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Abstract

A secure (total) dominating set of a graph G = (V, E) is a (total)
dominating set X ⊆ V with the property that for each u ∈ V − X ,
there exists x ∈ X adjacent to u such that (X − {x}) ∪ {u} is (total)
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is the secure (total) domination number γs(G) (γst(G)). We character-
ize graphs with equal total and secure total domination numbers. We
show that if G has minimum degree at least two, then γst(G) ≤ γs(G).
We also show that γst(G) is at most twice the clique covering number
of G, and less than three times the independence number. With the
exception of the independence number bound, these bounds are sharp.
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1. Introduction

We consider finite, simple graphs, and unless stated otherwise, denote the
number of vertices of the graph G = (V,E) by n. We study the problem of
using guards to defend the vertices of G against an attacker. At most one
guard is located at each vertex. A guard can protect the vertex at which it is
located and can move to a neighboring vertex to defend an attack there. At
most one guard is allowed to move in order to defend an attack (other papers
have studied the model in which multiple guards can move simultaneously
when an attack occurs [13, 21]). This paper deals with the “secure” version
of the problem in which the configuration of guards induces a dominating
set before and after the attack has been defended.

Several variations of this graph protection problem have been studied,
including Roman domination [8, 17], weak Roman domination [9], k-secure
sets [5], and eternal m-secure sets [13]. The term Roman domination stems
from the problem’s ancient origins in Emperor Constantine’s efforts to de-
fend the Roman Empire from attackers [18, 23]. Secure domination has
been studied previously in [7, 9, 11, 15, 22], for example. Roman domina-
tion [8, 17, 23] and weak Roman domination [9, 19] are previously studied
protection strategies that allow up to two guards at each vertex to deal with
a single attack. The work of [4, 5, 6, 13, 14, 20, 21] (respectively [2, 18])
considers sequences of attacks (as opposed to single attacks) with at most
two guards (respectively multiple guards) permitted at a vertex. The term
eternal domination refers to guarding against infinitely long sequences of
attacks and is considered in, for example, [1, 6, 13, 14, 20, 21].

In this paper we compare the sizes of smallest secure dominating sets,
secure total dominating sets (in which each guard is adjacent to another
guard), and other graph parameters such as the independence number and
clique covering number. We formally define these concepts now.

A total dominating set (TDS ) of G is a set X ⊆ V with the property
that for each u ∈ V , there exists x ∈ X adjacent to u. The minimum
cardinality amongst all total dominating sets is the total domination number

γt(G). Note that this parameter is only defined for graphs without isolated
vertices.

A secure dominating set (SDS ) of G is a set X ⊆ V with the property
that for each u ∈ V − X,

(1)
there exists x ∈ X adjacent to u such that (X − {x}) ∪ {u}

is dominating.
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A secure total dominating set (STDS ) of G is a total dominating set X ⊆ V
with the property that for each u ∈ V − X,

(2)
there exists x ∈ X adjacent to u such that (X − {x}) ∪ {u}

is total dominating.

The minimum cardinality amongst all SDSs (STDSs) is the secure domi-

nation number γs(G) (secure total domination number γst(G)) of G. Note
that γst(G) is defined if and only if G has no isolated vertices, and for such
graphs, γs(G) ≤ γst(G) since any STDS of G is an SDS.

If (1) holds, we say that x protects (or X-protects, to emphasize X) u,
and if (1) holds for all u ∈ V −X, we say that X protects G. Similarly, if (2)
holds, then x totally protects (or totally X-protects) u, and if X is a total
dominating set and (2) holds for all u ∈ V − X, then X totally protects G.
The term “defends” is sometimes used in the literature instead of “protects”.

In Section 2 we define key terms and outline some of the relevant pre-
vious results. Section 3 shows that the secure total domination number of
a graph with minimum degree at least two, is at most twice its secure dom-
ination number. In Section 4 we first characterize graphs with equal total
and secure total domination numbers. We then compare the secure total
domination number of a graph with its clique covering number θ(G) (the
chromatic number of the complement of G) and its independence number,
showing that γst(G) is at most twice the clique covering number and less
than three times the independence number α(G). Some open problems are
listed in Section 5.

