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Abstract

The Wiener number of a graph G is defined as 1

2

∑

d(u, v), where
u, v ∈ V (G), and d is the distance function on G. The Wiener number
has important applications in chemistry. We determine the Wiener
number of an important family of graphs, namely, the Kneser graphs.
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1. Introduction

Let G = (V,E) be a simple connected undirected graph with |V (G)| = n
and |E(G)| = m. Given two distinct vertices u, v of G, let d(u, v) denote the
distance (= number of edges in a shortest path between u and v in G). The
Wiener number (also called Wiener Index) W (G) of the graph G is defined
by

W =
1

2

∑

u,v∈V (G)

d(u, v).

Given the structure of an organic compound, the corresponding (molec-
ular) graph is obtained by replacing the atoms by vertices and covalent
bonds by edges. The Wiener number is one of the oldest molecular-graph-
based structure-descriptors, first proposed by the American chemist Harold
Wiener [18], as an aid to determine the boiling point of paraffins. The study
of Wiener number is one of the current areas of research in mathematical
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chemistry (see, for example, [14] and [19]). For more details on the com-
putation of Wiener number and its applications to chemistry, see [8]. Some
recent articles in the topic are [2, 5, 6]. One of the important families of
graphs is the family of Kneser graphs. There are a good number of papers
in problems dealing with the coloring parameters of Kneser graphs. See
for instance, [9–12, 16]. Extremal problems concerning Kneser graphs are
considered in [7]. In this paper, we obtain an explicit expression, based on
mathematical induction, for the Wiener number of the Kneser graphs. Our
notation and terminology are as in [3].

We recall the definition of a Kneser graph.

Let n and k be positive integers, m = 2n + k, where k ≥ 1. We denote
by [m] the set {1, 2, . . . ,m} and by

(

[m]
n

)

the collection of all n-subsets of [m].

The Kneser graph KG(m,n) has vertex set
([m]

n

)

, in which two vertices are
adjacent iff they are disjoint. It is to be noted that Kneser graphs are vertex-
transitive but not distance-regular and therefore not distance-transitive.

2. Some Basic Results

Lemma 2.1 (Stahl [15]). If A,B are two distinct vertices of KG(m,n),
with d(A,B) = 2p, then |A ∩ B| ≥ n − kp.

A consequence of Lemma 2.1 is Lemma 2.2.

Lemma 2.2. If A,B are two distinct vertices of KG(m,n), with d(A,B) =
2p + 1, then |A ∩ B| ≤ kp.

Proof. Let A,B,C be vertices of KG(m,n) such that d(A,C) = 2p,
d(C,B) = 1 and d(A,B) = 2p + 1 so that C is the vertex preceding B in
a A-B distance path in G. By Lemma 2.1, |A ∩ C| ≥ n − kp. But since
|B ∩ C| = ∅, |A ∩ B| ≤ n − (n − kp) = kp.

Using Lemmas 2.1 and 2.2, Valencia-Pabon and Vera [13] have determined
the diameter of G.

Lemma 2.3 ([13]). The diameter of the Kneser graph KG(m,n) is

dn−1
k

e + 1.
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3. Wiener Number of KG(m,n)

We now compute the Wiener number of the Kneser graph KG(m,n).
We first observe that for any two distinct vertices of KG(m,n), |A∩B| ∈

{0, 1, . . . , n − 1}. Further d(A0, A) = 0 if and only if |A0 ∩ A| = n, and
d(A0, A) = 1 if and only if |A0 ∩ A| = 0.

Lemma 3.1. Let G = KG(m,n) be a Kneser graph with diameter D. Fix

A0 ∈ V (G). Then for any A ∈ V (G), p ≥ 1,

(i) d(A0, A) = 2p < D, if and only if

|A0 ∩ A| ∈ N2p := {n − kp, n − kp + 1, . . . , n − k(p − 1) − 1},

(ii) d(A0, A) = 2p + 1 < D, if and only if

|A0 ∩ A| ∈ N2p+1 := {k(p − 1) + 1, k(p − 1) + 2, . . . , kp}, and

(iii) d(A0, A) = D, if and only if

|A0 ∩ A| ∈ ND :=







{

k(D
2 − 1) + 1, . . . , n − k(D

2 − 1) − 1
}

if D is even,
{

k(D−1
2 − 1) + 1, . . . , n − k(D−1

2 ) − 1
}

if D is odd.

