1}}$. From 2(c), $\left(z_{i_{1}-5}, z_{i_{1}}\right) \in A(D)$, where $z_{i_{1}-5} \in\left\{z_{i_{0}-4}\right.$, $\left.z_{i_{0}-3}, z_{i_{0}-2}\right\}$. Now, $C^{4}=\left(z_{i_{0}-4}, C^{\prime}, z_{i_{1}-5}\right) \cup\left(z_{i_{1}-5}, z_{i_{1}}\right) \cup\left(z_{i_{1}}, C^{\prime}, z_{i_{0}+4}\right) \cup$ $\left(z_{i_{0}+4}, z_{0}, z_{i_{0}-4}\right)$ is a directed cycle of length 6 (as $\left(z_{i_{0}-4}, C^{\prime}, z_{i_{0}+4}\right) \cup\left(z_{i_{0}+4}\right.$, $\left.z_{0}, z_{i_{0}-4}\right)$ is a closed directed walk of length 10), so it is monochromatic and coloured 1 (because $\left.\left(z_{0}, z_{i_{0}-4}\right) \in A\left(C^{4}\right) \cap A\left(C^{2}\right)\right)$. We conclude that $\left(u_{j+1}=z_{i_{1}}, C^{4}, z_{i_{0}-4}\right) \cup\left(z_{i_{0}-4}, C^{2}, z_{\ell}=u_{j}\right)$ contains a $u_{j+1} u_{j}$-monochromatic directed path, a contradiction.

Now we will analyze the two possible cases:
Case c.1. $k \equiv 1(\bmod 4)$.
Since $0 \in I_{p}$, it follows from 2(c) that $\left(z_{k-4}, z_{0}\right) \in A(D)$. On the other hand,
we have $k-4 \equiv 1(\bmod 4)$, and from $3(\mathrm{c}),\left(z_{0}, z_{k-4}\right) \in A(D)$, a contradiction (as D is a bipartite tournament).

Case c.2. $k \equiv 3(\bmod 4)$.
First, we prove several assertions:
5(c.2). For any $i \in\{3, \ldots, k-4\}$ such that $i \equiv 3(\bmod 4)$ we have $\left(z_{i}, z_{0}\right) \in A(D)$.

This assertion follows from $4(\mathrm{c})$ as $i \equiv k(\bmod 4)$.
6 (c.2). For any $i, j \in\{0, \ldots, k\}$ such that $i \in I_{p}$ and $j-i \equiv 1(\bmod 4)$, we have $\left(z_{i}, z_{j}\right) \in A(D)$.

Let $r \in\{0,1, \ldots, n\}$ be such that $u_{r}=z_{i}$, now we rename the vertices of C in such a way that C starts at u_{r}. Joining the corresponding directed paths $\left(T_{i}\right)$ between the vertices of C, we obtain a closed directed walk $\bar{C}^{\prime}=$ $\left(\bar{z}_{0}, \bar{z}_{1}, \ldots, \bar{z}_{k}, \bar{z}_{0}\right)$ which is the same as C^{\prime} where the vertices where renamed as follows: for each $t \in\{0, \ldots, k\} \bar{z}_{t}=z_{t+i}$, thus $\bar{z}_{0}=z_{i}$. Let $j \in\{0, \ldots, k\}$ be such that $j-i \equiv 1(\bmod 4)$. It follows from $3(\mathrm{c})$ that $\left(\bar{z}_{0}, \bar{z}_{j-i}\right) \in A(D)$ and that means $\left(z_{i}, z_{j}\right) \in A(D)\left(\right.$ as $\bar{z}_{0}=z_{i}$ and $\left.\bar{z}_{j-i}=z_{j}\right)$.
$7(\mathrm{c} .2)$. For any $i, j \in\{0, \ldots, k\}$ such that $i \in I_{p}$ and $j-i \equiv 3(\bmod 4)$, we have $\left(z_{j}, z_{i}\right) \in A(D)$.

We proceed as in 6 (c.2), to obtain \bar{C}^{\prime}. Taking $j \in\{0, \ldots, k\}$ such that $j-i \equiv 3(\bmod 4)$, we obtain from $5(\mathrm{c} .2)$ that $\left(\bar{z}_{j-i}, \bar{z}_{0}\right) \in A(D)$; i.e., $\left(z_{j}, z_{i}\right) \in A(D)$.
$8(c .2)$. For any $i \in\{0, \ldots, k\}$ we have $\left(z_{i}, z_{i-3}\right) \in A(D)$.
We proceed by contradiction, suppose that for some $i \in\{0, \ldots, k\}$ we have $\left(z_{i-3}, z_{i}\right) \in A(D)$. Since $i-(i-3) \equiv 3(\bmod 4)$, we have from $7(c .2)$ that $i-3 \notin I_{p}$; and since $(i-3)-i \equiv 1(\bmod 4)$, we obtain from $6(c .2)$ that $i \notin I_{p}$. From I, $\{i-3, i-2, i-1, i\} \cap I_{p} \neq \emptyset$. Thus $\{i-2, i-1\} \cap I_{p} \neq \emptyset$.