2. Definitions and Earlier Results

We follow the notation and terminology of [16]. We denote the open and
closed neighborhoods of X ⊆ V by N(X) and N [X], respectively, and ab-
breviate N({x}) and N [{x}] to N(x) and N [x]. The

private neighborhood pn(x,X)

external private neighborhood epn(x,X)

internal private neighborhood ipn(x,X)











of x ∈ X relative to X is defined by
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









pn(x,X) = N [x] − N [X − {x}]

epn(x,X) = pn(x,X) − {x}

ipn(x,X) = {w ∈ X : N(w) ∩ X = {x}}

and the vertices in these sets are called, respectively, the

private neighbors

external private neighbors

internal private neighbors











of x relative to X.

An SDS of G with cardinality γs(G) is called a γs-set ; a γst-set is defined
similarly. The subgraph of G induced by X is denoted by 〈X〉. When we
consider the union of disjoint sets A and B, we sometimes write A ] B to
emphasize this property.

If u ∈ V − X is protected by x ∈ X and by no other vertex in X, then
x uniquely protects u; otherwise we also say that x jointly protects u. If x
X-protects u ∈ V − X, it is easy to see that pn(x,X) ⊆ N [u]. For x ∈ X
and y ∈ epn(x,X), if x protects y then x uniquely protects y. This leads to
the following result of [11].

Proposition 1 [11]. Let X ⊆ V . The vertex u ∈ V − X is X-protected by

x if and only if epn(x,X)∪{x} ⊆ N [u], and X is an SDS of G if and only

if for each u ∈ V − X there exists x ∈ X such that

〈{u, x} ∪ epn(x,X)〉 is complete.

A similar result from [3] holds for secure total domination.

Proposition 2 [3]. Let Z ⊆ V such that 〈Z〉 has no isolated vertices. The

vertex z totally Z-protects u ∈ V − Z if and only if

epn(z, Z) = ∅ and(3)

{z} ∪ ipn(z, Z) ⊆ N(u),(4)

and Z is an STDS of G if and only if (3) holds for each z ∈ Z, and for

each u ∈ V − Z there exists z ∈ Z such that (4) holds.
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There exist graphs whose only STDS is the vertex set of the graph. These
graphs were characterized in [3]. Denote the set of leaves of a graph by L,
and the set of support vertices (vertices adjacent to leaves) by S.

Theorem 3 [3]. For any graph G, γst(G) = n if and only if V − (L ∪ S)
is independent.

Let α(G) denote the independence number of G. As shown in [9], if G is
claw-free, then γs(G) ≤ 3α(G)/2, and if, in addition, G is C5-free, then
γs(G) ≤ α(G). In general, though, γs(G) ≤ 2α(G). To see this, let A be
a maximum independent set of G. For each a ∈ A, 〈pn(a,A)〉 is complete,
otherwise G has a larger independent set than A. If epn(a,A) 6= ∅, choose
arbitrary xa ∈ epn(a,A). Define X = A ∪ {xa : a ∈ A and epn(a,A) 6= ∅}.
Since A is a dominating set, epn(x,X) = ∅ for all x ∈ X, and X is an SDS
by Proposition 1.

We state this result for referencing and note that we do not know of any
graphs attaining this bound.

Proposition 4. For any graph G, γs(G) ≤ 2α(G).

A graph G is γs-edge-removal-critical, abbreviated to γs-ER-critical, if
γs(G − e) > γs(G) for all edges e of G. Any graph G contains a γs-ER-
critical graph H with γs(H) = γs(G) as spanning subgraph — simply remove
edges from the graph until the removal of any further edge changes the se-
cure domination number. This class of graphs was characterized in [15]. To
state this characterization, which we use in Section 3 to establish a bound
for the ratio γst/γs, we define notation that is used throughout. For any
X ⊆ V , define

P =
⋃

x∈X

epn(x,X) and

Y = V − (X ∪ P ).

Also define the subsets X1, . . . , X4 of X as follows:

X1 = {x ∈ X : N(x) ∩ Y = ∅},

X2 = {x ∈ X − X1 : x does not X-protect any vertex in Y },

X3 = {x ∈ X − X1 : x X-protects some but not all vertices in N(x) ∩ Y },

X4 = {x ∈ X − X1 : x X-protects all vertices in N(x) ∩ Y }.
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Then X = ]4
i=1 Xi; possibly Xi = ∅ for some i. All this is depicted in

Figure 1. Define

Ux = {y ∈ Y : x uniquely X-protects y},

Yxx′ = {y ∈ Y : x, x′ ∈ X jointly protect y},

and note that Ux ∩Ux′ = ∅ if x 6= x′. The characterization of γs-ER-critical
graphs follows.

