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1. Introduction

Minimum cycle bases (MCBs) of a cycle spaces have a variety of applications
in sciences and engineering, for example, in structural flexibility analysis,
electrical networks and in chemical structure storage and retrieval systems
(see [6, 7] and [14]).

In general, the total length l(G) of a minimum cycle basis and the length
of the longest cycle in a minimum cycle basis λ(G) are not minor monotone
(see [11]). Hence, there does not seem to be a general way of extending
minimum cycle bases of a certain collection of partial graphs of G to a
minimum cycle basis of G. Global upper bound l(G) ≤ dim C(G)+κ(T (G))
where κ(T (G)) is the connectivity of the tree graph of G is proven in [16].

In this paper, we construct a minimum cycle basis for the lexicographic
product of two graphs in term of a minimum cycle basis of the second factor,
also, we give its total length and the length of its longest cycle.
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2. Definitions and Preliminaries

The graphs considered in this paper are finite, undirected, simple and con-
nected. Most of the notations that follow can be found in [10]. For a given
graph G, we denote the vertex set of G by V (G) and the edge set by E(G).

2.1. Cycle bases

Given graph G. The set E of all subsets of E(G) forms an |E(G)|-dimensional
vector space over Z2 with vector addition X ⊕ Y = (X\Y ) ∪ (Y \X) and
scalar multiplication 1 · X = X and 0 · X = ∅ for all X,Y ∈ E . The cycle
space, C(G), of a graph G is the vector subspace of (E ,⊕, .) spanned by the
cycles of G (see [11]). Note that the non-zero elements of C(G) are cycles
and edge disjoint union of cycles. It is known that the dimension of the
cycle space is the cyclomatic number or the first Betti number (see [4])

dim C(G) = |E(G)| − |V (G)| + 1.(1)

A basis B for C(G) is called a cycle basis of G. The length, |C|, of the element
C of the cycle space C(G) is the number of its edges. The length l(B) of a

cycles basis B is the sum of the lengths of its elements: l(B) =
∑

C∈B |C|.
λ(G) is defined to be the minimum length of the longest element in an
arbitrary cycle basis of G. A minimum cycle basis (MCB) is a cycle basis
with minimum length. With l(G) we denote to the sum of the lengths of the
cycles in a minimum cycle basis. Since the cycle space C(G) is a matroid
in which an element C has weight |C|, the greedy algorithm can be used to
extract a MCB (see [19]). A cycle is relevant if it is contained in some MCB
(see [18]).

Proposition 2.1.1 (Plotkin [17]). A cycle C is relevant if and only if it

cannot be written as a linear combinations modulo 2 of shorter cycles.

Chickering, Geiger and Heckerman [5], showed that λ(G) is the length of
the longest element in a MCB.

2.2. Products

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs.
(1) The Cartesian product G�H has the vertex set V (G�H) = V (G)×

V (H) and the edge set E(G�H) = {(u1, v1)(u2, v2)|u1u2 ∈ E(G) and v1 =
v2, or v1v2 ∈ E(H) and u1 = u2}.
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(2) The strong product G�H is the graph with the vertex set V (G�H) =
V (G) × V (H) and the edge set E(G � H) = {(u1, u2)(v1, v2)|u1v1 ∈ E(G)
and u2v2 ∈ E(H), or u1 = v1 and u2v2 ∈ E(H), or u1v1 ∈ E(G) and
u2 = v2}.

(3) The lexicographic product G[H] is the graph with vertex set V (G[H])
= V (G) × V (H) and the edge set E(G[H]) = {(u1, u2)(v1, v2)|u1 = v1 and
u2v2 ∈ E(H), or u1v1 ∈ E(G)}.

(4) The wreath product G n H has the vertex set V (G n H) = V (G) ×
V (H) and the edge set E(G n H) = {(u1, v1)(u2, v2)|u1 = u2 and v1v2 ∈
E(H), or u1u2 ∈ G and there is α ∈Aut(H) such that α(v1) = v2}.

(5) The direct product G×H is the graph with the vertex set V (G×H) =
V (G) × V (H) and the edge set E(G × H) = {(u1, u2)(v1, v2)|u1v1 ∈ E(G)
and u2v2 ∈ E(H)}.

The H-fiber a�H is the subgraph of a product induced with the vertex
set V (u�H) = {(a, v)|v ∈ V (H)}. Analogue is defined the G-fiber G�v.
Let e ∈ E(G). Then e[H] is called a fold of G[H] (See [1] and [10]).

