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Abstract

By h(G,z) and P(G,\) we denote the adjoint polynomial and
the chromatic polynomial of graph G, respectively. A new invari-
ant of graph G, which is the fourth character R4(G), is given in
this paper. Using the properties of the adjoint polynomials, the ad-
joint equivalence class of graph B, _¢ 1,2 is determined, which can
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[J. Wang, R. Liu, C. Ye and Q. Huang, A complete solution to the
chromatic equivalence class of graph B,,_7 1,3, Discrete Math. (2007),
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h(G,z) and P(G,\), we also simultaneously determine the chromatic
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1. INTRODUCTION

All graphs considered here are finite and simple. Notations and terminology
not defined here will conform to those in [1]. For a graph G, let V(G), E(G),
p(@), ¢(G) and G, respectively, be the set of vertices the set of edges, the
order, the size and the complement of G.

For a graph G, we denote by P(G, ) the chromatic polynomial of G. A
partition {41, As, ..., A} of V(G), where r is a positive integer, is called an
r-independent partition of a graph G if every A; is a nonempty independent
set of G. We denote by a(G, r) the number of r-independent partitions of G.
Thus the chromatic polynomial of G is P(G,\) = 3,5 a(G,7)(\),, where
ANy =AXA=1)---(A=r+1) for all » > 1. The readers can turn to [13] for
details on chromatic polynomials.

Two graphs G and H are said to be chromatically equivalent, denoted
by G ~ H, if P(G,\) = P(H,)\). By |[G] we denote the equivalence class
determined by G under “ ~ 7. It is obvious that “ ~ 7 is an equivalence
relation on the family of all graphs. A graph G is called chromatically unique
(or simply x-unique) if H = G whenever H ~ G. See [6, 7] for many results
on this field.

b

Definition 1.1 ([11]). Let G be a graph with p vertices, the polynomial

hG,z) = Z oG, i)z

i=1

is called its adjoint polynomial.

Definition 1.2 ([11]). Let G be a graph and h(G, z) the polynomial with
a nonzero constant term such that h(G,z) = 2P S hy (G, z). If hi(G,z) is
an irreducible polynomial over the rational number field, then G is called
irreducible graph.

Two graphs G and H are said to be adjointly equivalent, denoted by G L ,
if h(G,z) = h(H,z). Evidently, “ L7 is an equivalence relation on the
family of all graphs. Let [G], = {H|H A G}. A graph G is said to be
adjointly unique (or simply h-unique) if H = G whenever H La.

Theorem 1.1 ([3]). (1) G 1oy:) if and only if G ~ H.
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2) [Glh={H|He[CG]}.
(3) G is x-unique if and only if G h-unique.

The graphs with orders n used in the paper are drawn as follows:
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Now we define some classes of graphs, which will be used throughout the
paper.

(1) Cy, (resp. P,) denotes the cycle (resp. the path) of order n, and write
C={Cn|n>3},P={P,|n>2}and U ={U(1,1,¢,1,1) |t > 1}.

(2) D,, (n > 4) denotes the graph obtained from C'3 and P,,_ by identifying
a vertex C3 with a pendant vertex of P, .

(3) 17y 10,05 is a tree with a vertex v of degree 3 such that T3, 1,5, — v =
P, UP,UP, and I3 > Iy > Iy, write 7° = {T11,,|(l3 > 1)} and
T = {Tl1,l2,l3 | (lla l2,l3) # (]-7 1, 1)}

(4) By Bs we denote the graph obtained from C3 by identifying a vertex
of C5 with the vertex of degree 2 of the path Ps.
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(5) 29:{C’TL7D117I(I’Tll,lzl's|n24}'
(6) 5 = {Cr(Ps)a Qr,s, Br,s,ta Fna Ur,s,t,a,ba KZ}
(7) w = {%1” %71?2(7“,3)71/}%(73 3)71?2(7",37&:1#?}-

For convenience, we simply denote h(G,z) by h(G) and h1(G,x) by hi(G).
By 4(G) and v(G) we denote the smallest and the second smallest real root
of h(Q), respectively. Let dg(v), simply denoted by d(v), be the degree of
vertex v. For two graphs G and H, GUH denotes the disjoint union of GG and
H, and mH stands for the disjoint union of m copies. By K, we denote the
complete graph with order n. Let ng(K3) and ng(K4) denote the number
of subgraphs isomorphic to K3 and K}, respectively. On the real field, let
g(x) | f(x) (resp. g(x) [ f(x)) denote g(x) divides f(x) (resp. g(x) does
not divide f(z)) and 9(f(x)) denote the degree of f(z). By (f(x),g(x)) we
denote the largest common factor of f(x) and g(z).