And here we consider the two possible cases:
Case 8(c.2) a. $i-2 \in I_{p}$.
Let $j \in\{0, \ldots, n\}$ be such that $z_{i-2}=u_{j}$. We have $\left(z_{i+1}, z_{i-2}=u_{j}\right) \in A(D)$ (this follows directly from $7(\mathrm{c} .2)$, observating that $i+1-(i-2) \equiv 3(\bmod 4)$), also $\left(z_{i-2}, z_{i-5}\right) \in A(D)($ from $6(c .2)$, just observe that $(i-5)-(i-2) \equiv$ $1(\bmod 4))$. Now we have $C^{2}=\left(u_{j}=z_{i-2}, z_{i-5}, z_{i-4}, z_{i-3}, z_{i}, z_{i+1}, z_{i-2}=u_{j}\right)$ is a directed cycle of length 6 and from the hypothesis it is monochromatic, assume w.l.o.g. that it is coloured 1. From the definition of $C^{\prime}, u_{j-1} \in$ $\left\{z_{i-6}, z_{i-4}, z_{i-3}\right\}$. Since $i-3 \notin I_{p}$ we obtain $u_{j-1} \in\left\{z_{i-6}, z_{i-4}\right\}$.

When $u_{j-1}=z_{i-4}$, we obtain $\left\{u_{j-1}, u_{j}\right\} \subset V\left(C^{2}\right)$. Thus there exists a $u_{j} u_{j-1}$-monochromatic directed path contained in C^{2}, a contradiction. When $u_{j-1}=z_{i-6}$, we have $\left(z_{i+1}, z_{i-6}=u_{j-1}\right) \in A(D)$ (from 7(c.2) as $(i+1)-(i-6) \equiv 3(\bmod 4))$. So $C^{3}=\left(u_{j-1}=z_{i-6}, z_{i-5}, z_{i-4}, z_{i-3}, z_{i}, z_{i+1}\right.$, $z_{i-6}=u_{j-1}$) is a directed cycle of length 6 and hence it is monochromatic; moreover it is coloured 1 (because $\left(z_{i-3}, z_{i}\right) \in A\left(C^{2}\right) \cap A\left(C^{3}\right)$). Therefore, $\left(u_{j}=z_{i-2}, C^{2}, z_{i+1}\right) \cup\left(z_{i+1}, z_{i-6}=u_{j-1}\right)$ is a $u_{j} u_{j-1}$-monochromatic directed path, a contradiction.

Case 8(c.2) b. $i-1 \in I_{p}$.
Let $j \in\{0, \ldots, n\}$ be such that $z_{i-1}=u_{j}$. We have $\left(z_{i+2}, z_{i-1}=u_{j}\right) \in A(D)$ (this follows from $7(\mathrm{c} .2)$, as $i+2-(i-1) \equiv 3(\bmod 4)$), and $\left(z_{i-1}, z_{i-4}\right) \in$ $A(D)$ (this follows from $6(\mathrm{c} .2)$, because $(i-4)-(i-1) \equiv 1(\bmod 4))$. Therefore $C^{2}=\left(u_{j}=z_{i-1}, z_{i-4}, z_{i-3}, z_{i}, z_{i+1}, z_{i+2}, z_{i-1}=u_{j}\right)$ is a directed cycle of length 6 , hence it is monochromatic say coloured 1 . From the definition of C^{\prime}, we have $u_{j+1} \in\left\{z_{i}, z_{i+1}, z_{i+3}\right\}$; moreover $u_{j+1} \in\left\{z_{i+1}, z_{i+3}\right\}$ because $i \notin I_{p}$. If $u_{j+1}=z_{i+1}$, then $\left\{u_{j}, u_{j+1}\right\} \subseteq V\left(C^{2}\right)$ and thus there exists a $u_{j+1} u_{j}$-monochromatic directed path, a contradiction. Hence $u_{j+1}=z_{i+3}$. Now observe that $\left(u_{j+1}=z_{i+3}, z_{i-4}\right) \in A(D)$ (this follows from $6(c .2)$ as $i-4-(i+3) \equiv 1(\bmod 4))$. Therefore $C^{3}=\left(u_{j+1}=z_{i+3}, z_{i-4}, z_{i-3}, z_{i}, z_{i+1}\right.$, $\left.z_{i+2}, z_{i+3}=u_{j+1}\right)$ is a directed cycle of length 6 and it is coloured 1 (because $\left.\left(z_{i-3}, z_{i}\right) \in A\left(C^{2}\right) \cap A\left(C^{3}\right)\right)$. We conclude that $\left(u_{j+1}=z_{i+3}, z_{i-4}\right) \cup\left(z_{i-4}, C^{2}\right.$, $\left.z_{i-1}=u_{j}\right)$ is a $u_{j+1} u_{j}$-monochromatic directed path, a contradiction.

9(c.2). If for some $i \in\{0, \ldots, k\}$ we have $\left(z_{i-1}, z_{i}\right)$ and $\left(z_{i}, z_{i+1}\right)$ have different colours, then $i \in I_{p}$.

From I we have $\{i-3, i-2, i-1, i\} \cap I_{p} \neq \emptyset$. Let $r_{0}=\min \{r \in$ $\left.\{0,1,2,3\} \mid i-r \in I_{p}\right\}$ and let $j \in\{0,1, \ldots, n\}$ be such that $z_{i-r_{0}}=u_{j}$; so we have $u_{j} \in\left\{z_{i-3}, z_{i-2}, z_{i-1}, z_{i}\right\}$. From the definition of $C^{\prime}, u_{j+1} \in$ $\left\{z_{i-r_{0}+1}, z_{i-r_{0}+2}, z_{i-r_{0}+4}\right\} \subseteq\left\{z_{i-2}, z_{i-1}, z_{i}, z_{i+1}, z_{i+2}, z_{i+3}, z_{i+4}\right\}$. Now consider $\ell \in\left\{i-r_{0}+1, i-r_{0}+2, i-r_{0}+4\right\}$ such that $u_{j+1}=z_{\ell}$. From the definition of r_{0} and since $\ell \in I_{p}$, we have $\ell \notin\{i-2, i-1, i\}$, i.e., $u_{j+1} \in\left\{z_{i+1}, z_{i+2}, z_{i+3}, z_{i+4}\right\}$.

