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Abstract
We call the digraph D an m-coloured digraph if the arcs of D are
coloured with m colours. A directed path (or a directed cycle) is called
monochromatic if all of its arcs are coloured alike. A directed cycle is
called quasi-monochromatic if with at most one exception all of its arcs
are coloured alike.
A set N C V(D) is said to be a kernel by monochromatic paths if
it satisfies the following two conditions:

(i) for every pair of different vertices u,v € N there is no monochro-
matic directed path between them and

(ii) for every vertex x € V(D) — N there is a vertex y € N such that
there is an xy-monochromatic directed path.

In this paper it is proved that if D is an m-coloured bipartite tour-
nament such that: every directed cycle of length 4 is quasi-monochro-
matic, every directed cycle of length 6 is monochromatic, and D has
no induced particular 6-element bipartite tournament Ty, then D has
a kernel by monochromatic paths.

Keywords: kernel, kernel by monochromatic paths, bipartite tourna-
ment.
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1. INTRODUCTION

For general concepts we refer the reader to [1]. Let D be a digraph, and
let V(D) and A(D) denote the sets of vertices and arcs of D, respec-
tively. An arc (u1,us) € A(D) is called asymmetrical (resp. symmetrical) if
(ug,u1) ¢ A(D) (resp. (uz,u;) € A(D)). The asymmetrical part of D (resp.
symmetrical part of D) which is denoted by Asym(D) (resp. Sym(D)) is
the spanning subdigraph of D whose arcs are the asymmetrical (resp. sym-
metrical) arcs of D. If S is a nonempty subset of V(D) then the subdigraph
DI[S] induced by S is the digraph having vertex set S, and whose arcs are
those arcs of D joining vertices of .S.

A set I C V(D) is independent if A(D[I]) = (. A kernel N of D is an
independent set of vertices such that for each z € V(D) — N there exists a
zN-arc in D, that is an arc from z to some vertex in N. A digraph D is called
kernel-prefect digraph when every induced subdigraph of D has a kernel.
Sufficient conditions for the existence of kernels in a digraph have been inves-
tigated by several authors, Von Neumann and Morgenstern [14], Richardson
[11], Duchet and Meyniel [3] and Galeana-Sénchez and Neumann-Lara [4].
The concept of kernel is very useful in applications. Clearly, the concept of
kernel by monochromatic paths generalizes those of kernel.

A digraph D is called a bipartite tournament if its set of vertices can
be partitioned into two sets V4 and V5 such that: (i) every arc of D has an
endpoint in V; and the other endpoint in Vo, and (ii) for all z; € V; and
for all zo € Va, we have |{(z1,z2), (z2,21)} N A(D)| = 1. We will write
D = (V1, V) to indicate the partition.

If € = (20,%1,..-,%n,%0) is a directed cycle and if z;,z; € V(€) with
i < j we denote by (z;,C,z;) the z;z;-directed path contained in €, and
U(z;, C, zj) will denote its length; similarly ¢(€) will denote the length of C.

If D is an m-coloured digraph, then the closure of D, denoted by
C(D) is the m-coloured multidigraph defined as follows: V(C(D)) = V (D),
A(C(D)) = A(D)U{(u,v) with colour 7| there exists an uv-monochromatic
directed path coloured i contained in D}.

Notice that for any digraph D, €(C(D)) = C(D) and D has a kernel by
monochromatic paths if and only if €(D) has a kernel.

In [13] Sands et al. have proved that any 2-coloured digraph has a ker-
nel by monochromatic paths; in particular they proved that any 2-coloured
tournament has a kernel by monochromatic paths. They also raised the fol-
lowing problem: Let T be a 3-coloured tournament such that every directed
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cycle of length 3 is quasi-monochromatic; must C(7") have a kernel? (This
question remains open.) In [12] Shen Minggang proved that if in the problem
we ask that every transitive tournament of order 3 be quasi-monochromatic,
the answer will be yes; and the result is best possible for m-coloured tour-
naments with m > 5. In 2004 [9] presented a 4-coloured tournament 7" such
that every directed cycle of order 3 is quasi-monochromatic; but 7" has no
kernel by monochromatic paths. The known sufficient conditions for the
existence of kernel by monochromatic paths in m-coloured (m > 3) tour-
naments (or nearly tournaments), ask for the monochromaticity or quasi-
monochromaticity of certain subdigraphs. In [5] it was proved that if T" is an
m-~coloured tournament such that every directed cycle of length at most 4 is
quasi-monochromatic then C(7T') is kernel-perfect. A generalization of this
result was obtained by Hahn, Ille and Woodrow in [10]; they proved that if
T is an m-coloured tournament such that every directed cycle of length k is
quasi-monochromatic and 7" has no polychromatic directed cycles of length
£, £ < k, for some k > 4, then T has a kernel by monochromatic paths.
(A directed cycle is polychromatic if it uses at least three different colours in
its arcs). Results similar to those in [12] and [5] were proved for the digraph
obtained from a tournament by the deletion of a single arc, in [7] and [6], re-
spectively. Kernels by monochromatic paths in bipartite tournaments were
studied in [8]; where it is proved that if T" is a bipartite tournament such that
every directed cycle of length 4 is monochromatic, then T has a kernel by
monochromatic paths.

We prove that if T is a bipartite tournament such that every directed
cycle of length 4 is quasi-monochromatic, every directed cycle of length 6
is monochromatic and T has no induced subtournament isomorphic to Tﬁ,
then T has a kernel by monochromatic paths.

fG is the bipartite tournament defined as follows:
V(To) = {u,v,w,2,y, 2},
A1) = {(v,w), (v,w), (w,z), (w,2), (2,y), (y,u), (y;v), (z,y)} with

{(u,w), (w,x), (y,u), (z,y)} coloured 1 and {(v,w), (w, z), (z,y), (y,v)}
coloured 2. (See Figure 1).

We will need the following result.

Theorem 1.1 Duchet [2]. If D is a digraph such that every directed cycle
has at least one symmetrical arc, then D is a kernel-perfect digraph.
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Figure 1

2. THE MAIN RESULT

The following lemmas will be useful in the proof of the main result.

Lemma 2.1. Let D = (V1,V,) be a bipartite tournament and C = (uo,
Ul,...,Uup) a directed walk in D. For {i,j} C {0,1,...,n}, (us,u;) € A(D)
or (uj,u;) € A(D) if and only if j —i = 1(mod 2).

Lemma 2.2. For a bipartite tournament D = (V1,V3), every closed directed
walk of length at most 6 in D is a directed cycle of D.

Lemma 2.3. Let D be an m-coloured bipartite tournament such that ev-
ery directed cycle of length 4 is quasi-monochromatic and every directed
cycle of length 6 is monochromatic. If for u,v € V(D) there ezists a uv-
monochromatic directed path and there is no vu-monochromatic directed path
(in D), then at least one of the following conditions hold:

(i) (u,v) € A(D),
(ii) there exists (in D) a uwv-directed path of length 2,

(iii) there exists a uv-monochromatic directed path of length 4.