From (1) and by knowing that |E(G[H])| = |E(G)||V (H)|2 + |E(H)||V (G)|,
we have that

dimC(G[H]) = |E(G)||V (H)|2 + |E(H)||V (G)| − |V (G)||V (H)| + 1(2)

Imrich and Stadler [11] presented a minimum cycle bases of Cartesian prod-
uct and strong product. They proved the following results:

Theorem 2.2.1. If G and H are triangle free, then l(G�H) = l(G) +
l(H)+4[|E(G)|(|V (H)|−1)+ |E(H)|(|V (G)|−1)−(|V (H)|−1)(|V (G)|−1)]
and λ(G�H) = max{4, λ(G), λ(H)}.

Theorem 2.2.2. For any two graphs G and H, l(G�H) = l(G)+ l(H)+3
[dimC(G�H)−dimC(G)−dimC(H)] and λ(G�H) = max{3, λ(G), λ(H)}.

Hammack [8] gave a minimal cycle basis of the direct product of two bipartite
graphs in term of the minimum cycle bases of the factors. Also, Hammack
[9] and Bradshaw and Jaradat [3] presented a minimal cycle bases of the
direct product of complete graphs.

In [12] minimum cycle bases of the wreath product have been con-
structed for some classes of graphs and determined their length and the
length of their longest cycles.
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The results cited above trigger off the following question: Can we construct
a minimum cycle basis for the lexicographic product of graphs? In this paper
we will answer this question in affirmative.

After this manuscript was completed the author learned that a similar
statement to our main result was proven by Berger in her PhD dissertation
[2] and Kaveh and Mirzaie [15].

3. Lexicographic Product

In this section, we construct a minimum cycle basis and determine the length
of a minimum cycle basis and the minimum length of the longest cycle in
an arbitrary cycle basis of the lexicographic product of two graphs. For any
edges ab, uv and a vertex w, we set the following cycles:

Puv
ab,w = (a,w)(b, u)(b, v)(a,w).

Also, for a graph H with E(H) = {u1v1, u2v2, . . . , u|E(H)|v|E(H)|}, we let

PH
ab,w =

|E(H)|
⋃

i=1

Puivi

ab,w.

Lemma 3.1. For any tree T with w ∈ V (T ) and any edge ab,PT
ab,w is

linearly independent. Moreover, any linear combination of PT
ab,w contains

an edge of the form (a,w)(b, u) for some vertex u ∈ V (T ).

Proof. Note that PT
ab,w = ∪

|E(T )|
i=1 Puivi

ab,w. The first part follows from not-
ing that each cycle Puivi

ab,w contains the edge b × uivi which occurs in no

other cycle of PT
ab,w. The second part follows from being that E(PT

ab,w) =
{(a,w)(b, u)|u ∈ V (T )} ∪ E(b�T ), and noting that E(b�T ) is an edge set
of a tree and any linear combination of cycles is a cycle or an edge disjoint
union of cycles.

The following result from [13] will be needed in the forthcoming results:

Proposition 3.2. Let A,B be sets of cycles of a graph G, and suppose that

both A and B are linearly independent, and E(A)∩E(B) induces a forest in

G (we allow the possibility that E(A) ∩ E(B) = ∅). Then A ∪ B is linearly

independent.
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Lemma 3.3. Let T be a tree of order greater than or equal to 2 and ab be

an edge. Then PT
ab = (∪w∈V (T )P

T
ab,w) ∪ PT

ba,w0
is a linearly independent set

of cycles for some fixed vertex w0 ∈ V (T ).

Proof. Since PT
ab,w is linearly independent for each w ∈ V (T ) by Lemma

3.1 and since E(PT
ab,w) ∩ E(PT

ab,v) = E(b × T ) whenever w 6= v which is a

tree, as a result by Proposition 3.2 ∪w∈V (T )P
T
ab,w is linearly independent.

Also, since

E
(

∪w∈V (T )P
T
ab,w

)

∩ E
(

PT
ba,w0

)

= {(a,w)(b, w0) |w ∈ V (T )}

which is an edge set of a star, we have PT
ab is linearly independent by Propo-

sition 3.2.

Now, let G be a graph with E(G) = {a1b1, a2b2, . . . , a|E(G)|b|E(G)|}. Also,
let

PT
G =

|E(G)|
⋃

i=1

PT
aibi

.

Lemma 3.4. Let G be any graph and T be a tree. Then PT
G is a linearly

independent set.

Proof. We use mathematical induction on |E(G)|. If G consists only of one
edge, say G = a1b1, then PT

G = PT
a1b1

. And so, the result follows by Lemma
3.3. Assume the statement is true for all graphs with less edges than G.