If T_{j} has length 4 , then T_{j} is monochromatic; and hence $\left\{\left(z_{i-1}, z_{i}\right)\right.$, $\left.\left(z_{i}, z_{i+1}\right)\right\} \nsubseteq A\left(T_{j}\right)$, and $z_{i}=u_{j}, z_{i+4}=u_{j+1}$. Thus $i \in I_{p}$.

If T_{j} has length 1 , then $z_{i}=u_{j}$, i.e., $i \in I_{p}$.
If T_{j} has length 2 , then $u_{j} \in\left\{z_{i-1}, z_{i}\right\}$. When $u_{j}=z_{i}$ clearly $i \in I_{p}$.
When $u_{j}=z_{i-1}$, we have $u_{j+1}=z_{i+1}$. From 8(c.2) we obtain $\left(z_{i+2}\right.$, $\left.z_{i-1}\right) \in A(D)$ and thus $C^{2}=\left(u_{j}=z_{i-1}, z_{i}, z_{i+1}=u_{j+1}, z_{i+2}, z_{i-1}=u_{j}\right)$ is
a directed cycle of length 4 (which from the hypothesis is quasi-monochromatic). Since $\left(z_{i-1}, z_{i}\right)$ and $\left(z_{i}, z_{i+1}\right)$ have different colours, we conclude that $\left(u_{j+1}, C^{2}, u_{j}\right)$ is a $u_{j+1} u_{j}$-monochromatic directed path, a contradiction.
$10(c .2)$. There exists a change of colour in C^{\prime}; i.e., there exists $i \in$ $\{0, \ldots, k\}$ such that $\left(z_{i-1}, z_{i}\right)$ and $\left(z_{i}, z_{i+1}\right)$ have different colours.

Otherwise C^{\prime} is monochromatic, and for any $j \in\{0, \ldots, n\}$, there exists a $u_{j+1} u_{j}$-monochromatic directed path, a contradiction.

We will assume w.l.o.g. that $\left(z_{i-1}, z_{i}\right)$ is coloured 1 and $\left(z_{i}, z_{i+1}\right)$ is coloured 2.

11(c.2). $i \in I_{p}$.
It follows directly from 9 (c.2) and our assumption. Let $j \in\{0, \ldots, n\}$ be such that $z_{i}=u_{j}$.

12(c.2). $\left\{\left(z_{i+2}, z_{i-1}\right),\left(z_{i+1}, z_{i-2}\right),\left(z_{i}, z_{i-3}\right),\left(z_{i+3}, z_{i}\right)\right\} \subseteq A(D)$.
This follows directly from 8(c.2).
13(c.2). $\left(z_{i+1}, z_{i+2}\right)$ and $\left(z_{i+2}, z_{i-1}\right)$ have the same colour, say a, with $a \in\{1,2\}$.

Let $C^{2}=\left(z_{i-1}, z_{i}=u_{j}, z_{i+1}, z_{i+2}, z_{i-1}\right)$ from 12(c.2), it is a directed cycle of length 4 and then it is quasi-monochromatic. Since (z_{i-1}, z_{i}) and $\left(z_{i}, z_{i+1}\right)$ are coloured 1 and 2 respectively, 13(c.2) follows.

14(c.2). $\left(z_{i+1}, z_{i-2}\right)$ and $\left(z_{i-2}, z_{i-1}\right)$ have the same colour, say b, with $b \in\{1,2\}$. The proof is similar to that of $13(c .2)$ by considering the directed cycle of length $4, C^{3}=\left(z_{i-2}, z_{i-1}, z_{i}=u_{j}, z_{i+1}, z_{i-2}\right)$.
$15(\mathrm{c} .2) .\{i-1, i+1\} \cap I_{p}=\emptyset$.
First suppose for a contradiction that $i-1 \in I_{p}$. From the definition of C^{\prime}, and since $z_{i}=u_{j}$, we have $z_{i-1}=u_{j-1}$. From 13(c.2) $\left(z_{i+1}, z_{i+2}\right)$ and $\left(z_{i+2}, z_{i-1}\right)$ have the same colour $a \in\{1,2\}$. If $a=2$, then $\left(z_{i}=\right.$ $\left.u_{j}, z_{i+1}, z_{i+2}, z_{i-1}=u_{j-1}\right)$ is a $u_{j} u_{j-1}$-monochromatic directed path, a contradiction. If $a=1$, then from $9(\mathrm{c} .2)$ we have $i+1 \in I_{p}$. So, $z_{i+1}=u_{j+1}$ and ($u_{j+1}=z_{i+1}, z_{i+2}, z_{i-1}, z_{i}=u_{j}$) is a $u_{j+1} u_{j}$-monochromatic directed path, a contradiction.

Now, suppose for a by contradiction that $i+1 \in I_{p}$. Thus $z_{i+1}=u_{j+1}$. From $14(\mathrm{c} .2)$ we have $\left(z_{i+1}, z_{i-2}\right)$ and $\left(z_{i-2}, z_{i-1}\right)$ have the same colour b, with $b \in\{1,2\}$. If $b=1$ then $\left(u_{j+1}=z_{j+1}, z_{i-2}, z_{i-1}, z_{i}=u_{j}\right)$ is a $u_{j+1} u_{j}-$ monochromatic directed path, a contradiction. If $b=2$ then from $9(c .2)$ we have $i-1 \in I_{p}$, but we have proved that this leads to a contradiction.