Proof. Let D, u,v be as in the hypothesis. If there exists a uv-directed
path of odd length, then it follows from Lemma 2.1 that (u,v) € A(D) or
(v,u) € A(D). Since there is no vu-monochromatic directed path in D,
then (u,v) € A(D) and Lemma 2.3 holds. So, we will assume that every
uv-directed path has even length. We proceed by induction on the length
of a uv-monochromatic directed path.

Clearly Lemma 2.3 holds when there exists a uv-monochromatic direc-
ted path of length at most 4. Suppose that T' = (u = ug, u1, ug, us, u4, us,
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ug = v) is a uv-monochromatic directed path of length 6. It follows from
Lemma 2.1 that (u,us) € A(D) or (us,u) € A(D) and also (u1,v) € A(D)
or (v,uy) € A(D). If (u,us) € A(D) or (u1,v) € A(D) then we obtain a
uv-directed path of length two, and we are done. So, we will assume that
(us,u) € A(D) and (v,uy) € A(D). Thus (u = ug, uy, uz, ug, Ug, Uz, Uy = u)
is a directed cycle of length 6 which is monochromatic and has the same
colour as T'. Also (uy,ug, us, ug, us, ug = v,u1) is a directed cycle coloured as
T. Hence (v = ug, u1, U2, us, Ug, Us, ug = u) is a vu-monochromatic directed
path, a contradiction. Suppose that Lemma 2.3 holds when there exists a
uv-monochromatic directed path of even length ¢ with 6 < ¢ < 2n. Now
assume that there exists a wv-monochromatic directed path say T' = (u =
U, UL,y - - -, U(ng1y = V) With £(T) = 2(n + 1); we may assume w.l.o.g. that
T is coloured 1.

From Lemma 2.1 we have that for each ¢ € {0,1,...,2(n + 1) — 5},
(uiys,u;) € A(D) or (uj,uiys) € A(D). We will analyze two possible cases:

Case a. For each i € {0,1,...,2(n+ 1) — 5}, (uiys,u;) € A(D).
In this case Cs = (u;, wit1, Wit2, Wi+3, Uitd, Uit+5, U;) is a directed cycle

with £(Cs) = 6; so it is monochromatic and coloured 1 (as (u;,uit1) is
coloured 1). Let k € {1,2,3,4,5} such that &k = 2(n 4+ 1) (mod5), then
(V = Up(nt1)s U2(nt1)—55 U2(nt1)—105 - - - » Uk) U (ug, T, us) U (us,up) is a vu-

monochromatic directed path in D, a contradiction.

Case b. For some i € {0,1,...,2(n+ 1) — 5}, (u;,uits) € A(D).
Notice that from Lemma 2.1, there exists an arc between u; and uy(, 1) and
also there exists an arc between ug and ugpy1. If (u1,uzp41)) € A(D) or
(ug, ugn+1) € A(D), then we obtain a uv-directed path of length two, and
we are done. So, we will assume that (ug(,41),u1) € A(D) and (ugn+1,u0) €
A(D). Observe that: If for some i € {1,...,2(n + 1) — 5}, (uz(ny1),ui) €
A(D) and the arcs (ug(n41),u;) and (uzny1,up) are coloured 1, then (v =
Ua(n+1), i) U (Ui, Ty ugni1) U (Ugnt1,uo) is a vu-directed path coloured 1,
contradicting the hypothesis. Hence we have:

(a) If for some i € {1,2,...,2(n+1) — 5} we have (ug(n41),u;) € A(D),
then (ug(n41), ui) is not coloured 1 or (ugn1,up) is not coloured 1.

Case b.1. (ugn+1,u0) is not coloured 1.
Recall that for some i € {0,1,...,2(n + 1) — 5}, (us,uirs5) € A(D). Let
{io,jo} € {0,1,...,2(n + 1)} be such that jo —ip = max{j —i|{i,5} C
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{0,1,...,2(n + 1)} and (u;,u;j) € A(D)}; clearly jo —ip > 5. Now we will
analyze several possibilities:

Case b.1.1. ig > 2 and jg < 2n.

Since (uj,,uj,) € A(D), it follows from Lemma 2.1 that jo — ip = 1(mod 2)
50 (jo+2)—(ip—2) = 1(mod 2) and ((uiy—2, ujy+2) € A(D) or (wj,+2, Uiy—2) €
A(D)); the selection of {ig,jo} implies (ujo4+2, ui,—2) € A(D). Thus
(Wig—2, Wig—1, Wips Ujy, Wjot1, Ujo+2, Uig—2) 1S a directed cycle of length 6
and hence monochromatically coloured 1. Now (ug, T, ui) U (wig, uj,) U
(ujo, T, U(ny1) = v) is a wv-monochromatic directed path whose length is
less than ¢(T"). Then the assertion of Lemma 2.3 follows from the inductive
hypothesis.

Case b.1.2. ig = 0.

When jy < 2n — 3; it follows from Lemma 2.1 and the choice of {ig, jo} that
(Wjo+a, uip = uo) € A(D). Thus (ug = Uiy, Wjy, Wjo+1, Wjo+25 Wjg+35 Ujo+4, Uo)
is a monochromatic directed cycle (it has length 6), coloured 1. Hence
(Wig,ujo) U (ujy, T,v) is a uv-monochromatic directed path whose length
is less than ¢(T") and the assertion follows from the inductive hypothesis.
When jo > 2n — 1, we have jo = 2n — 1 (recall (ugp41,ug) € A(D), jo —
ip = 1(mod?2), i9g = 0). So, (up = Uiy, Uj, = U2p—1,U2n, U241, Up) IS &
directed cycle of length 4 which by hypothesis is quasi-monochromatic. Since
(U2n+1,uo) is not coloured 1, then (u;,, uj,) is coloured 1, and (u = w;,, uj, =
Un—1, U2n, U2n+1, U2nt2 = V) IS a uv-monochromatic directed path coloured
1 of length 4.

Case b.1.3. ig = 1.

When jo < 2n — 2, we have (ujy44,u;, = u1) € A(D) (Lemma 2.1 and
the choice of {ig,jo}). Thus (u1 = Wi, Ujo, Ujot15 o425 Ujo+3> Ujord, Yi)
is a directed cycle of length 6 (monochromatic and coloured 1). Hence
(u = uo, T, uiy) U (wig, ujy) U (ujy, T, v) is a uv-monochromatic directed path
whose length is less than ¢(T); so the assertion follows from the inductive
hypothesis.

When jy > 2n, we have jo = 2n (as jo — ig = 1(mod2), ig = 1 and
(Ugn42,u1) € A(D)). Hence (u1 = uiy,uj, = Uzn,U2n+1,Uo, u1) is a di-
rected cycle of length 4, from the hypothesis it is quasi-monochromatic
and (ugn41,up) is not coloured 1, so (u;,,uj,) is coloured 1. Therefore
(U0, U1 = Ujgy, Ujy = U2, U2n+1, U2nt2 = V) is a uv-monochromatic directed
path, coloured 1, of length 4.
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Case b.1.4. jo=2n+ 1.