We set N0 = {n} and N1 = {0}. Before we prove Lemma 3.1, we observe
the following:

Observation 3.2. (a) |N0| = 1, |N1| = 1 and |Ni| = k when 2 < i < D.

(b) The sets N2p+1 are successive disjoint intervals (intervals of positive

integers) that are increasing from 0 to n as p increases from 1, and the

sets N2p are successive disjoint intervals that are decreasing from n to

0 again as p increases from 1, that is, for i < j and for x ∈ Ni and

y ∈ Nj, x < y if i and j are odd and x > y if i and j are even.

(c) If p 6= q and p < D and q < D, then Np ∩ Nq = φ.

We prove (c); (a) and (b) are obvious from the definition of the sets Ni.

Proof of (c). If p and q are both even or both odd, there is nothing to
prove. So let one of them be odd and the other even, say, p odd and q
even. Also let i = largest even integer less than D, and j = largest odd
integer less than D, and j = 2e + 1. This implies that i = j ± 1. First, let
i = j − 1, so that i = 2e. Again, from the definition of i and j, we observe
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that p ≤ j = 2e + 1, q ≤ i = 2e and therefore by (b) of Observation 3.2, it
suffices to prove that N2e∩N2e+1 = ∅. Indeed, we verify that ke < n−ke−1.
This is true, since ke ≥ n − ke − 1 implies that n − 1 ≤ 2ke ≤ k(D − 2),
a contradiction to the fact that D = dn−1

k
e + 1. Similarly, we verify the

result when i = j + 1.

Proof of Lemma 3.1. We prove (i) and (ii) by induction on i where
d(A0, A) = i < D.

Let d(A0, A) = 2. By Lemma 2.1, |A0 ∩ A| ≥ n − k. If |A0 ∩ A| = n,
then d(A0, A) = 0, a contradiction. Hence n > |A0 ∩ A| ≥ n − k and so
|A0 ∩ A| ∈ N2.

Conversely, let |A0 ∩ A| ∈ N2 = {n − k, n − k + 1, . . . , n − 1}, so that
|A0 ∩A| = n− k + r, where 0 ≤ r < k. Consequently, |A0 ∪A| = 2n− (n −
k + r) = n+k− r; and hence |[m]\(A0 ∪A)| = (2n+k)− (n+k− r) = n+ r
where 0 ≤ r < k. From these n + r elements, we can find a vertex Z in
V (G) such that |A0 ∩ Z| = 0 = |A ∩ Z|. Therefore, d(A0, Z) = d(A,Z) = 1
and so d(A0, A) ≤ 2. Clearly, d(A0, A) < 2 is not possible and therefore
d(A0, A) = 2.

Next, let d(A0, A) = 3. By Lemma 2.2, |A0 ∩ A| ≤ k. If |A0 ∩ A| = 0,
then d(A0, A) = 1 which is not true. Therefore |A0∩A| ∈ N3 = {1, 2, . . . , k}.