16(c.2). $\left(z_{i+1}, z_{i+2}\right)$ is coloured 2.
Otherwise $\left(z_{i}, z_{i+1}\right)$ and $\left(z_{i+1}, z_{i+2}\right)$ have different colours and from 9(c.2) $i+1 \in I_{p}$, contradicting 15 (c.2).

17(c.2). $\left(z_{i-2}, z_{i-1}\right)$ is coloured 1.
Otherwise $\left(z_{i-2}, z_{i-1}\right)$ and $\left(z_{i-1}, z_{i}\right)$ have different colours, and from 9(c.2) $i-1 \in I_{p}$, contradicting 15 (c.2).
$18(\mathrm{c} .2) .\left(z_{i+2}, z_{i-1}\right)$ is coloured 2.
This follows directly from 13 (c.2) and 16(c.2).
$19(\mathrm{c} .2) .\left(z_{i+1}, z_{i-2}\right)$ is coloured 1.
Follows directly from 14 (c.2) and 17 (c.2). Now we will analyze the two possible cases: $i+2 \notin I_{p}$ or $i+2 \in I_{p}$.

Case c.2.1. $i+2 \notin I_{p}$.
In this case, we have from the definition of C^{\prime} that $i+4 \in I_{p}$ and $z_{i+4}=u_{j+1}$. And we have the following assertions: 1 (c.2.1) to 11(c.2.1).

1 (c.2.1). $\left(z_{i+2}, z_{i+3}\right)$ and $\left(z_{i+3}, z_{i+4}\right)$ are coloured 2.
Since $u_{j+1}=z_{i+4}$, then $T_{j}=\left(u_{j}=z_{i}, z_{i+1}, z_{i+2}, z_{i+3}, z_{i+4}=u_{j+1}\right)$ is monochromatic; moreover it is coloured 2 (as $\left(z_{i}, z_{i+1}\right)$ is coloured 2).
$2(c .2 .1) .\left(z_{i+4}, z_{i-3}\right) \in A(D)$.
This follows from $6(\mathrm{c} .2)$ because $i-3-(i+4) \equiv 1(\bmod 4)$.
$3(c .2 .1) .\left(z_{i-1}, z_{i+4}\right) \in A(D)$.
The assertion follows from $7(\mathrm{c} .2)$ as $i-1-(i+4) \equiv 3(\bmod 4)$.
$4(\mathrm{c} .2 .1) .\left\{\left(z_{i+4}, z_{i+1}\right),\left(z_{i+3}, z_{i}\right)\right\} \subseteq A(D)$.
Is a direct consequence of $8(\mathrm{c} .2)$.
5(c.2.1). $\left(z_{i+4}, z_{i+1}\right)$ is not coloured 1.
Assuming for a contradiction that $\left(z_{i+4}, z_{i+1}\right)$ is coloured 1, we obtain that $\left(u_{j+1}=z_{i+4}, z_{i+1}, z_{i-2}, z_{i-1}, z_{i}=u_{j}\right)$ is a $u_{j+1} u_{j}$-monochromatic directed path, a contradiction.
$6(\mathrm{c} .2 .1) .\left(z_{i-1}, z_{i+4}\right)$ is coloured 1.
We have that $\left(z_{i+1}, z_{i-2}, z_{i-1}, z_{i+4}, z_{i+1}\right)$ is quasi-monochromatic (because it is a directed cycle of length 4). From $19(\mathrm{c} .2)\left(z_{i+1}, z_{i-2}\right)$ is coloured 1 , from $17(\mathrm{c} .2),\left(z_{i-2}, z_{i-1}\right)$ is coloured 1 ; and from $5(\mathrm{c} .2 .1)\left(z_{i+4}, z_{i+1}\right)$ is not coloured 1. So, $\left(z_{i-1}, z_{i+4}\right)$ is coloured 1.
$7(\mathrm{c} .2 .1) .\left(z_{i+4}, z_{i+1}\right)$ is coloured 2.

We have that: $\left(z_{i+1}, z_{i+2}, z_{i-1}, z_{i+4}, z_{i+1}\right)$ is quasi-monochromatic (from the hypothesis), $\left(z_{i+1}, z_{i+2}\right)$ is coloured $2(16(\mathrm{c} .2)),\left(z_{i+2}, z_{i-1}\right)$ is coloured 2 (18(c.2)) and ($\left.z_{i-1}, z_{i+4}\right)$ is coloured 1 (6(c.2.1)).