When iy > 4, we have (u2p1 = jy, Uig—a) € A(D) (jo — i0 = 1(mod 2),
Jo — (ip —4) = 1 (mod 2), and the choice of {ig,jo}). Therefore (u;,,u;, =
U415 Wig—ds Wig—3, Uig—2, Uig—1, Uj,) 1S a directed cycle of length 6 (and
thus it is monochromatic) coloured 1. Thus (v = wo, T, ui,) U (uiy, uj,) U
(ujy, T, v) is a uv-directed path coloured 1, whose length is less than ¢(7');
so the assertion follows from the inductive hypothesis.

When iy < 2, we have ig = 2 (as jo —ip = 1(mod?2), jo = 2n + 1,
and (u2n+41,u0) € A(D)). Hence (ug = ujy, j, = Ugn41,Uo, U1, u2) is quasi-
monochromatic (as it has length 4). Since (u2p+1,uo) is not coloured 1, it
follows that (u,, uj,) is coloured 1. We conclude that (ug,u1, us = iy, uj, =
Un41,U2nt+2 = V) is a uv-directed path coloured 1 of length 4.

Case b.1.5. jg = 2n + 2.

When iy > 5, we have (ugni2 = wujy, uiy—1) € A(D) (arguing as in b.1.4).
Thus (wig, Wjg, Wig—4, Uig—3, Uig—2, Uig—1, Uiy ) 1S monochromatic (as it is a di-
rected cycle of length 6). Hence (u,T,u;,) U (i, ujy) U (ujy, T,v) is a uv-
monochromatic directed path with length less than ¢(7"); and the result
follows from the inductive hypothesis.

When ip < 3, we have ig = 3 (as jo — iop = 1(mod 2) and (ugny2,u1) €
A(D)). Hence (uz = uj,,uj, = U2n+2,U1,U2,u3) is quasi-monochromatic.
If (uy, uont2) is coloured 1, then (ug,ur,us, us = Uy, Ugpto = v) IS & uv-
monochromatic directed path of length 4. So we will assume that (u,, u2,+2)
is not coloured 1, and hence (ug,42,u1) is coloured 1.

If (uj,up) € A(D) for some i € {3,...,2n + 1}, then (u;,up) is not
coloured 1 (otherwise (v = ugp42,u1)U (u1, T, u;) U (u;, u) is a vu-monochro-
matic directed path, contradicting our hypothesis).

Now observe that (ug,us) € A(D); otherwise (us,ug) € A(D) and
(ug, uy, ug, us, ug, us, ug) is monochromatic which implies (us, ug) is coloured
1, a contradiction.

Let kg = max{i € {5,6,...,2n — 1} | (ug,u;) € A(D)}. Then, we have
(uo, uk,) € A(D) and (ugyt2,uo) € A(D); moreover (ug,+2, ug) is not colour-
ed 1. Since (ug, Ugy, Uky+1, Uky+2, Up) 1S quasi-monochromatic and (ug, 2, uo)
is not coloured 1, we have (ug,ug,) is coloured 1. Thus (v = wug,uk,) U
(upy, T, U(nt1) = v) is a wv-monochromatic directed path whose length is
less than ¢(T'); so the assertion follows from the inductive hypothesis.

Case b.2. In view of assertion (a) and case b.1, we may assume that: If
(Ua(nt1),ui) € A(D) for some i € {1,2,...,2(n + 1) — 5} then (ug(y41y, i)
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is not coloured 1.
— (uz(n41), w1) is not coloured 1: It follows from the fact (uggm41), u1) €

A(D).

— (Ug(n+41)=5> U2(n+1)) € A(D): Otherwise it follows from Lemma 2.1 that
(U2(n+1)7 Us(nt1)—5) € A(D), now (ug(n11)-5, 7T, U2(n+1))U(U2(n+1)aU2(n+1)75)
is monochromatic coloured 1 (note that it is a directed cycle of length 6 and
it has arcs in T'), and then (u2(n +1)s U2(n41)—5) 18 coloured 1, contradicting
our assumption.

Let ip = max{i € {0,1,2,...,2(n+1)=T}| (ug(m41),u:) € A(D)} (notice
that ig is well defined as (ug(,41),u1) € A(D)). Therefore (ug(ni1),uiy) €
A(D), (uig+2, uam+1)) € A(D) and (ua(n41), Uis) is not coloured 1. Now we
have the directed cycle of length 4 (ua(n41), Uig, Uig+1, Uig+2, Uo(n41)) Which
is quasi-monochromatic with (uz(n+1),ui0) not coloured 1; and (u;, Uiy+1),
(Uig+1, Uig12) coloured 15 80 (Uigy2,Up(nt1)) is coloured 1. Thus, (u =
ug, T, wigt2) U (Uig 42, Ug(nt1) = v) is a uv-directed path coloured 1 whose
length is less than ¢(T); so the assertion follows from the inductive
hypothesis. [ |

Theorem 2.1. Let D be an m-coloured bipartite tournament. Assume that
every directed cycle of length 4 is quasi-monochromatic, every directed cycle
of length 6 is monochromatic and D has no subtournament isomorphic to
Ts. Then C(D) is a kernel-perfect digraph.

Proof. We will prove that every directed cycle contained in C(D) has
at least one symmetrical arc. Then Theorem 2.1 will follow from The-
orem 1.1. We proceed by contradiction, suppose that there exists C' =
(ug,ut,...,up,ug) a directed cycle contained in Asym(C(D)). Therefore,
n > 2. For each i € {0,1,...,n} there exists a u;u;;1-monochromatic di-
rected path contained in D, and there is no w;ju;-monochromatic directed
path contained in D. Thus, it follows from Lemma 2.3 that at least one of
the following assertions hold:

(1) (uiuit1) € A(D),
(ii) there exists a u;u;1-directed path of length 2,
(iii) there exists a u;u;41-monochromatic directed path of length 4. Through-

out the proof the indices of the vertices of C' are taken modn + 1.

For each i € {0,1,...,n} let
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(ui,uiﬂ) if (ui,ui+1) S A(D),
a u;u;q1-directed path of length 2, when (u;,u;y1) ¢ A(D)
and such a path exists,

a u;u;4-1-monochromatic directed path of length 4, otherwise.

Let C" = J;_, T;. Clearly C' is a closed directed walk; let C' = (2o, 1, ...,
2k, 20). We define the function ¢: {0,1,...,k} — V(C) as follows: If T; =
(Ui = Zigs Zig+1s - - - » Zig4r = Uigr1) With 7 € {1,2,4}, then ¢(j) = z;, for each
Jj €{io,ig+1,...,90 +r —1}. We will say that the index i of the vertex z;
of C" is a principal index when z; = ¢(i). We will denote by I, the set of
principal indices.