Theorem 5 [15]. The graph G is γs-ER-critical if and only if for every

γs-set X of G,

(i) X and Y are independent,

(ii) every y ∈ Y has precisely two neighbors in X,

(iii) if x ∈ X protects a vertex in Y (i.e., x ∈ X3 ∪ X4), then |Ux| ≥ 2,

(iv) the only edges in P are in 〈epn(x,X)〉, x ∈ X,

(v) the only edges between Y and P are between epn(x,X) and y ∈ Y
protected by x,

(vi) if x ∈ X jointly protects a vertex in Y , then epn(x,X) = ∅.

X2X1 X3 X4

P

Y

1a 2a 3a 4a

Figure 1. A γs-set X = X1 ∪ X2 ∪ X3 ∪ X4 in a γs-ER-critical graph.

Let X be a γs-set of a γs-ER-critical graph. We state some other properties
of the sets Xi for future reference. See Figure 1.

Remark 6 [15].

(i) If x ∈ X1, then 〈N [x]〉 is a complete component of G.

(ii) If x ∈ X2, then epn(x,X) 6= ∅ and 〈{x} ∪ epn(x,X)〉 is complete and
an end-block of G.
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(iii) If x ∈ X3, then epn(x,X) 6= ∅ and every vertex in Ux is adjacent to
every vertex in epn(x,X).

(iv) If y ∈ Yxx′ , then x, x′ ∈ X4 and degG y = 2.

3. Secure Domination Versus Secure Total Domination

For graphs containing leaves, the ratio γst(G)/γs(G) can be arbitrarily large.
For example, let G be the graph obtained from K2,n, n ≥ 1, by adding a
pendant edge at each vertex of degree n (or at two nonadjacent vertices
of C4 if n = 2). Then γs(G) = 3 (use one leaf and the two vertices of
K2,n of degree n) and γst(G) = |V (G)| = n + 4 by Theorem 3. The ratio
γst(G)/γs(G) can also be arbitrarily close to 1, because γst(K1,n) = n + 1
and γs(K1,n) = n. However, if δ(G) = 1, then these two parameters are
never equal, as we show next.

Proposition 7. If δ(G) = 1, then γs(G) < γst(G).

Proof. Let ` and s be a leaf and adjacent support vertex, respectively,
of G, and Z any STDS of G. Then `, s ∈ Z and s does not totally protect
any vertex of G, otherwise ` is isolated in the resulting set. Therefore each
v ∈ N(s) − Z is adjacent to some vertex in Z − {s}. Let X = Z − {`}.
Each vertex in V − Z is X-protected by the same vertex that totally Z-
protects it, and ` is X-protected by s. Therefore X is an SDS of G and
γs(G) ≤ γst(G) − 1.

The situation for graphs without leaves is completely different. We now use
the properties of γs-ER-critical graphs to bound γst(G) in terms of γs(G)
for graphs with minimum degree at least two.

Theorem 8. For any graph G with δ(G) ≥ 2, γs(G) ≤ γst(G) ≤ 2γs(G),
and both bounds are sharp.

Proof. As mentioned before, the lower bound holds. To prove the upper
bound, let H ′ be a spanning γs-ER-critical subgraph of G with γs(H

′) =
γs(G) and note that γst(H

′) ≥ γst(G). Let H be the subgraph of H ′ consist-
ing of all nontrivial components and consider any SDS X of H. We define
a set Z with X ⊆ Z below and show that Z is an STDS of H.

If epn(x,X) 6= ∅, let ux ∈ epn(x,X) and ux, x ∈ Z. If epn(x,X) = ∅,
then by Remark 6 and the construction of H, x ∈ X4 and x uniquely protects
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some yx ∈ Y . Let x, yx ∈ Z to complete the set Z. See Figure 2. Note that
|Z| = 2|X|. We use Proposition 2 to show that Z is an STDS of H.

P

Y

X2X1 X3 X41a 2a 3a 4a

Figure 2. The set Z (denoted by black vertices).