$$
\text { 8(c.2.1). }\left(z_{i-3}, z_{i+2}\right) \in A(D) .
$$

Assume, for a contradiction that $\left(z_{i-3}, z_{i+2}\right) \notin A(D)$. Then $\left(z_{i+2}, z_{i-3}\right) \in$ $A(D)$ and $\left(z_{i+2}, z_{i-3}, z_{i-2}, z_{i-1}, z_{i}, z_{i+1}, z_{i+2}\right)$ is a directed cycle of length 6. From the hypothesis we have that it must be monochromatic, but it has two arcs coloured $1\left(\left(z_{i-2}, z_{i-1}\right)\right.$ and $\left.\left(z_{i-1}, z_{i}\right)\right)$ and two arcs coloured $2\left(\left(z_{i}, z_{i+1}\right)\right.$ and $\left.\left(z_{i+1}, z_{i+2}\right)\right)$, a contradiction.
$9(\mathrm{c} .2 .1) .\left(z_{i-2}, z_{i+3}\right) \in A(D)$.
Assuming for a contadiction that $\left(z_{i-2}, z_{i+3}\right) \notin A(D)$, we obtain $\left(z_{i+3}, z_{i-2}\right)$ $\in A(D)$ and $\left(z_{i+3}, z_{i-2}, z_{i-1}, z_{i}, z_{i+1}, z_{i+2}, z_{i+3}\right)$ is a directed cycle of length 6. It has two arcs coloured $1\left(\left(z_{i-2}, z_{i-1}\right)\right.$ and $\left.\left(z_{i-1}, z_{i}\right)\right)$ and two arcs coloured $2\left(\left(z_{i}, z_{i+1}\right)\right.$ and $\left.\left(z_{i+1}, z_{i+2}\right)\right)$, contradicting the hypothesis.

10 (c.2.1). $\left(z_{i+3}, z_{i}\right)$ is not coloured 2.
Assume, for a contradiction that $\left(z_{i+3}, z_{i}\right)$ is coloured 2, then $\left(u_{j+1}=z_{i+4}\right.$, $\left.z_{i+1}, z_{i+2}, z_{i+3}, z_{i}=u_{j}\right)$ is a $u_{j+1} u_{j}$-monochromatic directed path, a contradiction.

11(c.2.1). The arcs $\left(z_{i-2}, z_{i+3}\right)$ and $\left(z_{i+3}, z_{i}\right)$ are coloured 1.
We have ($z_{i+3}, z_{i}, z_{i+1}, z_{i-2}, z_{i+3}$) a directed cycle of length 4 , thus it is quasimonochromatic. Since $\left(z_{i}, z_{i+1}\right)$ is coloured 2 and $\left(z_{i+1}, z_{i-2}\right)$ is coloured 1 (19(c.2)), then $\left(z_{i-2}, z_{i+3}\right)$ and $\left(z_{i+3}, z_{i}\right)$ are both coloured 1 or are both coloured 2. And from 10 (c.2.1) $\left(z_{i+3}, z_{i}\right)$ is not coloured 2.

12(c.2.1). $\left(z_{i+4}, z_{i-3}\right)$ and $\left(z_{i-3}, z_{i-2}\right)$ are both coloured 1 or are both coloured 2.

We have $\left(z_{i-2}, z_{i+3}, z_{i+4}, z_{i-3}, z_{i-2}\right)$ is quasi-monochromatic; $\left(z_{i-2}, z_{i+3}\right)$ is coloured 1 (11(c.2.1)) and $\left(z_{i+3}, z_{i+4}\right)$ is coloured $2(1(\mathrm{c} .2 .1))$.

If $\left(z_{i+4}, z_{i-3}\right)$ and $\left(z_{i-3}, z_{i-2}\right)$ are both coloured 1 , then $\left(u_{j+1}=z_{i+4}\right.$, $z_{i-3}, z_{i-2}, z_{i-1}, z_{i}=u_{j}$) is a $u_{j+1} u_{j}$-monochromatic directed path (coloured 1), a contradiction. If $\left(z_{i+4}, z_{i-3}\right)$ and $\left(z_{i-3}, z_{i-2}\right)$ are both coloured 2 , then $\left(z_{i-1}, z_{i+4}, z_{i-3}, z_{i-2}, z_{i-1}\right)$ is a directed cycle of length 4 with two arcs coloured 1 and two arcs coloured 2, a contradiction to the hypothesis. So case (c.2.1) is not possible.

Case c.2.2. $i+2 \in I_{p}$.
Since $i+1 \notin I_{p}$, then $z_{i+2}=u_{j+1}$. We have the following assertions:
$1(c .2 .2) .\left(z_{i+2}, z_{i-5}\right) \in A(D)$.
This follows from $6(\mathrm{c} .2)$, as $(i-5)-(i+2) \equiv 1(\bmod 4)$.
$2(c .2 .2) .\left(z_{i-3}, z_{i+2}\right) \in A(D)$.
Since $(i-3)-(i+2) \equiv 3(\bmod 4)$, the assertion follows from $7(c .2)$.
$3(c .2 .2) .\left(z_{i-4}, z_{i+1}\right) \in A(D)$.
Assume, for a contradiction that $\left(z_{i-4}, z_{i+1}\right) \notin A(D)$. Then $\left(z_{i+1}, z_{i-4}\right) \in$ $A(D)$ and $\left(z_{i-4}, z_{i-3}, z_{i-2}, z_{i-1}, z_{i}, z_{i+1}, z_{i-4}\right)$ is monochromatic (as it is a directed cycle of length 6), but $\left(z_{i-1}, z_{i}\right)$ is coloured 1 and $\left(z_{i}, z_{i+1}\right)$ is coloured 2, a contradiction.
$4(\mathrm{c} .2 .2) .\left(z_{i-1}, z_{i-4}\right) \in A(D)$.
It follows from 8(c.2).
$5(\mathrm{c} .2 .2) .\left(z_{i-5}, z_{i}\right) \in A(D)$.
Since $(i-5)-i \equiv 3(\bmod 4)$ then the assertion follows from $7(c .2)$.
$6(c .2 .2) .\left(z_{i-2}, z_{i-5}\right) \in A(D)$.
This follows from 8(c.2).
$7(\mathrm{c} .2 .2)$. The $\operatorname{arcs}\left(z_{i}, z_{i-3}\right)$ and $\left(z_{i-3}, z_{i+2}\right)$ are both coloured 2.
We have $\left(z_{i-1}, z_{i}, z_{i-3}, z_{i+2}, z_{i-1}\right)$ a directed cycle of length 4 , thus it is quasimonochromatic. Since $\left(z_{i-1}, z_{i}\right)$ is coloured 1 and $\left(z_{i+2}, z_{i-1}\right)$ is coloured 2 then $\left(z_{i}, z_{i-3}\right)$ and $\left(z_{i-3}, z_{i+2}\right)$ are both coloured 1 or are both coloured 2. If they are both coloured 2 , then we are done.