It is an interesting problem to determine [G] for a given graph G. From
Theorem 1.1, it is not difficult to see that the goal of determining [G] can
be realized by determining [ G ],. The related topics have been partially
discussed in this respect by Dong et al. in [3]. In this paper, using the
properties of adjoint polynomials, we determine the [Bj_¢12]; for graph
By,—¢6.1,2, simultaneously, | B, 1,2 | is also determined, where n > 8.

2. PRELIMINARIES
For a polynomial f(z) = 2™ + bya™ ! + bya™ 2 + ... + b,, we define

R @) ~+1 i a=1,
1)) =

by — (") +1 if n>2.
For a graph G, we write R1(G) instead of Ry (h(Q)).

Definition 2.1 ([2, 11]). Let G be a graph with g edges. The first character
of a graph G is defined as

© 0 if ¢ =0,
R =
' bo(G) — () +1 if ¢ > 0.
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The second character of a graph is defined as

Ro(G) = ba(G) — (blf)) ~((G) —2) <b2<G> - (bl(f)» (@),

where b;(G)(0 < ¢ < 3) is the first four coefficients of h(G).

Lemma 2.1 ([2, 11]). Let G be a graph with k components of G1,Ga, . ..,Gk.
Then

k k
MG) =[] 1(Gi) and R;(G)=>_ R;(G;) for j=1,2.

i=1 i=1

It is obvious that R;(G) is an invariant of graphs. So, for any two graphs
G and H, we have R;(G) = Rj(H) for j = 1,2 if h(G) = h(H) or hi(G) =
hi(H).

Lemma 2.2 ([8, 11]). Let G be a graph with p vertices and q edges. Denote
by M the set of vertices of the triangles in G and by M(i) the number
of triangles which cover the vertex ¢ in G. If the degree sequence of G is

(dy,da,...,dp), then

(1) bo(G) =1,01(G) = q.

(2) b2(G) = (131) = 3 2 df +na(Ko).

M=

p
(3) b3(G) = & (4> +3q+4) - 42 ;d%% '

7

B+ Y didj— Y M(i)d;
1 ijeE(G) ieM

+ (¢ +2)na(Ks) + na(Ka).

For an edge e = viv9 of a graph G, the graph G * e is defined as follows: the
vertex set of Gxe is (V(G)—{v1,v2})U{v}(v ¢ G), and the edge set of Gxe is
{e'|€ € E(G), ¢ is not incident with vy or va}U{uv |u € Ng(v1)NNg(va)},
where N¢(v) is the set of vertices of G which are adjacent to v.

Lemma 2.3 ([11]). Let G be a graph with e € E(G). Then
hMG,z) = h(G —e,x) + h(G x e, x),
where G — e denotes the graph obtained by deleting the edge e from G.

Lemma 2.4 ([11]). (1) Forn >2, h(P,) = X k<, (nﬁk)wk
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(2) For n > 4, h(Dn) = Spen (2050 + (,512)) 2%, h(Ky U D) =
h(TLQ,n,g).

(3) Forn>4,m > 6, h(P,) = (h(Pp—1)+h(Pn—2)), (D) = x(h(Dpm-1)
+ h(Dyy—2)).

Lemma 2.5 ([17]). Let {g,(x)}, simply denoted by {g,}, be a polynomial
sequence with integer coefficients and g, (x) = (g, (x) + g, _,(x)). Then

(1) 9n (w) = h(Pk)gnfk (w) + xh(‘Pkfl)gn—k—l(x)'

(2) P1(Pn) [ 9y11)0: (@) of and only if hi(Py)|g,(x), where 0 < i <n,n > 2
and k > 1.

Lemma 2.6 ([4, 10]). Let G be a nontrivial connected graph with n vertices.

Then

(1) R1(G) < 1, and the equality holds if and only if G = P,(n > 2) or
G~ Ks.

(2) R1(G) =0 if and only if G € V.