Note that PT
G =

(

∪
|E(G)|−1
i=1 PT

aibi

)

∪PT
a|E(G)|b|E(G)|

. By the inductive step and

Lemma 3.3, each of ∪
|E(G)|−1
i=1 PT

aibi
and PT

a|E(G)|b|E(G)|
is linearly independent.

Note that

E

( |E(G)|−1
⋃

i=1

PT
aibi

)

∩ E
(

PT
a|E(G)|b|E(G)|

)

⊆ E
(

{a|E(G)|, b|E(G)|}�T
)

which is an edge set of a forest. Thus, by Proposition 3.2, PT
G is linearly

independent.

Throughout this paper, TG denotes a spanning tree of the graph G.

Lemma 3.5. PT
G ∪ BG�w0

is linearly independent where BG�w0
is a basis

for the G-fiber G�w0.
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Proof. Note that if G is a tree, then BG�w0
= ∅ and so the result is obtaind

by Lemma 3.4. Therefore, we now consider the case that G is not a tree.
By Lemma 3.4, PT

TG
is linearly independent. Now, since BG�w0

is a basis of
the G-fiber G�w0, any linear combination of BG�w0

must contain an edge
of E((G − TG)�w0), which is not in any cycle of PT

TG
. Thus, PT

TG
∪ BG�w0

is linearly independent. Now, we proceed using mathematical induction on
the number of edges in G − TG to show that PT

G ∪ BG�w0
is linearly in-

dependent. Let E(G − TG) = {a|E(TG)|+1b|E(TG)|+1, a|E(TG)|+2b|E(TG)|+2, . . . ,
a|E(G)|b|E(G)|}. Note that

E
(

PT
a|E(TG)|+1b|E(TG)|+1

)

∩ E
(

PT
TG

∪ BG�w0

)

= E
(

{a|E(TG)|+1, b|E(TG)|+1}�T
)

∪ {(a|E(TG)|+1, w0)(b|E(TG)|+1, w0)}

which is an edge set of a tree. Thus, by Proposition 3.2, PT
TG

∪ BG�w0
∪

PT
a|E(TG)|+1b|E(TG)|+1

is linearly independent. By continuing in this way, us-

ing mathematical induction and by Lemma 3.3, we have that both of PT
TG

∪

BG�w0
∪
(

∪
|E(G)|−1
i=|E(TG)|+1P

T
aibi

)

and PT
a|E(G)|b|E(G)|

are linearly independent. Now,

E
(

PT
a|E(G)|b|E(G)|

)

∩ E



(PT
TG

∪ BG�w0
∪

( |E(G)|−1
⋃

i=|E(TG)|+1

PT
aibi

)





= E
(

{a|E(G)|, b|E(G)|}�T
)

∪ {(a|E(G)|, w0)(b|E(G)|, w0)}

which is a tree. Hence, by Proposition 3.2, PT
G ∪ BG�w0

is an independent
set.

Let G and H be two graphs, TG and TH be any two spanning trees of G and
H, respectively. Let a1 be an end vertex of TG. Construct a rooted tree, T ∗

G,
by assuming that a1 is the root and all the other vertices of TG are directed
a way from a1. Consider the edges of the rooted tree are the following e1 =
a1b1, e2 = a2b2, . . . , e|E(TG)| = a|E(TG)|b|E(TG)|. Without loss of generality we
can order the edges in such a way that δ(a1, ai) ≤ δ(a1, ai+1) = δ(a1, bi+1)−1
where δ(x, y) denotes the distant between x and y. In this way we guarantee
that V (ei) ∩ V (∪i−1

j=1ej) is exactly one vertex, ai. For a vertex w0 ∈ V (H),
set
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A
(H−TH)
T ∗

G
,w0

=
(

PH−TH

b1a1,w0

)

∪





|E(TG)|
⋃

i=1

PH−TH

aibi,w0



 .

Lemma 3.6. The set A
(H−TH)
T ∗

G
,w0

is linearly independent.

Proof. Note that E
(

PH−TH

aibi,w0

)

∩ E
(

PH−TH

aj bj ,w0

)

= ∅ for each i 6= j. Thus,

∪
|E(TG)|
i=1 PH−TH

aibi,w0
is linearly independent. Also, note that E

(

PH−TH

b1a1,w0

)

∩

E
(

∪
|E(TG)|
i=1 PH−TH

aibi,w0

)

= {(a1, w0)(b1, w0)}. Thus, by Proposition 3.2, A
(H−TH)
T ∗

G
,w0

is linearly independent.