Since X dominates H, Z dominates H, and since 〈Z〉 has no isolated vertices,
Z is a TDS of H. Consider any z ∈ Z. If z ∈ X, then either epn(z,X) = ∅
and thus epn(z, Z) = ∅, or there exists uz ∈ epn(z,X) ∩ Z, and again
epn(z, Z) = ∅. If z ∈ V − X, then epn(z, Z) = ∅ because X dominates H.
Thus (3) of Proposition 2 holds for each z ∈ Z.

Consider v ∈ V −Z. If v ∈ epn(x,X), then ipn(x,Z) = {ux}, where ux ∈
epn(x,X). But 〈{x} ∪ epn(x,X)〉 is complete by Proposition 1. Therefore
{x} ∪ ipn(x,Z) ⊆ N(v).

Suppose v ∈ Y . By Theorem 5(ii), y is adjacent to exactly two vertices
x, x′ ∈ X, at least one of which, say x, X-protects v. If epn(x,X) 6= ∅, then
there exists ux ∈ epn(x,X)∩Z, in which case ipn(x,Z) = {ux}, uxv ∈ E(H)
and {x} ∪ ipn(x,Z) ⊆ N(v). If epn(x,X) = ∅, then N(x) ∩ Z = {yx}. But
yx is also adjacent to another vertex in X, hence ipn(x,Z) = ∅. Obviously,
{x}∪ ipn(x,Z) ⊆ N(v). Thus (4) of Proposition 2 holds for each v ∈ V −Z.
It follows that Z is a STDS of H, and so γst(H) ≤ |Z| = 2γs(H).

We now return to the graph G. If H ′ = H, then γst(G) ≤ γst(H) =
2γs(H) = 2γs(G) and we are done. Hence suppose W = {w : w is isolated
in H ′} 6= ∅ and note that X ′ = X ∪ W is an SDS of H ′. Since δ(G) ≥ 2,
any w ∈ W is adjacent to at least two vertices of G. Construct the set Z ′

as follows. Let Z ∪W ⊆ Z ′, and for any w ∈ W , if w is adjacent to at most
one vertex in Z, choose any rw ∈ NG(w)−Z and let rw ∈ Z ′. We show that
Z ′ is an STDS of G.
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For any z ∈ Z, epnG(z, Z ′) = ∅. Also, each neighbor of w ∈ W in G − Z ′ is
adjacent to a vertex in X, hence epnG(w,Z ′) = ∅, and similarly, if rw ∈ Z ′,
then epnG(rw, Z ′) = ∅. Hence epnG(z′, Z ′) = ∅ for each z′ ∈ Z ′.

If w is adjacent to z ∈ Z, then w /∈ ipnG(z, Z ′) because w is adjacent
either to some other vertex in Z or to rw ∈ Z ′. Moreover, rw /∈ ipnG(z, Z ′)
for any z ∈ Z ′ because rw is adjacent to w as well as to some vertex x ∈ X.
It follows that for each z ∈ Z, ipnG(z, Z ′) ⊆ ipnH(z, Z) and thus each vertex
in G−Z ′ is totally Z ′-protected by the same vertex that totally Z-protects
it in H. Hence Z ′ is an STDS of G. Since |Z ′| ≤ 2|X ′|, the bound follows.

To show equality in the lower bound, consider the even cycle C2m with
vertex sequence W = {1, 2, . . . , 2m}. For each odd integer i ∈ W , join
vertices i and i + 1 to two new vertices ui and vi to form the graph G.
See Figure 3.

6i

1a

5a
3a

v

1i

3i

4i5i

2i

u

v
u

v
u

1a

3a
5a

Figure 3. A graph with γs = γst = 6.

It is easy to see that W is an STDS of G, hence γst(G) ≤ 2m. Suppose G
has an SDS X with |X| < 2m. By the pigeonhole principle, |{i, i+1, ui, vi}∩
X| ≤ 1 for some odd i, and since ui is dominated, |{i, i + 1, ui, vi} ∩X| = 1.
We may then assume that {i, i + 1, ui, vi} ∩ X = {i}. But (X − {i}) ∪ {ui}
does not dominate vi, a contradiction. Thus γs(G) = γst(G) = 2m. (Note:
to construct a graph with γs = γst = 2, use K2 instead of C2m.)