(3) Ri(G) = =1 if and only if G € &, especially, q(G) = p(G) + 1 if and
only if G € {F, |n>6} U{K, }.

(4) R1(G) = =2 if and only if G = Bs for q(G) = p(G) =5, G € ¢ for
q(G) = p(@) and G =2 K, for q(G) = p(G) + 2.

Lemma 2.7 ([5]). For k > 0, let G"F) denote the union of the compo-

nents of G whose the first characters are —k and s, denote the number of

components of G . Then

(1) If k=0, or1, or2, then ¢(G"F) — p(GR) < ks, and the equal-
ity holds if and only if each component G; of G\=F) satisfies q(G;)—
p(Gi) =k, where 1 <i<s,.

(2) If k=3, then q(GER) — p(GHF) < 25, and the equality holds if and
only if each component G; of G\=3) werifies q(G;) — p(G;) = 2, where
1<e<s,.

Lemma 2.8 ([17]). Let G be a connected graph and H a proper subgraph
of G, then
B(G) < B(H).

Lemma 2.9 ([17]). Let G be a connected graph. Then
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(1) B(G) = —4 if and only if
G € {T(1,2,5),T(2,2,2),T(1,3,3), K1 4,C4(P2),Q(2,2), K, , Dg} UU.
(2) B(G) > —4 if and only if
Ge{K,,T(1,2,i)(2<i<4),D;4<i<T)}UPUCUT".

Lemma 2.10 ([17]). Let G be a connected graph. Then —(2++/5) < B(G) <
—4 if and only if G is one of the following graphs:

(1) T117127l3 forli =110 =2,l3 >5 o0rly =1,lp > 2,3 >3, orly =1y =
2,13 > 2, orly =2,1; =1y = 3.

(2) Urstap forr =a =1, (r,s,t) € {(1,1,2),(2,4,2),(2,5,3),(3,7,3),
(3,8,4)}, orr=a=1,s>1,t> *(s,b),bZl, where (s,b) # (1,1)
and

s+b+2, if s>3,
t*t = b+ 3, if s=2,
b, if s=1.

(3) Dy, forn >09.

(4) Cn(Py) for n > 5.

(5) F, form >9.

(6) Byst forr=5,s=1andt=3, orr>1,s=1ift=1, orr >4,

s=1ift=2,0orb>c+3,s=1ift>3.
(7) G§C4(P3), OTGgQLQ.

Lemma 2.11 ([14]). Let graph Gy, € \{Fy, Uy s 10, Ky }, then
(1) b3(Gy) = b3(Dy) —n+5 if and only if

Gn € {CT’(PS) ‘T > 47 5> 3}U{Q1,n—4 ’ n > G}U{Br,l,ta

(2) b3(Gp) = b3(Dy,) —n+6 if and only if

Gn € {Qr,s ’74, S Z 2} U {Bl,l,ta Br,s,t ‘ T, 37t Z 2}

Lemma 2.12 ([14]). Let graph G,, € ¥, then b3(Gp) = b3(Dpy1) —2(n+1)
+t, where 10 <t < 13.
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3. THE ALGEBRAIC PROPERTIES OF ADJOINT POLYNOMIALS

3.1. The divisibility of adjoint polynomials and the fourth
character of graph

Lemma 3.1.1 ([17]). Forn,m > 2, h(P,) | h(Py,) if and only if n+1|m+1.

Theorem 3.1.1.

(1) Forn 2 77 p(Bn—671,2) = { N_,l
2

if n is even,

| I3

otherwise.

2 ifn is even,
(2) Forn >7, 0(h1(Bn-612)) = { nil
2

,  otherwise.
(3) Forn>9, h(Bn-612) = 2(h(Byn-712) + h(Bn-s12))-
Proof. (1) Choosing a pendant edge e = wv € E(Bj,_g,1,2) such that

d(u) = 1,d(v) = 3, by Lemma 2.3 we have h(Bp—¢12) = zh(Dp—1) +
xh(P2)h(Dy—4). We have, from Lemma 2.4, that

n—1

—4
p(Kl Uanl) =14 { J and p(K1 UpP UDn,4) =24 Ln J .