We now have the results needed to prove the following result:

Theorem 3.7. Let G and H be any two graphs. Then B(G,H) = PTH

G ∪

(A
(H−TH )
T ∗

G
,w0

) ∪ BG�w0
is a basis for C(G[H]) where BG�w0

is a basis for

C(G�w0).

Proof. Since

E
(

A
(H−TH)
T ∗

G
,w0

)

− E(TG�(H − TH)) = {(bi, w0)(ai, w)|w ∈ V (H)}

∪





|E(TH)|
⋃

i=1

{(ai, w0)(bi, w)|w ∈ V (H)}



,

which is an edge set of a tree, as a result each linear combination of cycles

of A
(H−TH)
T ∗

G
,w0

must contain an edge of ai�(H−TH) for some ai ∈ V (G) which

is not in any cycle of PTH

G ∪BG�w0
. Thus, B(G,H) is linearly independent.

Now, for any vertex w ∈ V (H) and edge ab, we have that

|PTH

ab,w| =
∑

uv∈E(TH)

|Puv
ab,w| =

∑

uv∈E(TH)

1 = |E(TH )|.(3)

Similarly, we have that

|PH−TH

ba,w | = |E(H − TH)|.(4)
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Thus, by (3) and the defintion of PTH

ab , we have

|PTH

ab | = |PTH

ba,w0
| +

∑

w∈V (TH)

|PTH

ab,w|

= |E(TH)| +
∑

w∈V (TH )

|E(TH)| = |E(TH )| + |V (H)||E(TH )|

= |V (H)|2 − 1.

Hence,

|PTH

G | =

|E(G)|
∑

i=1

|PTH

aibi
| =

(

|V (H)|2 − 1
)

|E(G)|

= |E(G)||V (H)|2 − |E(G)|.

Also, by (4) and by noting that dim C(H) = |E(H − TH)|, we have that

|A
(H−TH)
T ∗

G
,w0

| = |PH−TH

b1a1,w0
| +

|E(TG)|
∑

i=1

|PH−TH

aibi,w0
|

= |E(H − TH)| + |E(TG)||E(H − TH)|

= dimC(H) + |E(TG)|dim C(H).

Moreover, we know that

|BG�w0
| = dimC(G).

Therefore,

|B(G,H)|

= |PTH

G | + |A
(H−TH)
T ∗

G
,w0

| + |BG�w0
|

= |E(G)||V (H)|2 − |E(G)| + dim C(H) + |E(TG)|dim C(H) + dim C(G)

= |E(G)||V (H)|2 + dim C(H)(|E(TG)| + 1) − |E(G)| + dim C(G)

= |E(G)||V (H)|2 + dim C(H)|V (G)| − |E(G)| + dimC(G).
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But, by (1)

− |E(G)| + dim C(G) = − |V (G)| + 1.

Thus,

|B(G,H)| = |E(G)||V (H)|2 + dimC(H)|V (G)| − |V (G)| + 1

= |E(G)||V (H)|2 + (|E(H)| − |V (H)| + 1)|V (G)| − |V (G)| + 1

= |E(G)||V (H)|2 + |E(H)||V (G)| − |V (G)||V (H)| + 1

= dimC(G[H])

where the last equality holds by (2). Therefore, B(G,H) is a basis for
C(G[H]).

Remark 3.8. (i) By specializing G to be a tree T , we have that BG�w0
= ∅

and so, B(T,H) = PTH

T ∪ (A
(H−TH)
T ∗,w0

) is a basis for C(T [H]) where T ∗ is a
rooted tree for T .

(ii) By specializing H to be a tree T , we have that A
(H−TH)
T ∗,w0

= ∅ and so,

B(G,T ) = PT
G ∪ BG�w0

is a basis for C(G[T ]).

(iii) By specializing G and H to be trees T1 and T2, respectively, we have

that (A
(H−TH)
T ∗

G
,w0

)∪BG�w0
= ∅ and so, B(T1, T2) = PT2

T1
is a basis for C(T1[T2]).

We now turn our attention to construct a minimal cycle basis for G[H].

Lemma 3.9. Let C be a cycle of G[H] of length greater than or equal to 4
and contains an edge of an H-fiber. Then C is irrelevant.

Proof. Assume that C contains an edge of the fiber a�H for some a ∈
V (G). Then we consider two cases:

Case 1. All the edges of C are from a�H, say C = (a, v1)(a, v2) . . .
(a, vm)(a, v1). Let ab ∈ E(G). Then

C =





m−1
⊕

j=1

P
vjvj+1

ba,v1



⊕Pvmv1
ba,v1

.