To show equality in the upper bound, let G be an isolate-free γs-ER-
critical graph with SDS X such that no vertex in X jointly protects any
vertex in Y . (These graphs are easy to construct from Theorem 5; a con-
structive characterization is also given in [15].) By Theorem 5(i), X is
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independent. For each x ∈ X, define Ax = pn(x,X) ∪ Ux and note that
V (G) = ]x∈XAx.

Suppose G has an STDS Z with |Z| ≤ 2γs(G) − 1 = 2|X| − 1. Then
|Z ∩ Ax| ≤ 1 for some x ∈ X. By Remark 6(i), x /∈ X1.

Suppose x ∈ Xi, i 6= 1, and epn(x,X) 6= ∅. By Theorem 5 and Remark
6, for each v ∈ epn(x,X), N [v] = pn(x,X) ∪ {y ∈ Y : x X-protects y}.
Since no vertex in X jointly protects any vertex in Y , {y ∈ Y : x X-protects
y} = Ux and thus N [v] = Ax. To dominate v, |Z ∩ Ax| = 1. But if
v ∈ Z, then v is isolated in 〈Z〉, and if u ∈ Z for some u ∈ Ax − {v}, then
v ∈ epn(u,Z), both of which are contradictions.

Thus assume epn(x,X) = ∅. By Remark 6, x ∈ X4 and by definition of
X4, x X-protects all its neighbors in Y , i.e., N [x] ⊆ Ax. Either x ∈ Z, in
which case x is isolated in 〈Z〉, or u ∈ Z for some u ∈ Ax − {x}, in which
case x ∈ epn(u,Z), contradicting (3) of Proposition 2.

Therefore γst(G) ≥ 2γs(G) and equality follows from the upper bound.

4. Total Domination, Secure Total Domination, Clique

Covers and Independence

Obviously, γt(G) ≤ γst(G) for all graphs G without isolated vertices. The
two parameters can differ considerably. For example, γt(K1,m) = 2 and
γst(K1,m) = m + 1. We begin this section by characterizing graphs for
which γt = γst. For n ≥ 1, let J2,n be the graph obtained from K2,n by
joining the two vertices of degree n (or two nonadjacent vertices of C4 if
n = 2).

Theorem 9. If G is connected, then γst(G) = γt(G) if only if γst(G) = 2,
i.e., if and only if G = K2 or J2,n is a spanning subgraph of G for some

n ≥ 1.

Proof. If G = K2 or G has J2,n as spanning subgraph, then obviously
γst(G) = γt(G) = 2.

Suppose γst(G) = 2 and let X = {x, y} be an STDS of G. Then
xy ∈ E(G), and by Proposition 2, epn(x,X) = epn(y,X) = ∅. Hence
each vertex in V −X is adjacent to both x and y, from which it follows that
G = K2 or J2,n is a spanning subgraph of G.

Now suppose |V | ≥ 4, γst(G) = γt(G) but J2,n is not a spanning sub-
graph of G. Then γst(G) ≥ 3. Assume without loss of generality that G is
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edge-removal critical with respect to secure total domination, i.e., removing
any edge increases γst. Let X be an STDS of G. By Proposition 2, each
vertex in Y = V − X is adjacent to at least two vertices in X. Since X
is a TDS, the subgraph 〈X〉 of G induced by X has no isolated vertices.
Furthermore, by the criticality of G, Y is independent.

If 〈X〉 has a component C of size at least three, let w be a vertex of
C which is not a cutvertex of C. Then 〈X − {w}〉 has no isolated vertices.
Moreover, since each vertex in Y is adjacent to at least two vertices in X,
X−{w} is a TDS of G, contradicting γt(G) = γst(G). Hence we may assume
that 〈X〉 = mK2 for some m ≥ 2.

Let xiyi, i = 1, 2, be two edges of 〈X〉 such that some vertex u ∈ Y
is adjacent to (without loss of generality) x1 and x2. These edges exist
because G is connected. Note that ipn(yi, X) = {xi}. If there exists a vertex
u′ ∈ Y such that N(u′) ∩ X = {y1, y2}, then neither y1 nor y2 satisfies (4),
contradicting Proposition 2. Hence

(5) each vertex in Y is adjacent to some vertex in X − {y1, y2}.