I. First observe that for each i € {0,1,...,k} we have {i,7 + 1,i + 2,
i+3}N1I, #0. Assume w.lo.g. that 0 € I, and zp = ug. In what follows,
the indices of the vertices of C’ will be taken modulo %k + 1.

Case a. k= 3.
In this case C" is a directed cycle of length 4 and hence it is quasi-monochro-
matic. Since n > 2, then uy € {21, 20} and w, € {22,23}. And it is easy to
see that there exists a w;41u;-monochromatic directed path in D, for some
i €{0,1,...,n}, a contradiction.

Case b. k = 5.
In this case C" is a directed cycle of length 6, and then it is monochromatic,
which clearly implies that there exists a ujug-monochromatic directed path
in D, a contradiction.

Casec. k> 1.
We will prove several assertions.

1(c). For each i € {0,1,...,k} NI, we have (z;, zi+5) € A(D).
Since (i +5) —i = 1(mod 2), it follows that (z;, zi15) € A(D) or (ziys,2i) €
A(D). Assume, for a contradiction that (z;4+s5,2;) € A(D). Therefore
(Ziy Zit1s Zit2, Zit3, Zitds Zit5, 2i) is monochromatic. Now let j € {0,1,...,n}
be such that u; = z;, then w1 € {zi41, Zi+2, ziya}. So there exists a w;1u;-
monochromatic directed path, a contradiction.

2(c). For each i € {0,...,k} such that i + 5 € I, we have (z;, ziy5) €
A(D).
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Assume, for a contradiction that (z;45, 2;) € A(D). Then (2i, zit1, Zi+2, Zi+3,
Zit4, Zit+5, %) is monochromatic. Let j € {0,...,n} be such that u; = 2z,
thus wj—1 € {zi41,%i43, zit4} and there exists a wju;_1-monochromatic
directed path, a contradiction.

3(c). Foreachi € {5,...,k—2} such that i = 1(mod 4) we have (z, z;) €
A(D). We proceed by contradiction; suppose that for some i € {5,..., k—2}
we have ¢ = 1(mod 4) and (z;, 29) € A(D). Since 0 € I,,, it follows from 1(c)
that (29, 25) € A(D) and then i > 9.

Let 40 = min{j € {5,...,k — 6}|j = 1(mod4) and (zj44, 20) € A(D)}
(notice that i is well defined, as ¢ > 9). Thus (2o, zi,—4) € A(D), (20, 2i,) €
A(D) and (ZZ'O+4, Zo) S A(D) Now 02 = (Z(], Zigs Rig+1s Rig+25 Rig+3s Rig+4 Zo)
is a directed cycle of length 6 and hence it is monochromatic, w.l.o.g we will
assume that it is coloured 1. Now we consider two cases:

3((3).1. 10 € ]p.
In this case z;, = u; for some j € {3,...,n} and from the definition of C’,
Uj+1 € {Zig+1, Zig+2, Zip+4}- In any case, there exists a u;qiuj-monochro-
matic directed path contained in C, a contradiction.

3(c).2. io ¢ I,
In this case, we have from observation I that {ig—3,i90—2,i0—1}NI, # 0, let
¢ e {ip—3,i0—2,i90—1} NI, and u; € V(C) such that u; = z,. From 1(c) we
have (z¢, ze15) € A(D) and £+ 5 € {ip + 2,4y + 3,99 + 4} which implies that
C3 = (2ig-4,C", 20) U (20, 2045) U (2015, O, Zig1-4) U (Zig 14, 20, Zig—4) is a closed
directed walk of length 6 (as (ziy—41, C’, Zig+4) U (2ig+4, 20, Zig—a) 18 a closed
directed walk of length 10). It follows from Lemma 2.2 that C? is a directed
cycle and the hypothesis implies that it is monochromatic. Since (2,44, 20) €
A(C?) N A(C?), we have that C3 is coloured 1. Now from the definition of
C" we have uji1 € {zoq1, 2042, 244} C {Zig—2, Zig—15 Zigs Zig+1s Zig+25 Zig+3 }-

When wjy1 € {zig, 2ig+1, Zig+2s Zig+3}, We obtain that (z;,,C?, 2p) U
(20, C3, 2¢) contains a uj1uj-monochromatic directed path, a contradiction.

When uji1 € {2ziy—2, zig—1}, we take iy € {ig — 2,499 — 1} such that u;q
= z;,. From 1(c) we have (z;,,z2i,+5) € A(D) where z;,+5 € {Ziy+3, Zig+4},
thus C* = (ZZ'074, C,, Ziy ) U (Zil , Zi1+5) U (Zi1+5, C,, Zio+4) U (Zi0+4, 20, Zi0,4) is
a directed cycle of length 6 (notice that (z;,—4,C’, zig+4) U (Zig+4, 20, Zig—4)
is a closed directed walk of length 10). From the hypothesis we have that
C* is monochromatic. Since (z;,414,20) € A(C*) N A(C?) we obtain that C*
is coloured 1.
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Finally, since {u;, u;+1} C V(C*) we have a u;41uj-monochromatic directed
path, a contradiction.

4(c). Forany i € {3,...,k—4} such that i = k(mod 4) we have (z;, 20) €
A(D). Since i = k(mod4) and k£ = 1(mod 2) we have ¢ = 1(mod 2), and
from Lemma 2.1 we obtain (zg, 2;) € A(D) or (z;, z09) € A(D).

Assume, for a contradiction that (2o, z;) € A(D), for some i € {3,...,
k — 4} such that i = k(mod 4).

Since 0 € Iy, it follows from 2(c) that (z;x_4,20) € A(D), and thus i <
k—8. Let ip = max{i € {7,...,k—4}|i = k(mod 4) and (20, 2z;—4) € A(D)}
therefore (zo,zi,—4) € A(D), (ziy,20) € A(D) and (zy+4,20) € A(D). So
C? = (20, Zig—4, Zig—3+ Zig—25 Zig—1, Zig» 20) 1s & directed cycle of length 6 and
hence it is monochromatic, w.l.o.g. assume that it is coloured 1.

When ig € I, we have z;, = u; for some j € {2,...,n — 2}. From the
definition of C" we have u;_1 € {zj,—1, 2iy—2, 2ip—4} and then there exists a
ujuj_1-monochromatic directed path contained in C' 2 a contradiction.

When ig ¢ I, then from I we have {ig — 3,ip — 2,19 — 1} NI, # 0. Let
¢ e {igp — 3,10 — 2,99 — 1} N I, so u; = z for some u; € V(C). From 1(c) it
follows (z¢, ze15) € A(D) and £+ 5 € {ig + 2,10 + 3,ip + 4}.

Now C3 = (Zi0,4, C,, Zg) @] (Zg, Zg+5) U (Zg+5, Cl, Zi0+4) @] (Zi0+4, 20, Zi074)
is a directed cycle of length 6 (as (zjy—4,C", zig+4) U (Zig+4, 20, Zig—4) 1S a
closed directed walk of length 10), and then it is monochromatic. Since
(20, 2ig—1) € A(C?%) N A(C?) we have C? is coloured 1. Observe that uj;; €
{2041, 2042, 2044} C {Zig—2, Zig—1 Zig» Zig+1» Zig+2s Zig+3}- 1f Ujr1 € {zig—2,
Ziy—1, Ziy } then there exists a u;qu;-monochromatic directed path contained
in C?, a contradiction.