Thus, C is irrelevant.
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Case 2. C contains at least one edge which is not in a�H. Hence we
may assume that (b, w)(a, u)(a, v) ⊆ C where vu ∈ E(H) and ba ∈ E(G).
Let

C1 = C ⊕Puv
ba,w.

Then,

C = C1 ⊕Puv
ba,w.

Note that C1 is obtained from C by deleting at least two edges (b, w)(a, u),
(a, u)(a, v) and adding at most the edge (b, w)(a, v). Thus, |C1| < |C|.
Hence, C is irrelevant.

(
c
,x)


(b,v)=(b,
 u
t
)


(b,u)=(b,
 u
1
)


(a,
w
)


P
u
1
u
2

cb
,x


C


P
u
1
u
2

ab
,
w


P
u
(
t
-
1)
u
t

cb
,x


(
c
,x)


(b,u)


C
2


P
u
(
t
-
1)
u
t

ab
,x


Figure 1. The way of getting C2 from the ring sum of C and 3-cycles.

Lemma 3.10. Let C be a cycle of G[H] of length greater than or equal to

4 such that C contains at least two edges from one fold of G[H]. Then C is

irrelevant.

Proof. Let C be a cycle containing at least two edges from the same fold.
From Lemma 3.9 we can assume that C contains no edge of V (G)�H. To
this end, we consider the following two cases:

Case 1. E(C) belongs to only one fold, say ab[H] and so belongs to
ab[NH ] where NH is the null graph with vertex set is V (H). By (iii) of
Remark 3.8, PTH

ab is a basis of ab[TH ]. Thus, C can be written as a linear

combination of some cycles of PTH

ab . Hence, C is irrelevant.

Case 2. E(C) belongs to at least two folds. Then we consider two
subcases:
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Subcase 2a. There is a fold, say ab[H], contaning two adjacent edges
of E(C). Consider (c, x)(b, u)(a,w)(b, v) ⊆ C, that is the two adjacent
edges in ab[NH ] are (b, u)(a,w) and (a,w)(b, v) and (c, x)(b, u) /∈ E(ab[H]).
Let u = u1u2 . . . ut = v be the path of TH connecting u and v and so
(b, u) = (b, u1)(b, u2) . . . (b, ut) = (b, v) is a path in G[TH ] ⊆ G[H] connecting
the two vertices (b, u) and (b, v). Let

C2 = C ⊕
t−1
⊕

j=1

P
uiui+1

ab,w ⊕
t−1
⊕

j=1

P
uiui+1

cb,x .

Then

C = C2 ⊕

t−1
⊕

j=1

P
uiui+1

ab,w ⊕

t−1
⊕

j=1

P
uiui+1

cb,x .

Note that |C2| ≤ |C| − 2 because C2 is obtained by deleting at least (b, u)
(a,w), (a,w) (b, v) and (c, x)(b, u) and adding at most (c, x)(b, v) (see
Figure 1). Thus, C is irrelevant.

Subcase 2b. There is no fold containing two adjacent edges of E(C).
Consider the fold ab[H] contains two non adjacent edges of E(C), say
(c, x)(b, u)(a,w) and (b, v)(a, y) ⊆ C. That is the two non adjacent edges
of the same fold are (b, u)(a,w) and (b, v)(a, y) and (c, x)(b, u) /∈ ab[H].
Let u = u1u2 . . . ut = v be the path of TH connecting u and v and so
(b, u) = (b, u1)(b, u2) . . . (b, ut) = (b, v) be a path in G[TH ] ⊆ G[H] connect-
ing the two vertices (b, u) and (b, v). Thus,

C3 = C ⊕
t−1
⊕

j=1

P
uiui+1

cb,x

t−1
⊕

j=1

P
uiui+1

ab,w

is a union of at least to edge disjoint cycles (because in this way we unify
the vertices (b, u) and (b, v)) each of which is of length less than the length
of C, say C3 = ∪r

i=1C
′

i . Then

C3 =

r
⊕

j=1

C
′

i .

And so,

C =
r
⊕

j=1

C
′

i ⊕
t
⊕

j=1

P
uiui+1

ab,x

t
⊕

j=1

P
uiui+1

cb,w .

Thus, C is irrelevant.
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Lemma 3.11. Let Cv = C�v and Cu = C�u be two cycles of the G-fibers

G�u and G�v, respectively. Then Cu is a linear combination of Cv with

cycles of length 3.