Now suppose that $\left(z_{i}, z_{i-3}\right)$ and $\left(z_{i-3}, z_{i+2}\right)$ are both coloured 1. Therefore $\left(z_{i+2}, z_{i-1}, z_{i-4}, z_{i-3}, z_{i+2}\right)$ is quasi-monochromatic. Since $\left(z_{i+2}, z_{i-1}\right)$ is coloured 2 and $\left(z_{i-3}, z_{i+2}\right)$ is coloured 1 , then $\left(z_{i-1}, z_{i-4}\right)$ and $\left(z_{i-4}, z_{i-3}\right)$ are both coloured 1 or are both coloured 2 .

We will analyze the two possible cases:
Case 7(c.2.2)a. The $\operatorname{arcs}\left(z_{i-1}, z_{i-4}\right)$ and $\left(z_{i-4}, z_{i-3}\right)$ are both coloured 2. In this case we have $\left(z_{i-3}, z_{i-2}\right)$ is coloured 2 because $\left(z_{i-1}, z_{i-4}, z_{i-3}, z_{i-2}\right.$, $\left.z_{i-1}\right)$ is quasi-monochromatic, $\left(z_{i-2}, z_{i-1}\right)$ is coloured 1 and $\left(z_{i-1}, z_{i-4}\right)$ and $\left(z_{i-4}, z_{i-3}\right)$ are both coloured 2.

So, it follows from 9 (c.2) that $i-2 \in I_{p}$. Since $i-1 \notin I_{p}$ (15(c.2)) then $z_{i-2}=u_{j-1}$. Thus $\left(u_{j}=z_{i}, z_{i+1}, z_{i+2}, z_{i-1}, z_{i-4}, z_{i-3}, z_{i-2}=u_{j-1}\right)$ is a $u_{j} u_{j-1}$-directed path coloured 2, a contradiction. So case 7(c.2.2)a is not possible.

Case 7(c.2.2)b. The arcs $\left(z_{i-1}, z_{i-4}\right)$ and $\left(z_{i-4}, z_{i-3}\right)$ are both coloured 1. In this case we have $\left(z_{i-3}, z_{i-2}\right)$ is not coloured 1 (otherwise $\left(u_{j}=z_{i}, z_{i-3}\right.$, $\left.z_{i-2}, z_{i-1}, z_{i-4}\right)$ is a directed walk coloured 1 which contains $\left\{z_{i-2}, z_{i-4}\right\}$; and from the definition of $C^{\prime}, u_{j-1} \in\left\{z_{i-2}, z_{i-4}\right\}$ thus there exists a $u_{j} u_{j-1^{-}}$ monochromatic directed path; a contradiction). Now from 9 (c.2) we have $\{i-3, i-2\} \subseteq I_{p}$. Since $i-1 \notin I_{p}$ we have $z_{i-2}=u_{j-1}$ and $z_{i-3}=u_{j-2}$. Therefore $\left(u_{j-1}=z_{i-2}, z_{i-1}, z_{i-4}, z_{i-3}=u_{j-2}\right)$ is a $u_{j-1} u_{j-2}$-monochromatic directed path (coloured 1), a contradiction.

We conclude that the $\operatorname{arcs}\left(z_{i}, z_{i-3}\right)$ and $\left(z_{i-3}, z_{i+2}\right)$ are both coloured 2.
8(c.2.2). $\left(z_{i-3}, z_{i-2}\right)$ is coloured 1.
We have $\left(z_{i-2}, z_{i-1}, z_{i}, z_{i-3}, z_{i-2}\right)$ which is quasi-monochromatic; $\left(z_{i}, z_{i-3}\right)$ coloured 2 and $\left(\left(z_{i-2}, z_{i-1}\right)\right.$ and $\left.\left(z_{i-1}, z_{i}\right)\right)$ coloured 1.
$9(\mathrm{c} .2 .2) .\left(z_{i-2}, z_{i-5}\right)$ and $\left(z_{i-5}, z_{i}\right)$ are both coloured 1.
$\left(z_{i-2}, z_{i-5}\right)$ and $\left(z_{i-5}, z_{i}\right)$ are both coloured 1 or are both coloured 2: this is because $\left(z_{i}, z_{i-3}, z_{i-2}, z_{i-5}, z_{i}\right)$ is quasi-monochromatic with $\left(z_{i}, z_{i-3}\right)$ coloured 2 and $\left(z_{i-3}, z_{i-2}\right)$ coloured 1 .

Assume, for a contradiction that $\left(z_{i-2}, z_{i-5}\right)$ and $\left(z_{i-5}, z_{i}\right)$ are both coloured 2.