Let X ′ = (X−{y1, y2})∪{u}. Then 〈X ′〉 has no isolated vertices. Moreover,
xi dominates yi, and by (5), X ′ dominates Y . Hence X ′ is a TDS of G with
|X ′| < |X|. The result follows from this final contradiction.

We now focus on comparing γt and γst to the clique covering number θ(G)
and the independence number α(G), as these parameters are useful upper
and lower bounds, respectively, on the eternal domination number [13]. It
follows that γs(G) ≤ θ(G) for all graphs G and there are many graphs for
which this bound is sharp, such as Kn,K1,n, P4, C4, to name just a few.

The total domination number has been related to clique covers in [10]
and [12]. A graph G is Kr-covered if every vertex of G is contained in a
clique of size r. It was conjectured in [10] that γt(G) ≤ 2n

r+1
whenever G is

Kr-covered, and the conjecture was proved there for r = 3 and 4, and in
[12] for r = 5 and 6.

We begin by relating γt and θ. Note that γt(G) = 2 when θ(G) = 1.
For any graph G, fix a minimum clique cover C of G. Construct the clique

cover graph C(G) of G with respect to C by mapping each clique in C to a
corresponding vertex in C(G) such that two vertices in C(G) are adjacent if
and only if the corresponding cliques in G have adjacent vertices.

Proposition 10. If G is connected and θ(G) ≥ 2, then γt(G) ≤ 2θ(G)− 2,
and the bound is sharp.



278 W.F. Klostermeyer and C.M. Mynhardt

Proof. The case θ(G) = 2 is trivial, so assume θ(G) ≥ 3. Fix a minimum
clique cover C of G and consider a spanning tree T of C(G). Note that the
vertex set of T is also a TDS of C(G) since θ(G) > 1. Map V (T ) to a
dominating set D of G as follows. Fix a root r of T to be a vertex of degree
greater than one (such a vertex exists since T has at least three vertices).
Let d be the maximum distance from any vertex in T to r. First process
the vertices of distance d from r, followed by vertices of distance d − 1 and
so on until the root is reached.

If a vertex v 6= r is a vertex of T with parent u, it is mapped to two
vertices in D: a vertex v1 in the clique of G corresponding to v and a
vertex v2 in the clique corresponding to u, where v1v2 ∈ E(G). Note that,
depending on the number of children a vertex has, it is possible that all
vertices in the corresponding clique in G are included in D (or a particular
vertex of G might be mapped to more than once). When r is processed, no
additional vertices are added to D. It is easy to see that |D| ≤ 2θ − 2. A
simple induction on the height of T shows that D is a TDS of G.

The graph in Figure 4 shows that the bound is sharp for all θ ≥ 2.

Kn

Figure 4. A graph with θ = n + 1 and γt = 2n.

Since the subgraph induced by the TDS D constructed in the proof of Propo-
sition 10 is connected, the bound also holds for the connected domination
number (see [16]).

It is clear that γst(G)−θ(G) can also be arbitrarily large. For example, if
Pn,1 is the caterpillar obtained from Pn by attaching a pendant vertex to each
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vertex of Pn, then θ(Pn,1) = γt(Pn,1) = n and γst(Pn,1) = 2n (Theorem 3).
Another example is the graph in Figure 4 with θ = n + 1, γt = 2n and
γst = 2n + 1.

The difference γst(G) − θ(G) may even be negative. Let Wn denote the
wheel with n ≥ 4 spokes (obtained by joining a new vertex to every vertex
of Cn). It is easy to see that θ(Wn) = θ(Cn) =

⌈

n
2

⌉

, while γst(Wn) =
⌈

n
3

⌉

+1
(use the hub vertex and every third vertex on Cn).

We show next that the ratio γst/θ is bounded.

Theorem 11. For all graphs G without isolated vertices, γst(G) ≤ 2θ(G),
and the bound is sharp.

Proof. The result is obvious if θ(G) = 1, so assume θ(G) ≥ 2. Also assume
without loss of generality that G is connected. Construct an STDS D of G
as follows. Fix a minimum clique cover C. We process the cliques of C in
two phases: (1) cliques of size one and (2) cliques of size greater than one.
Note that if {v} and {w} are cliques of size one in C, then vw /∈ E(G), for
otherwise (C − {{v}, {w}}) ∪ {v, w} is a smaller clique cover of G.