Proof. Let Cv = (a1, v)(a2, v) . . . (an, v)(a1, v). Let TH be a spanning tree
of H and v = v1v2 . . . vm = u be the path of TH connecting v and u. Then





n−1
⊕

i=1

m−1
⊕

j=1

P
vjvj+1
aiai+1,v



⊕





n−1
⊕

i=1

m−1
⊕

j=1

P
vjvj+1
ai+1ai,u





⊕





m−1
⊕

j=1

P
vjvj+1
ana1,v



⊕





m−1
⊕

j=1

P
vjvj+1
a1an,u



 = Cv ⊕ Cu.

Thus,

Cu = Cv ⊕





n−1
⊕

i=1

m−1
⊕

j=1

P
vjvj+1
aiai+1,v



⊕





n−1
⊕

i=1

m−1
⊕

j=1

P
vjvj+1
ai+1ai,u





⊕





m−1
⊕

j=1

P
vjvj+1
ana1,v



⊕





m−1
⊕

j=1

P
vjvj+1
a1an,u



 .
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Figure 2. The first step in the procedure of writing the cycle C as a linear combi-

nation of cycles of a G-fiber (G�v1) and 3-cycles.

Lemma 3.12. Let C be a cycle of G[H] of length greater than or equal to

3 such that C neither contains an edge of an H-fiber nor contains two edges

of the same fold. Then C is a ring sum of cycles of length 3 with cycles of

a G-fiber.



Minimal Cycle Bases of the ... 241

Proof. Let C = (a1, v1)(a2, v2) . . . (am, vm)(a1, v1). Since C neither con-
tains an edge of an H-fiber nor contains two edges of the same fold, as a
result C contains no edge of ∪a∈v(G)(a�H) and contains at most one edge
of e[NH ] for each e ∈ E(G). And so, a1a2 . . . ama1 is a cycle or edge disjoint
union of cycles of G. Now, we show that C is a linear combination of 3-cycles
with cycles of the fiber G�v1. Let v1 = v11v12 . . . v1n1

= v2 be the path of
TH connecting the two vertices v1 and v2. Let

C1 = C ⊕





n1−1
⊕

j=1

P
v1j

v1j+1
a1a2,v1



⊕





n1−1
⊕

j=1

P
v1j

v1j+1
a3a2,v3



 .

Note that C1 is obtained from C by pulling the vertex (a2, v2) to (a2, v1).
Thus, C1 is a cycle or an edge disjoint union of cycles each of which has the
same properties as C (see Figure 2). Now, Let v1 = v21v22 . . . v2n2

= v3 be
the path of TH joining the two vertices v1 and v3. Let

C2 = C1 ⊕





n2−1
⊕

j=1

P
v2j

v2j+1
a2a3,v2



⊕





n2−1
⊕

j=1

P
v2j

v2j+1
a4a3,v4



 .

Similarly, note that C2 is obtained from C1 by pulling the vertex (a3, v3) to
(a3, v1). Thus, C2 is a cycle or an edge disjoint union of cycles each of which
has the same properties as C1. By continuing in this process, we get a cycle
or edge disjoint union of cycles Cm−1 which obtained from cycles of length 3
and Cm−2 each of which has the same properties as Cm−2. Moreover, each
vertex of Cm−1 lies on the fiber G�v1 except possibly the vertex (am, vm).
To this end, let v1 = v(m−1)1v(m−1)2 . . . v(m−1)n(m−1)

= vm be the path of TH

joining the two vertices v1 and vm. Let

Cm = Cm−1 ⊕





n(m−1)−1
⊕

j=1

P
v1j

v1j+1
am−1am,vm−1



⊕





n(m−1)−1
⊕

j=1

P
v1j

v1j+1
a1am,v1



 .

Then Cm = (a1, v1)(a2, v1) . . . (am, v1)(a1, v1) which is a cycle or edge dis-
joint union of cycles of the fiber G�v1. Hence,
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Cm = C ⊕





n1−1
⊕

j=1

P
v1j

v1j+1
a1a2,v1



⊕





n1−1
⊕

j=1

P
v1j

v1j+1
a3a2,v3



⊕ · · · ⊕





n(m−1)−1
⊕

j=1

P
v1j

v1j+1
am−1am,vm−1



⊕





n(m−1)−1
⊕

j=1

P
v1j

v1j+1
a1am,v1



 .

Thus,

C = Cm ⊕





n1−1
⊕

j=1

P
v1j

v1j+1
a1a2,v1



⊕





n1−1
⊕

j=1

P
v1j

v1j+1
a3a2,v3



⊕ · · · ⊕





n(m−1)−1
⊕

j=1

P
v1j

v1j+1
am−1am,vm−1



⊕





n(m−1)−1
⊕

j=1

P
v1j

v1j+1
a1am,v1



 .