Denote by a the colour of the $\operatorname{arc}\left(z_{i+2}, z_{i-5}\right)$. We have $a \neq 2$ (otherwise $\left(u_{j+1}=z_{i+2}, z_{i-5}, z_{i}=u_{j}\right)$ is a $u_{j+1} u_{j}$-monochromatic directed path, a contradiction). Now, $\left(z_{i-5}, z_{i-4}\right)$ and $\left(z_{i-4}, z_{i-3}\right)$ are both coloured b with $b \in\{1,2\}$ (this is because $\left(z_{i-5}, z_{i-4}, z_{i-3}, z_{i-2}, z_{i-5}\right)$ is quasi-monochromatic with $\left(z_{i-3}, z_{i-2}\right)$ coloured 1 and $\left(z_{i-2}, z_{i-5}\right)$ coloured 2). If $b=1$ then $a=1$ (notice that $\left(z_{i+2}, z_{i-5}, z_{i-4}, z_{i-3}, z_{i+2}\right)$ is quasi-monochromatic; with $\left(z_{i-3}, z_{i+2}\right)$ coloured 2 and $\left(\left(z_{i-5}, z_{i-4}\right)\right.$ and $\left.\left(z_{i-4}, z_{i-3}\right)\right)$ coloured 1 ; so $a=1$). Thus $\left(u_{j+1}=z_{i+2}, z_{i-5}, z_{i-4}, z_{i-3}, z_{i-2}, z_{i-1}, z_{i}=u_{j}\right)$ is a $u_{j+1} u_{j}$ monochromatic directed path (coloured 1), a contradiction. If $b=2$, then $i-3 \in I_{p}$ (from $9(\mathrm{c} .2)$) and from the definition of $C^{\prime}, i-2 \in I_{p}$. Thus $z_{i-2}=u_{j-1}, z_{i-3}=u_{j-2}$ and $\left(u_{j-1}=z_{i-2}, z_{i-5}, z_{i-4}, z_{i-3}=u_{j-2}\right)$ is a $u_{j-1} u_{j-2}$-monochromatic directed path (coloured 2), a contradiction.
$10(\mathrm{c} .2 .2) .\left(z_{i+2}, z_{i-5}\right)$ is coloured 2.
$\left(z_{i}, z_{i+1}, z_{i+2}, z_{i-5}, z_{i}\right)$ is quasi-monochromatic with $\left(z_{i-5}, z_{i}\right)$ coloured 1 and $\left(\left(z_{i}, z_{i+1}\right)\right.$ and $\left.\left(z_{i+1}, z_{i+2}\right)\right)$ coloured 2.
$11(\mathrm{c} .2 .2) .\left(z_{i-4}, z_{i-3}\right)$ is not coloured 2.
Assume, for a contradiction that $\left(z_{i-4}, z_{i-3}\right)$ coloured 2. Then $i-3 \in I_{p}$. On the other hand we have $i-4 \in I_{p}$ (because $\left(z_{i-5}, z_{i-4}, z_{i-3}, z_{i-2}, z_{i-5}\right)$
is quasi-monochromatic with $\left(z_{i-4}, z_{i-3}\right)$ coloured 2 and $\left(\left(z_{i-3}, z_{i-2}\right)\right.$ and $\left.\left(z_{i-2}, z_{i-5}\right)\right)$ coloured 1 ; so $\left(z_{i-5}, z_{i-4}\right)$ is coloured 1 and then (from 9(c.2)) $i-4 \in I_{p}$). Now, from the definition of C^{\prime}, we have $z_{i-3}=u_{r}$ and $z_{i-4}=u_{r-1}$ for some $r \in\{1,2, \ldots, n\}$. Thus ($u_{r}=z_{i-3}, z_{i-2}, z_{i-5}, z_{i-4}=u_{r-1}$) is a $u_{r} u_{r-1}$-monochromatic directed path (coloured 1), a contradiction.

12(c.2.2). $\left(z_{i-5}, z_{i-4}\right)$ is coloured 2.
$\left(z_{i-5}, z_{i-4}, z_{i-3}, z_{i+2}, z_{i-5}\right)$ is quasi-monochromatic; with $\left(\left(z_{i-3}, z_{i+2}\right)\right.$ and $\left.\left(z_{i+2}, z_{i-5}\right)\right)$ coloured 2 and $\left(z_{i-4}, z_{i-3}\right)$ not coloured 2.
$13(\mathrm{c} .2 .2) .\left(z_{i-4}, z_{i+1}\right)$ is coloured 1 .
$\left(z_{i+1}, z_{i-2}, z_{i-5}, z_{i-4}, z_{i+1}\right)$ is quasi-monochromatic with $\left(z_{i-5}, z_{i-4}\right)$ coloured 2 and $\left(\left(z_{i+1}, z_{i-2}\right)\right.$ and $\left.\left(z_{i-2}, z_{i-5}\right)\right)$ coloured 1.

14(c.2.2). $D\left[\left\{z_{i}, z_{i+1}, z_{i+2}, z_{i-5}, z_{i-4}, z_{i-2}\right\}\right]$ is isomorphic to \widetilde{T}_{6}. Let $f:\left\{z_{i}, z_{i+1}, z_{i+2}, z_{i-5}, z_{i-4}, z_{i-2}\right\} \rightarrow V\left(\widetilde{T}_{6}\right)$ defined as follows: $f\left(z_{i}\right)=x$, $f\left(z_{i+1}\right)=y, f\left(z_{i+2}\right)=v, f\left(z_{i-5}\right)=w, f\left(z_{i-4}\right)=z, f\left(z_{i-2}\right)=u$ is an isomorphism.

Assertion 14(c.2.2) contradicts the hypothesis, so case $\mathrm{c}(2.2)$ is not possible; also case c .2 is not possible.