2

If n is even, then p(Ky1 U Dy 1) = p(K1 U P U D,_4) = 4, which implies
that p(B,—6,12) = 5. If n is odd, then we arrive at p(Ky U D,_1) = "TH >
"Tfl = p(K1 U Py UD,,_4), which indicates that p(Bp—¢12) = ”Tfl Hence
the result holds.

(2) obviously follows from (1). ]

(3) Choosing a pendant edge e = wv € E(Bj,_g,1,2) such that d(u) = 1,
d(v) = 3, we have, by Lemma 2.4, that

h(Bp-7.13) = th(Dp—1) + zh(P2)h(Dp_4)

= x(xh(Dn—2) + xh(Dn-3)) + zh(P,)(xh(Dn—s) + xh(Dn—s))

— 2(h(Dy_2) + 2h(Py)h(Dy_5)) + 2(wh(Dy_5) + 2h(P2)( D))

= 2(h(Bn-712) + h(Bn-812))- n

Theorem 3.1.2. Forn > 2 and m > 7, h(P,)|h(Bm—612) if and only if
n=2and m=3k+6 orn=4 and m =5k + 3, where k > 1.
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Proof. Let go(z) = —2*—62°— 1022 —62—1, g1(z) = 2*+ 523 +62% +4z+1
and gm () = 2(gm—1(x) + gm—2(z)). We can deduce that

go(r) = —2* — 623 — 1022 — 62 — 1,
g1(z) = 2t + 523 + 62% + 4z + 1,
ga2(z) = 43 — 222,
(3.1) g3(x) = ot + 423 + 422 + 1,
ga(x) = 223 + 22,
gs(x) = 25 + 62* + 523 + 22,
()

g6(x) = 28 + 62° + Tzt 4 223,

gm(x) = W(Bpr_713) if m>T.

Let m = (n+1)k+1i, where 0 < ¢ < n. It is obvious that h1(P,) | h(Bm—-6,1,2)
if and only if hi(Py) | gm(x). From Lemma 2.5, it follows that hy(Py,) | gm(2)
if and only if h1(P,) | gi(x), where 0 < ¢ < n. We distinguish the following
two cases:

Casel. n> 1.
If 0 < ¢ <6, from (3.1), it is not difficult to verify that hi(P,) fgi(x). If
1> 7, from ¢ < n, Lemma 2.4 and Theorem 3.1.1, we have that

(3.2) O(h(Py)) = EJ and A(hi(Bi_g.12) = V“J.

2

The following cases are taken into account:

Subcase 1.1. i = n.
It follows from (3.2) that d(h1(Bi—e,1,2) = 0(h1(Pn)) = 5 if n is even and
O(h1(Bi—g1,2) = O(h1(P,)) + 1 = 2 if n is odd.

Subcase 1.1.1. a(hl(Bi,G,Lz) == 8(h1(Pn))
Suppose that hi(P,)|hi(Bi—¢,1,2), we have hi(P,) = hi(Bj_61,2), which
implies Ry(P,) = Ri(Bj_¢12). By Lemma 2.6 we know it is impossible.
Hence hy(P,) fh1(Bi_g1.2), together with (hy(P,), z*Pi-6.1.2)) = 1, we have

hi(Py) fh(Bi—6,1,2).
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Subcase 1.1.2. 8(h1 (Bi,G,LQ) = a(hl( )) + 1.
Assume that hl(Pn) ’ h1 (Bi—6,1,2)7 it follows that hl(Bi_67172) = (1’+a)h1 (Pn)
Note that R;(Bi—¢,1.2) = —1 and R;(P,) = 1, so Ri(x + a) = —2, which
brings about a = 4. This implies that 3(B;_¢12) = —4, which contra-
dicts to (6) of Lemma 2.10. Hence hi(P,) fhi1(Bi—¢12), together with
(h1(Py), 20 PBi-6.12)) = 1, we have hy(P,) [h(Bi_612)-

Case1.2. i <n-—1.
It follows by (3.2) that 0(Bij—¢12) < 9(h1(Fy,)). Assume that hi(Py)
h1 (BZ',&LQ), we have that 8(Bi,6,172) = 8(h1 (Pn)) and hl( n) ( i—6,1,2
So we can turn to Subcase 1.1.1 for the same contradiction.

!
).