For each vertex v such that {v} ∈ C, add v to D. Since θ(G) ≥ 2 and G
is connected, v is adjacent to a vertex w in a clique of size greater than one
in C; add w to D, if possible (w may already have been added to D when
another clique of size one was considered).

For the second phase, place two additional vertices from each clique in
C of size at least two, in D, if possible. [If Ci is a clique of size r ≥ 2, it
is possible that r or r − 1 of its vertices were added to D during the first
phase. Then during the second phase we add no vertex or the last remaining
vertex, respectively, of Ci to D.] It follows that |D| ≤ 2θ. It is easy to see
that D is a TDS.

To see that D is an STDS, let u ∈ V − D and say u ∈ Ci ∈ C. By
the construction of D, Ci contains at least two vertices z, z ′ ∈ D that are
not adjacent to cliques of size one in C. Then ipn(z,D) ⊆ {z ′} and {z} ∪
ipn(z,D) ⊆ N(u), hence (4) holds. Since (3) holds for each z ∈ D, the result
follows from Proposition 2.

The caterpillar Pn,1 mentioned above shows that the bound is sharp for
all θ.

We now compare γst and the independence number α. Observe that γst(Kn,n)
= 4 < α(Kn,n) = n when n > 4. Of course, γst(Kn) = 2 > α(Kn) = 1, and
P4 is another example of a small graph G with α(G) = 2 and γst(G) = 4 >
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α(G). It is an easy corollary of Proposition 4 and Theorem 8 that γst(G) ≤
4α(G) for graphs G with δ(G) ≥ 2. Furthermore, since γs(G) ≤ 3α(G)/2
for claw-free graphs [9], Theorem 8 also implies that γst(G) ≤ 3α(G) for
claw-free graphs with δ(G) ≥ 2. We now extend a slight improvement of the
latter bound to all graphs.

Theorem 12. For all graphs G without isolated vertices, γst(G) ≤ 3α(G)−1.

Proof. Assume without loss of generality that G is connected. Let X
be a maximum independent set (and thus a dominating set) that contains
all end-vertices of G, and note that 〈pn(x,X)〉 is complete for each x ∈ X
(otherwise there is a larger independent set than X).

Let X ′ = {x ∈ X : epn(x,X) = ∅} and define the set X∗ by

X∗ =

{

X − X ′ if X ′ 6= ∅,

X − {x∗} for an arbitrary, fixed x∗ ∈ X if X ′ = ∅.

Construct an STDS Z as follows. Let X ⊆ Z. For each x ∈ X ′, add one
neighbor yx of x to Z; note that yx ∈ Y = V − X. For each x ∈ X∗, if x
has at least two external private neighbors, then add two private neighbors
ux, vx of x to Z. If x ∈ X∗ has one external private neighbor ux, add ux

to Z. By the choice of X, deg ux ≥ 2. Choose wx ∈ N(ux) − {x} and let
wx ∈ Z. Finally, if x∗ is defined, add any ux∗ ∈ epn(x∗, X) to Z. Clearly,
|Z| < 3|X|.

By construction, epn(z, Z) = ∅ for each z ∈ Z. Thus (3) in Proposition
2 holds for each z ∈ Z. We also assert that for each x ∈ X − {x∗} and each
vertex z ∈ Z − X adjacent to x, z is adjacent to some vertex in Z − {x}: if
z = vx, then z is adjacent to ux; if z = ux, then z is adjacent to vx or wx; if
z = wx′ for some x′ ∈ X, then z is adjacent to ux′ ; and if z = yx′ for some
x′ ∈ X, then z is adjacent to at least two vertices in X. It follows that

(6) ipn(x,Z) = ∅ for each x ∈ X − {x∗},

while ipn(x∗, Z) ⊆ {ux∗}.
Consider any a ∈ V − Z. Since X is a dominating set, a is adjacent

to some x ∈ X. If a ∈ epn(x∗, X), then x is adjacent to both x∗ and ux∗

and (4) holds for a and x∗. If a /∈ epn(x∗, X), then either a ∈ epn(x,X) for
x ∈ X − {x∗}, or a ∈ Y , in which case a has at least two neighbors in X,
one of which is x 6= x∗, and thus (6) implies that (4) holds for a and x. By
Proposition 2, Z is an STDS and the result follows.
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For α = 2, the bound in Theorem 12 can be improved.