If wjt1 € {Zig4+1, Zig+2, Zig+3}, then we take iy € {ig + 1, 9o + 2, ip + 3}
such that uj 1 = 2;,. From 2(c), (2,5, 2i,) € A(D), where z;, 5 € {zj;—4,
Zig—3, ZZ'O,Q}. Now, c* = (ZZ'O,4,C/,ZZ‘1,5) @] (ZZ'1,5, Zh) U (Zil, C,, Zi0+4) U
(Zig+4, 20, 2ig—a) 1s a directed cycle of length 6 (as (ziy—4, C’, zZig+4) U (2ig+4,
20, Zig—4a) 1s a closed directed walk of length 10), so it is monochromatic
and coloured 1 (because (zp, zj,—4) € A(C*) N A(C?)). We conclude that
(ujt1 = ziy,C*, zig—a) U (2ig—1,C?, 20 = u;) contains a u;41uj-monochro-
matic directed path, a contradiction.

Now we will analyze the two possible cases:

Case c.1. k = 1(mod 4).
Since 0 € Iy, it follows from 2(c) that (zx_4, 20) € A(D). On the other hand,
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we have k —4 = 1(mod 4), and from 3(c), (20, 2xk—4) € A(D), a contradiction
(as D is a bipartite tournament).

Case c.2. k = 3(mod 4).

First, we prove several assertions:

5(c.2). For any i € {3,...,k — 4} such that i = 3(mod4) we have
(zi,20) € A(D).
This assertion follows from 4(c) as i = k(mod 4).

6(c.2). For any 4,5 € {0,...,k} such that ¢ € I, and j — i = 1(mod 4),
we have (z;,z;) € A(D).

Let r € {0,1,...,n} be such that u, = z;, now we rename the vertices
of C in such a way that C starts at w,. Joining the corresponding directed
paths (T;) between the vertices of C', we obtain a closed directed walk C =
(Zo,Z1,- - -, Zk, Z0) Which is the same as C’ where the vertices where renamed
as follows: for each t € {0,...,k} Z; = 214, thus Zp = z;. Let j € {0,...,k}
be such that j — ¢ = 1(mod4). It follows from 3(c) that (Zo,%Z;—;) € A(D)
and that means (z;, z;) € A(D) (as Zo = 2; and Zj_; = z;).

7(c.2). For any 4,5 € {0,...,k} such that i € I, and j — i = 3(mod 4),
we have (zj,z;) € A(D).

We proceed as in 6(c.2), to obtain . Taking j € {0,...,k} such
that j — ¢ = 3(mod4), we obtain from 5(c.2) that (Z;_;,%Z¢) € A(D); i.e.,
(Zj,Zi) S A(D)

8(c.2). For any i € {0,...,k} we have (z;,2;_3) € A(D).

We proceed by contradiction, suppose that for some i € {0, ..., k} we have
(2i—3,2;) € A(D). Since i — (i — 3) = 3(mod4), we have from 7(c.2) that
i—3 ¢ I,; and since (i —3) —i = 1(mod 4), we obtain from 6(c.2) that i ¢ I,,.
From I, {i — 3,i— 2,i — 1,i} N1, # 0. Thus {i — 2,i — 1} N I, # 0.

And here we consider the two possible cases:

Case 8(c.2) a. i — 2 € I,

Let j € {0,...,n} besuch that z;_s = u;. We have (211, zi—2 = u;) € A(D)
(this follows directly from 7(c.2), observating that i+1— (i—2) = 3(mod 4)),
also (zi—2,2i—5) € A(D) (from 6(c.2), just observe that (i —5) — (i — 2) =
1(mod4)). Now we have C? = (u; = 22, 2i—5, Zi—4, 2i—3, Zis Zit+1, Zi—2 = Uj)
is a directed cycle of length 6 and from the hypothesis it is monochromatic,
assume w.l.o.g. that it is coloured 1. From the definition of C’, u;_1 €
{zi—6,%i—4,zi—3}. Since i — 3 ¢ I, we obtain u;_1 € {z_¢,2i—4}.
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When uj_1 = z_4, we obtain {uj_1,u;} C V(C?). Thus there exists
a ujuj_i-monochromatic directed path contained in C?, a contradiction.
When u;_1 = zi—¢, we have (2j41,2i—6 = uj—1) € A(D) (from 7(c.2) as
(i—l—l) — (i—6) = 3(m0d4)). So C3 = (u]'_l = Zi—6, Zi—b, Zi—d, Zi—3, Ziy Zit1,
zi—¢ = uj—1) is a directed cycle of length 6 and hence it is monochromatic;
moreover it is coloured 1 (because (z;_3,2;) € A(C?) N A(C?)). Therefore,
(uj = 2i—2,C?, 2i11) U (2i+1, 2i—6 = uj—1) is a ujuj_1-monochromatic di-
rected path, a contradiction.

Case 8(c.2) b. i —1 € I,.

Let j € {0,...,n} besuch that z;_1 = uj. We have (2j12,zi-1 = u;) € A(D)
(this follows from 7(c.2), as i +2 — (i — 1) = 3(mod 4)), and (2;-1,2;-4) €
A(D) (this follows from 6(c.2), because (i —4) — (i — 1) = 1(mod 4)). There-
fore C? = (Uj = Zi—1, Zi—a, Zi—3, Zis Zit1, Zit2, Zi—1 = U;) is a directed cycle
of length 6, hence it is monochromatic say coloured 1. From the definition
of C", we have uji1 € {2, zit1, zit3}; moreover ujy1 € {211, 2zi+3} because
i ¢ L. If ujp1 = 241, then {uj,ujy1} € V(C?) and thus there exists a
uj41uj-monochromatic directed path, a contradiction. Hence w11 = zi43.
Now observe that (uji1 = 2it3,2i—4) € A(D) (this follows from 6(c.2) as
i—4—(i+3) = 1(mod4)). Therefore C3 = (uj11 = 2it+3, Zi—a, Zi—3, Zi; Zi+1,
Zit2, Zi+3 = Ujy1) is a directed cycle of length 6 and it is coloured 1 (because
(zi—3,2;) € A(C*)NA(C?)). We conclude that (uj11 = zit3, zi—a)U(zi—4, C2,
Zi—1 = ;) is a ujy1u;-monochromatic directed path, a contradiction.

9(c.2). If for some i € {0,...,k} we have (z;_1,2;) and (z;, zi+1) have
different colours, then i € I,,.