Case 2. 2<n<6.
From (1) of Lemma 2.4 and (3.1), we can verify hi(P,)|¢g;(x) if and only if
n=2andi=6orn=4andi=3for 0 <i<n <7 From Lemma 2.5,
we have hi(P,) | h(Bpm—¢12) if and only if n =2 and m =3k +6 orn =4
and m = 5k + 3. From o(P3) = 2, a(Fs) = 3 and a(Bn-612) = |5] > 3
for m > 7, we obtain that the result holds. [ |

Theorem 3.1.3. Form > 7, h?(P,) J h(Bm—¢12) and h?(Py) f h(Bm—61.2)-

Proof. Suppose that h?(P)|h(Bym—¢12), from Theorem 3.1.2 we have
m = 3k + 6, where k > 1. Let g,(x) = h(Bp—6,1,2) for m > 7. By (3) of
Theorem 3.1.1, (1) of Lemma 2.5, it follows that

gm(x) = h(P2)gm—2(x) + 2%gm—3(z)
= h?(Py)gm—a(2) + 20*h(P2)gm—5(2) + 2 g6 (2)
= h?(P)(gm-4(2) + 22°gm—7(2)) + 32 h(P2) gm—s(2) + 2°gpm—9(x)
= D*(P2)(gm-a(x) + 22°gm—7() + 32" g—10(x))
+ 42°h(P2) gm—11(x) + 2%gm—12(2)
k—2
= 1*(P) ;1 Im-—3s-1(2) + (k = )2* " h(P2) g 11 -36-1) ()

+ m2k_29m73(k71) (z).
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According to the assumption and m = 3k + 6, we arrive at, by (3.1), that
B (Py)|((k = 1)a** =4 h(Py) g, () + 2% g, (2)),
that is,

h(Py)| (ka® S 4 (11 — 20?47 4 (44 — 18)22+0 4 (80k — 53)22+>
+ (70k — 60)22F 4 + (28k — 27)x?+3 + (4k + 4)22++2).

By direct calculation, we obtain that k& = —6, which contradicts k& > 1.
Using the similar methods, we can also prove h?(Py) f h(Bm—6.13)- ]

Lemma 3.1.2 ([12]). Fort > 13 and 1 < t; < 11, we have that
VU(1,2,4,2,1)) < 7(U(1,2,12,2,1)) = —4 < 4(U(1,2,1,2,1)).

Lemma 3.1.3. (1) For r,t>1, h(U(1,2,r,1,t)) = h(K;1 U By14).
(2) For n > 13 and 7 < ny < 11, 'y(Bn_&LQ) < ’)/(B12,172) = 4 <
V(Bn1-6,1,2)-

Proof. (1) From Lemma 2.3 and by calculation, we can get that the
equality holds. Here the details are omitted.
(2) From Lemma 3.1.2 and (1) of the lemma, the result obviously holds. ®

Theorem 3.1.4. For n>7, h(K, )| h(Bn—¢12) if and only if n = 18.

Proof. According to Theorem 3.1.2, we arrive at hi(Ps)|h(Bi2,1,2), that
is, (z + 1)|h(Bi2,1,2). From Lemma 2.10, we obtain v(Bj,_612) < —4.
In terms of (2) of Lemma 3.1.3, we get (z + 4)|h(By—6,12) if and only if
n = 18. Noting that (z + 1,z +4) =1 and hi(K;) = (z + 1)(z + 4), we
obtain hi(K, )| h(Bn—612) if and only if n = 18, together with a(K, ) = 2
and a(Bi2,12) =9, we know that the theorem holds. [ |

3.2. The smallest real roots and the fourth characters of graphs

An internal z1x-path of a graph G is a path x1zexs - - - (possibly z1 = xy)
of G such that d(z1) and d(xj) are at least 3 and d(z2) = d(z3) = -+ =
d(zp_1) (unless k = 2).
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Lemma 3.2.1 ([17]). Let T be a tree. If uv is an edge on an internal path
of T and T 2 U(1,1,t,1,1) fort > 1, then B(T) < B(Tsy), where Ty, is the
graph obtained from T by inserting a new vertex on the edge xy of T.

Lemma 3.2.2 ([17]). (1) For m > 9, B(Cpm-1(P2)) < B(Fn), with the
equality holds if and only if m = 9.