Theorem 13. Let G be an isolate-free graph with α(G) = 2. Then

γst(G) ≤ 4.

Proof. Let X = {x, y} be an independent set (and thus a dominating
set) of G and let W = N(x) ∩ N(y). If epn(x,X) = epn(y,X) = ∅, then
W = V −X. If G = P3, let Z = V (G); otherwise, let u and v be any vertices
in V − X and Z = {u, v, x, y}. It is easy to see that Z is an STDS.

Suppose epn(x,X) = ∅ and epn(y,X) 6= ∅. Then 〈epn(y,X)〉 is com-
plete. If x and y have only one common neighbor, then θ(G) = 2 and
the result follows from Theorem 11. Assume they have at least two com-
mon neighbors. Let u ∈ N(x), v ∈ epn(y,X) and Z = {u, v, x, y}. Then
epn(z, Z) = ∅ for each z ∈ Z. Consider w ∈ V − Z. If w ∈ epn(y,X), then
y totally Z-protects w, so assume w ∈ W . If uw ∈ E(G), then u totally
protects w. If uw /∈ E(G), then at least one of u and w is adjacent to v,
since α(G) = 2. If vw ∈ E(G), then v totally protects w, and if uv ∈ E(G),
then y totally protects w. Hence Z is an STDS.

Suppose epn(x,X) 6= ∅ and epn(y,X) 6= ∅. Then both these sets induce
complete subgraphs of G. Let u ∈ epn(x,X), v ∈ epn(y,X) and Z =
{u, v, x, y}, and consider w ∈ V − Z. If w ∈ epn(x,X), then x totally Z-
protects w; likewise if w ∈ epn(y,X). Hence assume w ∈ W and note that
u, x, w, y, v is a path in G. If, without loss of generality, uw ∈ E(G), then
u totally protects w. If w is not adjacent to either u or v, then uv ∈ E(G)
because α(G) = 2. In this case, x totally protects w and we are done.

Corollary 14. There exists a graph G with γst(G) < θ(G) − c, for any

constant c.

Proof. Consider a graph G with α(G) = 2, δ(G) > 1, and θ(G) = t, for
sufficiently large t > 2 (for example, the complement of a triangle-free graph
of large chromatic number).

5. Problems for Future Research

1. It was shown in [9] that if G is claw-free, then γs(G) ≤ 3α(G)/2, and if,
in addition, G is C5-free, then γs(G) ≤ α(G). As stated in Proposition 4,



282 W.F. Klostermeyer and C.M. Mynhardt

in general γs(G) ≤ 2α(G). Find graphs for which this bound is exact, or
improve the bound.

2. By Proposition 10, γt(G) ≤ 2θ(G)−2 if G is connected and θ(G) ≥ 2.
Although this bound is sharp, the bound is not very good in general. For
example, θ(K1,n) = n, but γt(K1,n) = 2.

If G is the graph in Figure 4, then G has a unique minimum clique cover,
the clique cover graph of G is the star K1,n, and γt(G) = 2θ(G)− 2. On the
other hand, the spider S(2, . . . , 2) obtained by subdividing each edge of K1,n

once, also has a unique minimum clique cover, and its clique cover graph
is also K1,n, but γt(G) = θ(G) = n + 1. Compare this with the caterpillar
Pn,1, which also has a unique minimum clique cover. Its clique cover graph
is Pn, and γt(Pn,1) = θ(Pn,1) = n.

Is there a relationship between the properties of the clique cover graph
of G (number of vertices corresponding to cliques of size 1, connectivity,
number of leaves, toughness, (total) domination number) and the difference
2θ(G) − γt(G)? For which classes of graphs can this bound be improved?

3. Similarly, for which classes of graphs can the bound in Theorem 11
be improved? For which classes of graphs is the bound close to γst?

4. The bound in Theorem 12 is probably weak in general and needs
to be improved. Are there any graphs that achieve the bound of 3α − 1?
We suspect the answer is negative and that 2 is the maximum ratio that
can be attained, as in the case of the caterpillar Pn,1 and when α = 2
(Theorem 13).
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