Lemma 3.13. Every cycle of length three of G[H] which contains at least

one edge of an H-fiber can be written as a linear combination of PTH

G ∪

(A
(H−TH )
T ∗

G
,w0

).

Proof. Let C be a 3-cycle which contains at least one edge of an H-fiber.
We consider two cases:

Case 1. C is subgraph of an H-fiber. Then C is a subgraph of TG[H].

By (i) of Remark 3.8 PTH

TG
∪ (A

(H−TH)
T ∗

G
,w0

) is a basis of TG[H]. Thus, C can be

written as a linear combination of PTH

TG
∪ (A

(H−TH)
T ∗

G
,w0

).

Case 2. C is not a subgraph of an H-fiber. Since C contains at least one
edge of an H-fiber, C belongs to a fold of H. Note that, by (i) of Remark
3.8,

PH−TH

ab,w0
∪ PH−TH

ba,w0
∪
(

∪w∈V (T )P
TH

ab,w

)

∪ PTH

ba,w0

is a basis for ab[H] for any ab ∈ E(G). Thus, to prove the lemma it
is enough to show that each cycle of PH−TH

ab,w0
∪ PH−TH

ba,w0
can be written as



Minimal Cycle Bases of the ... 243

a linear combination of PTH

G ∪ (A
(H−TH)
T ∗

G
,w0

) for any ab ∈ E(G). Let {e1 =

a1b1, e2 = a2b2 . . . e|E(TG)| = a|E(TG)|b|E(TG)|} be the edge set of the rooted
tree T ∗

G. Note that

PH−TH

b1a1,w0
∪ PH−TH

a1b1,w0
⊆ PTH

G ∪A
(H−TH)
T ∗

G
,w0

.

Thus, the result is obtained if ab = a1b1. Now, we show that the result
is true for each edge e = ab ∈ E(G) different from a1b1. To this end, we
consider two subcases:

Subcase 1. e = ab ∈ T ∗
G. With out loss of generality, we can assume that

e1e2 . . . el be the path of T ∗
G joining a1b1 with ab, say e1 = a1b1 = a11b11

and e2 = a12b12 , . . . , el = a1l
b1l

= ab. Now, for each uv ∈ E(H − TH),
let u = u1u2 . . . ut = v be the path of TH connecting u and v, Hence,
u1u2 . . . utu1 is the cycle of H containing uv = utu1. Note that

Puv
b12a12 ,w0

= C∗
b11

⊕

t−1
⊕

i=1

P
uiui+1

b12a12 ,w0

where C∗
b11

: (b11 , u1)(b11 , u2) . . . (b11 , ut)(b11 , u1). C∗
b11

can be written as a

linear combinations of cycle of PH−TH

b11a11 ,w0
∪PH−TH

a11 b11 ,w0
∪
(

∪w∈V (T )P
TH

a11 b11 ,w

)

∪

PTH

b11a11 ,w0
because C∗

b11
is a cycle of a11b11 [H] = a1b1[H] and PH−TH

b11a11 ,w0
∪

PH−TH

a11 b11 ,w0
∪
(

∪w∈V (T )P
TH

a11 b11 ,w

)

∪PTH

b11a11 ,w0
is a basis of C(a11b11 [H]). More-

over, by (iii) of Remark 3.8, P
uiui+1

b12a12 ,w0
can be written as a linear combina-

tions of cycles of PTH
e2

because PTH
e2

is a basis of C(e2[TH ]). Thus, Puv
b12a12 ,w0

can be written as a linear combination of cycles of PTH

G ∪ A
(H−TH)
T ∗

G
,w0

. Now,

by a similar argument

Puv
b13a13 ,w0

= C∗
b12

⊕
t−1
⊕

i=1

P
uiui+1

b13a13 ,w0

where C∗
b12

: (b12 , u1) (b12 , u2) . . . (b12 , ut) (b12 , u1) which can be written

as a linear combinations of cycle of PH−TH

b11a11 ,w0
∪ (∪2

i=1P
H−TH

a1i
b1i

,w0
) ∪

(

∪w∈V (T ) ∪
2
i=1 P

TH

a1i
b1i

,w

)

∪ PTH

b11a11 ,w0
because PH−TH

b11a11 ,w0
∪ (∪2

i=1P
H−TH

a1i
b1i

,w0
) ∪

(

∪w∈V (T ) ∪
2
i=1 P

TH

a1i
b1i

,w

)