As a direct consequence of Theorem 2.1, we have the following result:

Theorem 2.2. Let D be an m-coloured bipartite tournament. Assume that every directed cycle of length 4 is quasi-monochromatic, every directed cycle of length 6 is monochromatic and D has no subtournament isomorphic to T_{6}. Then D has a kernel by monochromatic paths.

Remark 2.1. The hypothesis that every directed cycle of length 6 is monochromatic in Theorem 2.1 is tight.

Let D be the 3 -coloured bipartite tournament defined in [8] as follows: $V(D)=\{u, v, w, x, y, z\}, A(D)=\{(u, x),(x, v),(v, y),(y, w),(w, z),(z, u)$, $(x, w),(y, u),(z, v)\}$; the $\operatorname{arcs}(x, w),(w, z)$ and (z, u) coloured 1 ; the arcs $(y, u),(u, x)$ and (x, v), coloured 2 ; and the $\operatorname{arcs}(z, v),(v, y)$ and (y, w) coloured 3. D has a directed cycle of length 6 which is not monochromatic, every directed cycle of length 4 in D is quasi-monochromatic, D has no subtournament isomorphic to \widetilde{T}_{6} and $\mathcal{C}(D)$ is a complete multidigraph which has no kernel.

Remark 2.2. The hypothesis that every directed cycle of length 6 in a bipartite tournament D is monochromatic, does not imply that every directed cycle of length 4 in D is quasi-monochromatic.

Proof. Let $T=(U, W)$ be the 2-coloured bipartite tournament defined as follows: $U=\{u, v, w, x, y\}$ and $W=\{a, b, c, d, e\}$. In $T, C_{1}=(u, a, v, b, w$, $c, u)$ is a directed cycle of length 6 coloured $1, C_{2}=(x, d, y, e, x)$ is a directed cycle of length 4 coloured 2. T has arcs from $U \cap V\left(C_{1}\right)$ to $W \cap V\left(C_{2}\right)$ coloured 1 and finally T contains the arcs $(u, b),(a, w),(c, w)$ coloured 1 (see Figure 2). C_{1} is the only directed cycle of length 6 contained in T, and it is monochromatic. And C_{2} is a directed cycle of length 4 that is not quasi-monochromatic.

Figure 2
Remark 2.3. For each m there exists an m-coloured Hamiltonian bipartite tournament such that: every directed cycle of length 4 is quasi-monochromatic; every directed cycle of length 6 is monochromatic and D has no subtournament isomorphic to \widetilde{T}_{6}.

Proof. Let $D=\left(V_{1}, V_{2}\right)$ be the m-coloured bipartite tournament defined as follows:

$$
\begin{aligned}
V(D) & =\bigcup_{i=1}^{6} X_{i} \text { where } X_{i}=\left\{x_{i, 1}, x_{i, 2}, \ldots, x_{i, m}\right\}, \\
V_{1} & =X_{1} \cup X_{3} \cup X_{5}, \quad V_{2}=X_{2} \cup X_{4} \cup X_{6}, \\
A(D) & =\bigcup_{i=1}^{5} X_{i}^{\prime} \cup\{1,2,3\} \\
\cup & X_{\ell}^{3} \cup X_{6}^{0} \text { where } X_{i}^{\prime}=\left\{\left(x_{i, j}, x_{i+1, j}\right) \mid j \in\{1, \ldots, m\}\right\}, \\
X_{\ell}^{3}= & \left\{\left(x_{\ell, j}, x_{\ell+3, j}\right) \mid j \in\{1, \ldots, m\}\right\}, X_{6}^{0} \\
& =\left\{\left(x_{6, i}, x_{1, i+1}\right) \mid i \in\{1, \ldots, m-1\}\right\} \cup\left\{\left(x_{6, m}, x_{1,1}\right)\right\},
\end{aligned}
$$

where $\left(x_{1, i}, x_{2, i}\right)$ is coloured i; and any other arc of D is coloured 1 and in any direction.

References

[1] C. Berge, Graphs (North-Holland, Amsterdam, 1985).
[2] P. Duchet, Graphes Noyau-Parfaits, Ann. Discrete Math. 9 (1980) 93-101.
[3] P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105.
[4] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76.
[5] H. Galeana-Sánchez, On monochromatic paths and monochromatics cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103-112.
[6] H. Galeana-Sánchez, Kernels in edge-coloured digraphs, Discrete Math. 184 (1998) 87-99.
[7] H. Galeana-Sánchez and J.J. García-Ruvalcaba, Kernels in the closure of coloured digraphs, Discuss. Math. Graph Theory 20 (2000) 103-110.
[8] H. Galeana-Sánchez and R. Rojas-Monroy, On monochromatic paths and monochromatic 4-cycles in edge-coloured bipartite tournaments, Discrete Math. 285 (2004) 313-318.
[9] H. Galeana-Sánchez and R. Rojas-Monroy, A counterexample to a conjecture on edge-coloured tournaments, Discrete Math. 282 (2004) 275-276.
[10] G. Hahn, P. Ille and R. Woodrow, Absorbing sets in arc-coloured tournaments, Discrete Math. 283 (2004) 93-99.
[11] M. Richardson, Solutions of irreflexive relations, Ann. Math. 58 (1953) 573.
[12] Shen Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory (B) 45 (1988) 108-111.
[13] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory (B) 33 (1982) 271-275.
[14] J. Von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944).

Received 6 July 2007
Revised 10 April 2008
Accepted 10 April 2008