Conversely, let |A0 ∩ A| ∈ N3 = {1, 2, . . . k}, so that |A0 ∩ A| = k − r
for 0 ≤ r < k. Hence if X = A0 ∩ A, then A0 = X ∪ {α1, α2, . . . , αn−k+r},
and A = X ∪ {β1, β2, . . . , βn−k+r}, where {α1, α2, . . . , αn−k+r} is disjoint
from {β1, β2, . . . , βn−k+r}. Further let C = [m]\(A0 ∪ A). Then |C| =
(2n + k) − (2n − k + r) = 2k − r, where 0 ≤ r < k. Choose k elements
c1, . . . ck from C and set B =

(

C\{c1, . . . ck}
)

∪ {α1, . . . , αn−k+r}. Then
|B| = (2k − r) − k + (n − k + r) = n and so B ∈ V (G), |A0 ∩ B| =
n − k + r and |A ∩ B| = 0. Since 0 ≤ r < k, we have |A0 ∩ B| ∈ N2 and
therefore, d(A0, B) = 2. Also d(A,B) = 1. Hence d(A0, A) ≤ 3, which gives
d(A0, A) = 3. Thus we have established the result when d(A0, A) = 2 or 3.

Assume now that d(A0, A) = i > 3 and that the result is true if
d(A0, A) ∈ {2, 3, . . . , i − 1}, i < D.

Case (i). Let i be odd so that i = 2p + 1 < D.
Let d(A0, A) = 2p+1. By Lemma 2.2, |A0∩A| ≤ kp. If |A0 ∩A| ≤ k(p−1),
by the induction hypothesis, d(A0, A) ≤ 2(p−1)+1 which is a contradiction.
Thus |A0 ∩ A| ∈ N2p+1 = {k(p − 1) + 1, . . . , kp}.

Conversely, let |A0 ∩ A| ∈ N2p+1 = {k(p − 1) + 1, . . . kp}, so that
|A0 ∩ A| = kp − r where 0 ≤ r < k. Set Y ′ = A0 ∩ A, so that A0 =
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Y ′ ∪ {a1, . . . , an−kp+r}, and A = Y ′ ∪ {b1, . . . , bn−kp+r} where the sets
{a1, . . . , an−kp+r} and {b1, . . . , bn−kp+r} are disjoint. Further, let C ′ =
[m]\

(

A0 ∪ A
)

. Then, |C ′| = 2n + k − (2n − kp + r) = k(p + 1) − r. Now
choose k elements c′1, c

′
2, . . . c

′
k from C ′ and set B′ =

(

C ′\{c′1, . . . , c
′
k}

)

∪
{a1, . . . an−kp+r}. Hence |B ′| = n and so B ′ ∈ V (G), |A0 ∩B′| = n − kp + r
and |A∩B′| = 0. Since, 0 ≤ r < k, by the induction hypothesis, d(A0, B

′) =
2p and d(A,B ′) = 1 and so, d(A0, A) ≤ 2p + 1. If d(A0, A) < 2p + 1, by the
induction hypothesis, |A0 ∩A| 6= kp− r, for any r in 0, 1, 2, . . . , k − 1, which
is a contradiction. Thus d(A0, A) = 2p + 1.

Case (ii). Let i be even so that i = 2p < D, p ≥ 2.

Let d(A0, A) = 2p. By Lemma 2.1, |A0∩A| ≥ n−kp. If |A0∩A| ≥ n−k(p−1),
by the induction hypothesis, d(A0, A) ≤ 2(p − 1), which is a contradiction.
Thus |A0 ∩ A| ∈ N2p = {n − kp, n − kp + 1, . . . , n − k(p − 1) − 1}.

Conversely, let |A0 ∩ A| ∈ N2p, so that |A0 ∩ A| = n − kp + r, where
0 ≤ r < k. Set Y ′′ = A0 ∩ A, A0 = Y ′′ ∪ {x1, x2, . . . xkp−r}, and A = Y ′′ ∪
{y1, y2, . . . ykp−r} where the set {x1, x2, . . . xkp−r} is disjoint from {y1, y2, . . .
ykp−r}. Further, if B ′′ = Y ′′ ∪ {x1, . . . xk, yk+1, . . . , ykp−r}, then |B ′′| = n
and so B′′ ∈ V (G). Also |A0 ∩B′′| = n− k(p− 1)+ r, and |A∩B ′′| = n− k.
Since 0 ≤ r < k, by the induction hypothesis, d(A0, B

′′) = 2(p − 1) and
d(A,B′′) = 2 and so d(A0, A) ≤ 2p. If d(A0, A) < 2p, by the induction
hypothesis, |A0 ∩ A| 6= n − kp + r for any r in 0, 1, . . . , k − 1, which is a
contradiction. Thus d(A0, A) = 2p.