From I we have {i —3,i —2,i — 1,i} NI, # 0. Let ro = min{r €
{0,1,2,3}|i —r € Ip} and let j € {0,1,...,n} be such that z;_,, = u;;
so we have u; € {zi_3,%i_2,%-1,%}. From the definition of C’', u;y; €
{Zi77‘0+1a Zi—ro+25 Zi*T0+4} g {Zi72a Zi—15 Riy Zi+1y Zi425 2343 Zi+4}' Now con-
sider £ € {i — 79+ 1,i — 19+ 2,i — 19 + 4} such that u;y; = 2. From
the definition of 79 and since ¢ € I,, we have ¢ ¢ {i — 2,i — 1,1}, ie,
i1 € {Zit1, Zig2, Zit3, Zitd )

If T; has length 4, then Tj is monochromatic; and hence {(z;—1, ),
(Zi,zi+1)} g A(Tb), and z; = Ujy Zitd = Ujt1- Thus i € Ip.

If T; has length 1, then z; = uj, i.e., i € I),.

If T} has length 2, then u; € {z;_1,%}. When u; = 2; clearly i € I),.

When u; = z;_1, we have w11 = zi1. From 8(c.2) we obtain (zo,
zi—1) € A(D) and thus C? = (uj = 21, %, 2i41 = Uj41, 2i42, Zim1 = Uj) 18
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a directed cycle of length 4 (which from the hypothesis is quasi-monochro-
matic). Since (z;—1, 2;) and (z;, z;+1) have different colours, we conclude that
(uj11,C? u;) is a ujiquj-monochromatic directed path, a contradiction.

10(c.2). There exists a change of colour in C’; i.e., there exists i €
{0,...,k} such that (z,_1,2;) and (z;, z;+1) have different colours.

Otherwise C' is monochromatic, and for any j € {0,...,n}, there exists
a uj1uj-monochromatic directed path, a contradiction.

We will assume w.l.o.g. that (z;_1, %) is coloured 1 and (z;,z1+1) is
coloured 2.

11(c.2). i € I,
It follows directly from 9(c.2) and our assumption. Let j € {0,...,n} be
such that z; = u;.

12(c.2). {(zit2 2i-1), (2it1, 2i-2), (2, zi-3), (2i43, z1) } © A(D).
This follows directly from 8(c.2).

13(c.2). (zit1,2i+2) and (242, 2;—1) have the same colour, say a, with
a € {1,2}.

Let C? = (2_1,2 = uj,2i+1, Zi+2, 2i—1) from 12(c.2), it is a directed
cycle of length 4 and then it is quasi-monochromatic. Since (z;_1, z;) and
(zi, zi+1) are coloured 1 and 2 respectively, 13(c.2) follows.

14(c.2). (2it1,zi—2) and (z;—2,2;—1) have the same colour, say b, with
b € {1,2}. The proof is similar to that of 13(c.2) by considering the directed
cycle of length 4, C® = (2;_2, 2i—1, 2i = Uj, 2i41, 2i—2)-

15(c.2). {i—1,i+1}n1I,=0.

First suppose for a contradiction that ¢ — 1 € I,. From the definition of
C’, and since z; = u;, we have z;_; = u;j_1. From 13(c.2) (2iy1,%i+2)
and (2j42,2—1) have the same colour a € {1,2}. If a = 2, then (z; =
Uj, Zit1, Zit2, Zi—1 = Uj—1) is & uju;_1-monochromatic directed path, a con-
tradiction. If @ = 1, then from 9(c.2) we have i + 1 € I,,. So, zi41 = ujt1
and (uj41 = Zit1, Zit2, Zi—1, 2 = Uj) 1S @ ujyquj-monochromatic directed
path, a contradiction.

Now, suppose for a by contradiction that i + 1 € I),. Thus z;11 = uj41.
From 14(c.2) we have (z;41,2—2) and (z;—2,2;—1) have the same colour b,
with b € {1,2} If b =1 then (uj'Jrl == ZjJrl,Zl',Q,Zi,l,Zi = Uj) is a Uj+1Uj—
monochromatic directed path, a contradiction. If b = 2 then from 9(c.2) we
have i — 1 € I,,, but we have proved that this leads to a contradiction.
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16(c.2). (2it1, zit2) is coloured 2.
Otherwise (z;, zi+1) and (z;41, zi+2) have different colours and from 9(c.2)
i+ 1 € I, contradicting 15(c.2).

17(c.2). (zi—2,zi—1) is coloured 1.
Otherwise (z;—2,2;—1) and (z;—1, ;) have different colours, and from 9(c.2)
i —1 € I, contradicting 15(c.2).

18(c.2). (2it2,2i—1) is coloured 2.
This follows directly from 13(c.2) and 16(c.2).

19(c.2). (2it1,2i—2) is coloured 1.
Follows directly from 14(c.2) and 17(c.2). Now we will analyze the two
possible cases: i +2 ¢ I, or i +2 € I,.

Case c.2.1. i +2 ¢ I,
In this case, we have from the definition of C’ that i+4 € I, and zj44 = uj11.
And we have the following assertions: 1(c.2.1) to 11(c.2.1).

1(c.2.1). (zit2,2i+3) and (2i43, zit+4) are coloured 2.
Since ujy1 = zip4, then Tj = (uj = 25, Ziy1, Ziv2, %43, Zigd = Ujy1) is
monochromatic; moreover it is coloured 2 (as (z;, zi+1) is coloured 2).

2(c.2.1). (ziya,zi—3) € A(D).
This follows from 6(c.2) because i — 3 — (i +4) = 1(mod 4).

3(0.2.1). (Zi_1,2i+4) S A(D)
The assertion follows from 7(c.2) as i — 1 — (i +4) = 3(mod 4).

4(0.2.1). {(ZZ‘+4, Z’i+1)7 (ZZ'+3, 22)} g A(D)

Is a direct consequence of 8(c.2).

5(c.2.1). (2zit4, 2it+1) is not coloured 1.
Assuming for a contradiction that (z;44,2;+1) is coloured 1, we obtain that
(Uj41 = Zitd, Zig1, Zi—2, Zi—1, % = Uj) 1S a ujpiuj-monochromatic directed
path, a contradiction.

6(c.2.1). (zi—1, zit+4) is coloured 1.
We have that (z;y1,2i—2,2i—1, Zi+4, Zi+1) 1S quasi-monochromatic (because
it is a directed cycle of length 4). From 19(c.2) (241, 2i—2) is coloured 1,
from 17(c.2), (zi—2,2i—1) is coloured 1; and from 5(c.2.1) (244, 2i+1) is not
coloured 1. So, (zj—1,2i+4) is coloured 1.

7(c.2.1). (2it4,zit+1) is coloured 2.
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We have that: (241, zi+2, Zi—1, Zi+4, 2i+1) IS quasi-monochromatic (from the
hypothesis), (zit1,zi+2) is coloured 2 (16(c.2)), (zit+2,2i—1) is coloured 2
(18(c.2)) and (zi—1, zi+4) is coloured 1 (6(c.2.1)).