∪ PTH

b11a11 ,w0
is a basis of C(e1 ∪ e2[H]) by (i) of
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Remark 3.8. Moreover, by (iii) of Remark 3.8, P
uiui+1

b13a13 ,w0
can be writ-

ten as a linear combinations of cycles of PTH
e3

because PTH
e3

is a basis of
C(e3[TH ]). Thus, Puv

b13a13 ,w0
can be written as a linear combination of cycles

of PTH

G ∪ A
(H−TH)
T ∗

G
,w0

. By continuing in this procedure we show that for each

uv ∈ E(H − TH),

Puv
b1l

a1l
,w0

= C∗
b1l

⊕

t−1
⊕

i=1

P
uiui+1

b1l
a1l

,w0

where C∗
b1l

: (b1l−1
, u1)(b1l−1

, u2) . . . (b1l−1
, ut)(b1l−1

, u1) which can be written

as a linear combinations of cycle of PTH

G ∪ (A
(H−TG)
TG,w0

). Moreover, by (iii)

of Remark 3.8, P
uiui+1
el,w0 can be written as a linear combinations of cycles

of PTH
el

because it is a basis of C(el[TH ]). Thus, each cycle of PH−TH

ba,w0

can be written as a linear combination of cycles of PTH

G ∪ A
(H−TH)
T ∗

G
,w0

. Since

PH−TH

ab,w0
⊆ PTH

G ∪A
(H−TH)
T ∗

G
,w0

, as a result each cycle of PH−TH

ab,w0
∪PH−TH

ba,w0
can be

written as a linear combinations of cycles of PTH

G ∪A
(H−TH)
T ∗

G
,w0

.

Subcase 2. e = ab /∈ T ∗
G. Assume that P = e1e2 . . . el be a path of T ∗

G

joining a1b1and a, and P ∗ = e∗1e
∗
2 . . . e∗k be a path of T ∗

G joining a1b1 and b.
By applying the same argument as in Subcase 1 on P ∪ ab and P ∗ ∪ ba, we
get Puv

ba,w0
and Puv

ab,w0
, respectively, for any uv ∈ E(H − TH). Thus, each

cycle of PH−TH

ab,w0
∪ PH−TH

ba,w0
can be written as a linear combination of cycles

of PTH

G ∪A
(H−TH)
T ∗

G
,w0

.

Note that if each vertex of the cycle basis B is relevant, then B is minimal.

Theorem 3.14. Let G and H be any two graphs. If BG�w0
is a minimal

cycle basis of G�w0, then B(G,H) = PTH

G ∪(A
(H−TH)
TG

)∪BG�w0
is a minimal

cycle basis of G[H].

Proof. Let B be a minimal cycle basis of G[H] obtained by applying the

Greedy algorithm. Since PTH

G ∪ (A
(H−TH)
T ∗

G
,w0

) is a linearly independent set

consisting of 3-cycles, as a result we may assume that PTH

G ∪(A
(H−TH)
T ∗

G
,w0

) ⊆ B.

Now, let S = B−
(

PTH

G ∪ (A
(H−TH)
T ∗

G
,w0

)
)

. By Lemmas 3.9, 3.11 and 3.13 each

cycle of S neither contains an edge of any H-fiber nor contains two edges
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of the same fold of H. Thus, the cycles of S must be as in Lemma 3.12.
Since B is a minimal cycle basis, then each cycle of S is relevant. Now, by
Lemmas 3.12 and 3.11, each cycle of S is a linear combination of cycles of
length three (of the form Puv

ab,w) with cycle corresponding to a cycle of G�w0

of the same length. By Lemma 3.12 and 3.13, those corresponding cycles of
G�w0 must be linearly independent. Since |S| = dim C(G�w0), as a result
the set of corresponding cycles of cycles of S is a basis for G�w0. Thus,
l(S) ≥ l(BG�w0

). Hence,

l(B) = l
(

PTH

G ∪
(

A
(H−TH)
TG

))

+ l(S)

≥ l
(

PTH

G ∪
(

A
(H−TH)
TG

))

+ l (BG�w0
)

= l(B(G,H)).

On the other hand, since B is minimal, we have that

l(B) ≤ l(B(G,H)).

Thus,

l(B) = l(B(G,H)).

Therefore, B(G,H) is minimal.

The following two corollaries are straightforward from theorem 3.14.

Corollary 3.15. l(G[H]) = 3(|E(G)||V (H)|2+dim C(H)|V (G)|−|E(G)|)+
l(G).

Corollary 3.16. λ(G[H]) = max{3, λ(G)}.
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