We have settled all the cases for which d(A0, A) ≤ D − 1. We now
dispose of the case when d(A0, A) = D. There are two possibilities according
to whether D is even or odd.

Case (a). D is even. Let d(A0, A) = D, so that d(A0, A) 6≤ D − 1.
Consequently,

|A0 ∩ A| /∈
D−1
∪

i=2
Ni ∪ {0, n} = ∪

i even
2≤i≤D−1

Ni ∪
j odd

2≤j≤D−1

Nj ∪ {0, n}.

In 2 to D−1, there are D
2 −1 odd numbers and D

2 −1 even numbers. Hence

∪
i even

2≤i≤D−1

Ni =

D

2
−1

∪
i=1

N2i =
{

n − k
(D

2
− 1

)

, . . . , n − 1
}

,
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and

∪
j odd

2≤j≤D−1

Nj =

D
2 −1

∪
j=1

N2j+1 =
{

1, 2, . . . , k
(D

2
− 1

)}

,

and hence

|A0 ∩ A| ∈
{

k
(D

2
− 1

)

+ 1, . . . , n − k
(D

2
− 1

)

− 1
}

.

Conversely, let

|A0 ∩ A| ∈
{

k
(D

2
− 1

)

+ 1, . . . , n − k
(D

2
− 1

)

− 1
}

.

Then |A0 ∩ A| /∈
D−1
∪

i=2
Ni ∪ {0, n}, and so d(A0, A) = D.

Case (b). D is odd. In this case,

|A0 ∩ A| /∈
D−1
∪

i=2
Ni ∪ {0, n} = ∪

i even
2≤i≤D−1

Ni ∪
j odd

2≤j≤D−1

Nj ∪ {0, n}.

In 2 to D−1, there are D−1
2 −1 odd numbers and D−1

2 even numbers. Hence,

∪
i even

2≤i≤D−1

Ni =

D−1

2

∪
i=1

N2i =
{

n − k
(D − 1

2

)

, . . . , n − 1
}

,

and

∪
j odd

2≤j≤D−1

Nj =

D−1

2
−1

∪
j=1

N2j+1 =
{

1, 2, . . . , k
(D − 1

2
− 1

)}

.

Therefore, |A0 ∩ A| ∈
{

k(D−1
2 − 1) + 1, . . . , n − k(D−1

2 ) − 1
}

. Conversely, if

|A0∩A| ∈
{

k(D−1
2 −1)+1, . . . , n−k(D−1

2 )−1
}

, then |A0∩A| /∈
D−1
∪

i=2
Ni∪{0, n},

and hence d(A0, A) = D.

Remark 3.3. Let A0 ∈ V
(

KG(m,n)
)

. Let 0 ≤ j ≤ n. Then the number

of vertices A of KG(m,n) such that |A0 ∩ A| = j is equal to
(

n
j

)(

n+k
n−j

)

.
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Theorem 3.4. The Wiener number W of the Kneser graph KG(m,n)is
given by

W =
1

2

(

2n + k

n

)





bD−1

2
c

∑

i=0

(2i)

min{n−k(i−1)−1,n}
∑

j=n−ki

(

n

j

)(

n + k

n − j

)

+

dD−1

2
e−1

∑

i=0

(2i + 1)

ki
∑

j=max{k(i−1)+1,0}

(

n

j

)(

n + k

n − j

)

+ S



 ,

where

S =







































D

n−k( D

2
−1)−1

∑

j=k( D

2
−1)+1

(

n

j

)(

n + k

n − j

)

if D is even,

D

n−k( D−1

2
)−1

∑

j=k( D−1

2
−1)+1

(

n

j

)(

n + k

n − j

)

if D is odd.