8(0.2.1). (Zi_g,ZH_Q) S A(D)
Assume, for a contradiction that (z;_3,z;12) ¢ A(D). Then (z;42,2;—3) €
A(D) and (zi42, 2i—3, Zi—2, Zi—1, Zi, Zi+1, Zi+2) 1s a directed cycle of length 6.
From the hypothesis we have that it must be monochromatic, but it has two
arcs coloured 1 ((z;—2, z;—1) and (z;—1, 2;)) and two arcs coloured 2 ((z;, zi+1)
and (241, 2zi+2)), a contradiction.

9(0.2.1). (ZZ'_Q,ZH_?,) S A(D)
Assuming for a contadiction that (z;_2, zi+3) ¢ A(D), we obtain (2;4+3, zi—2)
€ A(D) and (zit+3, zi—2, Zi—1, Zi,Zi+1, Zit+2, Zi+3) is a directed cycle of
length 6. It has two arcs coloured 1 ((zj—2,2i—1) and (z;—1, %)) and two
arcs coloured 2 ((z;, zi+1) and (z;41, zi+2)), contradicting the hypothesis.

10(c.2.1). (zit3,2:) is not coloured 2.
Assume, for a contradiction that (z;43,2;) is coloured 2, then (uj41 = 244,
Zitl, Zit2, Zit3, % = ;) is & ujyiuj-monochromatic directed path, a con-
tradiction.

11(c.2.1). The arcs (z;—2, zi+3) and (z13, 2;) are coloured 1.
We have (243, 2, Zi+1, 2i—2, Zi+3) a directed cycle of length 4, thus it is quasi-
monochromatic. Since (z;, z;+1) is coloured 2 and (z;41, z;—2) is coloured 1
(19(c.2)), then (z;—2,2i1+3) and (z1+3,2;) are both coloured 1 or are both
coloured 2. And from 10(c.2.1) (243, 2;) is not coloured 2.

12(c.2.1). (zi44,2i—3) and (z;—3,z;—2) are both coloured 1 or are both
coloured 2.

We have (z;_2, zi+3, Zit4, Zi—3, Zi—2) is quasi-monochromatic; (z;—2, z13)
is coloured 1 (11(c.2.1)) and (2;+3, 2i+4) is coloured 2 (1(c.2.1)).

If (2i44,2i—3) and (2;_3, zi—2) are both coloured 1, then (uj11 = 24,
Zi—3, Zi—2, Zi—1, Zi = Uj) I8 a uj;uj-monochromatic directed path (coloured
1), a contradiction. If (244, z;—3) and (z;—3, z;—2) are both coloured 2, then
(zi—1, Zita, Zi-3, Zi—2, zi—1) is a directed cycle of length 4 with two arcs
coloured 1 and two arcs coloured 2, a contradiction to the hypothesis. So
case (c.2.1) is not possible.

Case c.2.2. i+2 € I,
Since ¢ + 1 ¢ I, then z;19 = uj;1. We have the following assertions:



MONOCHROMATIC PATHS AND QUASI-MONOCHROMATIC CYCLES ... 301

1(c.2.2). (zit2,2i—5) € A(D).
This follows from 6(c.2), as (i — 5) — (i + 2) = 1(mod 4).

2(c.2.2). (zi_3,zit2) € A(D).
Since (i — 3) — (i + 2) = 3(mod 4), the assertion follows from 7(c.2).

3((322) (22;4,2@41) € A(D)
Assume, for a contradiction that (zj—4,2i41) ¢ A(D). Then (zi11,2i—4) €
A(D) and (2j—4,2i—3, Zi—2, Zi—1, Zi, Zi+1, Zi—4) 1S monochromatic (as it is
a directed cycle of length 6), but (z;_1,2;) is coloured 1 and (z;,zi+1) is
coloured 2, a contradiction.

4(0.2.2). (zi_l,zi_4) S A(D)
It follows from 8(c.2).

5((322) (22;5, ZZ') € A(D)
Since (i —5) — i = 3(mod 4) then the assertion follows from 7(c.2).

6((322) (22;2,21;5) € A(D)
This follows from 8(c.2).

7(c.2.2). The arcs (z;,zi—3) and (z;_3, zi+2) are both coloured 2.

We have (z;_1, 2, zi—3, zi+2, zi—1) a directed cycle of length 4, thus it is quasi-
monochromatic. Since (z;—1, 2;) is coloured 1 and (242, 2;—1) is coloured 2
then (z;,z;—3) and (z;_3, z;1+2) are both coloured 1 or are both coloured 2.
If they are both coloured 2, then we are done.

Now suppose that (z;, z;—3) and (z;_3, zi+2) are both coloured 1. There-
fore (ziy2,2i—1, Zi—4,2i—3,Zi+2) is quasi-monochromatic. Since (z;42, zi—1)
is coloured 2 and (z;_3, z;t2) is coloured 1, then (z;_1,2;—4) and (2;_4, z;—3)
are both coloured 1 or are both coloured 2.

We will analyze the two possible cases:

Case 7(c.2.2)a. The arcs (z;—1, zi—4) and (2;_4, z;—3) are both coloured 2.
In this case we have (z;_3, z;—2) is coloured 2 because (z;—1, zi—4, 2i—3, Zi—2,
z;—1) is quasi-monochromatic, (z;_2, z;—1) is coloured 1 and (z;_1, z;—4) and
(2i—4, #zi—3) are both coloured 2.

So, it follows from 9(c.2) that ¢ —2 € I,. Since i — 1 ¢ I, (15(c.2))
then Zi—9 = ’Uljfl. Thus (Uj = Ry Ri+1yRi+2yRi—15Ri—4 Ri—35 Z5—2 = uj,l) is
a uju;_1-directed path coloured 2, a contradiction. So case 7(c.2.2)a is not
possible.
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Case 7(c.2.2)b. The arcs (z;—1, z;—4) and (z;_4, z;—3) are both coloured 1.
In this case we have (z;_3, z;—2) is not coloured 1 (otherwise (u; = z;, 23,
Zi—9, Zi—1, Zi—4) 18 a directed walk coloured 1 which contains {z;_2,2;—4};
and from the definition of C’, uj_; € {zj_2, zi_4} thus there exists a uju;_1-
monochromatic directed path; a contradiction). Now from 9(c.2) we have
{i—3,i—2} C I, Sincei—1¢ I, we have z;_g = uj_1 and z;_3 = u;j_s.
Therefore (uj—1 = zi—2, 2i—1, Zi—4, 2i—3 = u]'_g) is a uj_1uj_g-monochromatic
directed path (coloured 1), a contradiction.

We conclude that the arcs (z;, z;—3) and (z;_3, z;+2) are both coloured 2.

8(c.2.2). (zi_3,zi—2) is coloured 1.
We have (z;_2, 21, 2i, 2i—3, zi—2) which is quasi-monochromatic; (z;, z;—3)
coloured 2 and ((z;—2,2—1) and (z;_1, 2;)) coloured 1.

9(c.2.2). (zj—2,%—5) and (z;—5, ;) are both coloured 1.