(Note: the min and max symbols are used in the summation to take care of
the case i = 0.)

Proof. Let A0 be a fixed vertex of KG(m,n). By Lemma 3.1 and Remark
3.3, we see that the number of vertices at distance l < D is given by

min{n−k(i−1)−1,n}
∑

j=n−ki

(

n

j

)(

n + k

n − j

)

, if l = 2i, and

ki
∑

j=max{k(i−1)+1,0}

(

n

j

)(

n + k

n − j

)

, if l = 2i + 1.

and the number of vertices at distance D is given by

n−k( D

2
−1)−1

∑

j=k( D

2
−1)+1

(

n

j

)(

n + k

n − j

)

, if D is even, and

n−k( D−1

2
)−1

∑

j=k( D−1

2
−1)+1

(

n

j

)(

n + k

n − j

)

, if D is is odd.
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Since KG(m,n) is vertex-transitive, we get the expression given in Theorem
3.4 for W .

We now deduce the Wiener number of the odd graphs Ok. The graph Ok is
the Kneser graph KG(2k − 1, k − 1) so that it is obtained by setting k = 1
and n = k − 1 in KG(m,n). By Lemma 2.3, the diameter of Ok = D =
dk−2

1 e + 1 = k − 1. Substituting k = 1 and n = k − 1 in Theorem 3.4, the
Wiener number of odd graphs is given by

W (Ok) =
1

2

(

2k − 1

k − 1

)





bD−1

2
c

∑

i=0

(2i)

k−1−i
∑

j=k−1−i

(

k − 1

j

)(

k

k − 1 − j

)

+

dD−1

2
e−1

∑

i=0

(2i + 1)

i
∑

j=i

(

k − 1

j

)(

k

k − 1 − j

)

+ S





where

S =



































D

k−1−D

2
∑

j= D

2

(

k − 1

j

)(

k

k − 1 − j

)

if D is even,

D

k−2−D−1

2
∑

j= D−1

2

(

k − 1

j

)(

k

k − 1 − j

)

if D is odd,

=
1

2

(

2k − 1

k − 1

)





b k−2

2
c

∑

i=0

(2i)

(

k − 1

k − 1 − i

)(

k

i

)

+

d k−2

2
e−1

∑

i=0

(2i + 1)

(

k − 1

i

)(

k

k − 1 − i

)

+ S



 ,(A)

where

S =























D

(

k − 1

k − 1 − D
2

)(

k
D
2

)

if D is even,

D

(

k − 1

(D−1
2 )

)(

k

k − 1 − (D−1
2 )

)

if D is odd.
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Now,
(

k − 1

k − 1 − i

)(

k

i

)

=
(k − 1)!

i!(k − 1 − i)!

k!

i!(k − i)!

=
k

k − i

(k − 1)!2

(i!)2(k − i − 1)!2
=

k(k − 1)2 · · · (k − i + 1)2(k − i)

12 · · · i2

and
(

k − 1

i

)(

k

k − 1 − i

)

=
(k − 1)!

i!(k − i − 1)!

k!

(1 + i)!(k − 1 − i)!

=
k

i + 1

(k − 1)!2

(i!)2(k − i − 1)!2
=

k(k − 1)2 · · · (k − i)2

12 · · · i2(1 + i)
.

When D is even, we can add S to the first summation by taking i = d k−2
2 e

in (A) and when D is odd, to the second summation by taking i = b k−2
2 c

in (A). This gives

(B)

W (Ok) =
1

2

(

2k − 1

k − 1

)





d k−2

2
e

∑

i=0

(2i)
k(k − 1)2 · · · (k − i + 1)2(k − i)

12 · 22 · · · i2

+

b k−2

2
c

∑

i=0

(2i + 1)
k(k − 1)2 · · · (k − i)2

12 · 22 · · · i2 · (1 + i)



 .

Expression (B) has also been established by Tilakam [17] using intersection
arrays [4]. Another equivalent expression for W (Ok) is given in [1].
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