(2i—2,2i—5) and (z;—5, z;) are both coloured 1 or are both coloured 2: this is
because (z;, zi—3, Zi—2, 2i—5,2;) 18 quasi-monochromatic with (z;,z_3)
coloured 2 and (z;_3, z;—2) coloured 1.

Assume, for a contradiction that (z;_9,z;—5) and (z;_5,2;) are both
coloured 2.

Denote by a the colour of the arc (z; 12, z;—5). We have a # 2 (otherwise
(Uj41 = Zit2,%i-5,2i = uj) is a ujqijuj-monochromatic directed path, a
contradiction). Now, (z;—5,2;—4) and (z;_4, z;—3) are both coloured b with
b € {1,2} (this is because (z;_s,2i—4, 2i—3,2i—2,2i—5) Is quasi-monochro-
matic with (z;_3,z;—2) coloured 1 and (z;_2,2;—5) coloured 2). If b = 1
then a = 1 (notice that (z;12,zi—5, 2i—4, Zi—3, Zi+2) IS quasi-monochromatic;
with (z;_3, z;+2) coloured 2 and ((z;—s5, zi—4) and (z;_4, z;—3)) coloured 1; so
a = 1) Thus (ujJrl = 425 Ri—5yRj—4yR;—3,Ri—25 Zi—1y 25 — ’UJ]') is a UjJrlu]'—
monochromatic directed path (coloured 1), a contradiction. If b = 2, then
i —3 € I, (from 9(c.2)) and from the definition of C’, i — 2 € I,. Thus
Zi—g = Uj_1, %3 = Uj—2 and (Uj_1 = 2Zj_2, Zi—5, Zi—4, %i-3 = Uj_2) IS a
uj—1uj—o-monochromatic directed path (coloured 2), a contradiction.

10(c.2.2). (zit2,2i—5) is coloured 2.
(2iy Zit1, Zit2, Zi—5, i) 1s quasi-monochromatic with (z;_s, 2;) coloured 1 and
((zi, zi+1) and (zi41, zi+2)) coloured 2.

11(c.2.2). (2i—4,2i—3) is not coloured 2.
Assume, for a contradiction that (z;_4,2;—3) coloured 2. Then i — 3 € I,,.
On the other hand we have i — 4 € I, (because (2—s5, 2i—4, 2i—3, 2i—2, Zi—5)
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is quasi-monochromatic with (z;_4,2;—3) coloured 2 and ((z;—3,2;—2) and
(zi—2,2i—5)) coloured 1; so (z;—5,2;—4) is coloured 1 and then (from 9(c.2))
i—4 € I,)). Now, from the definition of C’, we have z;_3 = u, and z;_4 = uy_1
for some r € {1,2,...,n}. Thus (u, = 2;—-3,2i—2,2i—5,%i-4 = Up_1) IS a
upu,—1-monochromatic directed path (coloured 1), a contradiction.

12(c.2.2). (zi—5,zi—4) is coloured 2.
(2i—5, Zi—4, Zi—3, Zit2, Zi—5) 1s quasi-monochromatic; with ((z;_3, z;12) and
(2i42, zi—5)) coloured 2 and (z;_4, z;—3) not coloured 2.

13(c.2.2). (2j—4,2i+1) is coloured 1.
(Zit1, Zi—2y Zi—5, Zi—4, Zi+1) 1S quasi-monochromatic with (z;_s5, z;—4) coloured
2 and ((zi4+1,2i—2) and (z;—2, z;—5)) coloured 1.

14(c.2.2). D[{z;, zit+1, 2i+2, Zi—5, Zi—4, Zi—2}] 1s isomorphic to Ts.
Let f:{zi, 2it1, Zit2, Zi—5, Zi—d, Zi—2} — V(fﬁ) defined as follows: f(z;) = =,
f(zit1) = v, f(zit2) = v, f(zims) = w, f(zi—a) = 2, f(2i-2) = u is an
isomorphism.

Assertion 14(c.2.2) contradicts the hypothesis, so case ¢(2.2) is not pos-
sible; also case c.2 is not possible. [ |

As a direct consequence of Theorem 2.1, we have the following result:

Theorem 2.2. Let D be an m-coloured bipartite tournament. Assume that
every directed cycle of length 4 is quasi-monochromatic, every directed cycle
of length 6 is monochromatic and D has no subtournament isomorphic to
fG. Then D has a kernel by monochromatic paths.

Remark 2.1. The hypothesis that every directed cycle of length 6 is mono-
chromatic in Theorem 2.1 is tight.

Let D be the 3-coloured bipartite tournament defined in [8] as follows:
V(D) = {u,v,w,z,y,z}, A(D) = {(U,l’), (QL‘,U), (va)a (va)? (’LU,Z), (z,u),
(x,w), (y,u), (z,v)}; the arcs (z,w), (w,z) and (z,u) coloured 1; the arcs
(y,u), (u,z) and (z,v), coloured 2; and the arcs (z,v),(v,y) and (y,w)
coloured 3. D has a directed cycle of length 6 which is not monochro-
matic, every directed cycle of length 4 in D is quasi-monochromatic, D has
no subtournament isomorphic to Tﬁ and C(D) is a complete multidigraph
which has no kernel.
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Remark 2.2. The hypothesis that every directed cycle of length 6 in a bi-
partite tournament D is monochromatic, does not imply that every directed
cycle of length 4 in D is quasi-monochromatic.

Proof. Let T = (U, W) be the 2-coloured bipartite tournament defined as
follows: U = {u,v,w,z,y} and W = {a,b,c,d,e}. In T, C1 = (u,a,v,b,w,
¢, u) is a directed cycle of length 6 coloured 1, Cy = (z,d, y, e, x) is a directed
cycle of length 4 coloured 2. T has arcs from U N V(Cy) to W N V(Cq)
coloured 1 and finally 7' contains the arcs (u,b), (a,w), (¢,w) coloured 1
(see Figure 2). (' is the only directed cycle of length 6 contained in T,
and it is monochromatic. And C5 is a directed cycle of length 4 that is not
quasi-monochromatic. ]

Figure 2

Remark 2.3. For each m there exists an m-coloured Hamiltonian bipartite
tournament such that: every directed cycle of length 4 is quasi-monochro-
matic; every directed cycle of length 6 is monochromatic and D has no
subtournament isomorphic to Tﬁ.

Proof. Let D = (V1,V3) be the m-coloured bipartite tournament defined
as follows:
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V(D) =

A(D)

Xi Where Xz = {l'i,ly xi,g, e ,:L'@m},

e

(2

Vi=X1UX3UXs, Vo=XoUX,4UXg,

5 , )
- 'Ul XZ(ZG{&JQ 3}X? U Xg where X; = {(xi7j7xi+17j) ‘j € {17 s 7m}}7
1= 14

Xl;) = {(xé,j7w5+3,j) ’.7 € {17 s 7m}}7Xg

= {(1‘672',.%171‘_,_1) ’Z € {1, N (e 1}} @] {(513677”,1'171)},

where (21, x2,;) is coloured ¢; and any other arc of D is coloured 1 and in
any direction. u
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