(2) Forn,m =5, B(Cn(P2)) < B(Cn-1(P2)) < B(Dm) < B(Dm-1)-
(3) For m > 6 andn >4, B(Fy,) < B(Fmt1) < B(Dy).
(4) Form > 6 and n > 4, B(Bmf&l,l) < B(Bm74,171) < B(Dn)

From Lemma 2.3, by calculation we have the following lemma.
Lemma 3.2.3. (1) B47172 U K174 3 2K, U Dy U Cg(PQ), 3127172 n Dy U

h h h
Dg U Cs(P,), Bs12 ~ D5 UCs(Ps), Baio~CiUQia~ Dy UCy(Ps).
(2) Ban—6,1,2 LD, U By_411, Bh-612 LK UF,_,.

Proof. We only give the proof of Ba, 612 L D, _1U B, _411, the others
can be proved similarly. We choose the edge e € E(Ba,_¢1,2) such that
Bay—6,12 = Dp—1UT12,-3. In the light of Lemmas 2.3 and 2.4, we obtain
that

h(Ban—6,12) = h(Dp—1)h(T12,n—3) + xh(Dy—2)h(T12,1—4)
(3'3) = mh(anl)h(Dn) + m2h(an2)h(Dn71)
— W(Dy 1) (xh(Dy_1) + 22h(Dyy_s)).

Choosing one of the pendant edges in B, _4 1,1, we conclude, from Lemma
2.3, that

(34) h(Bn,4,171) = .’Eh(Dn) + .’Ezh(Dn,Q).
Combining (3.3) with (3.4), we have that the result holds.

Theorem 3.2.1. (1) B(Ba12) = B(Cs(P)) = B(Ci(P3)) = B(Q12),
B(Bs,1,2) = B(C6(12)), B(Biz,1,2) = B(Cs(F2)).

(2) B(Ban-512) = B(Bpn-11,1), B(Bn-612) = B(Fpn-1).
(3) For n>17, B(Bn-6,1,2) < B(Bn-s512)-
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(4)

For ny > 9,7 < ng < 11 and n3 > 13, B(Bi112) < B(B212) <
B(Bsi2) < B(Cni(P2)) < B(Cs(P2)) = B(Bai2) < B(Cr(P2)) <
B(Cs(P2)) = B(Berz2) < B(Bnyiz2) < B(Bizaz) = B(C5(R)) <
B(Bns,1,2) < B(Ca(Pr)).

For n>7 and m > 6, 3(Bp—612) = B(Fn) if and only if m =n — 1.
For n>7, 8(Q1,2) = B(Ca(P3)) = B(Bn-¢,1,2) if and only if n = 10.
For n>7 and m >4, (Bp—¢12) < 3(Dp).

For n>T7 and m > 6, 3(Bn—6,12) = B(Bm—s51,1) if and only if n =2k
and m =k + 1.

For t >3 andn>m, B(Bm—t-41,) < B(Bn-612)-

(10) If a graph G satisfies R1(G) < —2, then B(G) < —2 — /5.

Proof. The first two results follow from Lemma 3.2.2.

(3)
(4)

From (2) of Lemma 3.2.3 and (3) of Lemma 3.2.2, we obtain the result.

The result follows from Lemmas 2.9 and 2.10, (2) of Lemma 3.2.2 and
(1),(3) of the theorem.

The result follows from (2) and (3) of the theorem and (3) of Lemma
3.2.2.

The result follows from (1) and (3) of the theorem.

In terms of (2) of the theorem and (3) of Lemma 3.2.2, we arrive at the
result.

In view of (2) of the theorem and (4) of Lemma 3.2.2, we arrive at the
result.

From (1) of Lemma 3.1.3 and Lemma 3.2.1, we have that

B(Bm—t—414) < B(Bn—t—a,14) < B(Bn-r1,) < B(Bn-6,1) < B(Bn-61,2)-

(10) In terms of Lemmas 2.6 and 2.10, we arrive at the result. |

Definition 3.2.1. Let G be a graph with p vertices and ¢ edges. The fourth
character of a graph is defined as follows:

R4(G) = Ra(G) +p(G) — q(G).

From Lemmas 2.1 and 2.2, we obtain the following two theorems:
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Theorem 3.2.2. Let G be a graph with k components G1,Go,...,Gy. Then

k
Ry(G) = Ru(Gy).
=1 ]

Theorem 3.2.3. If graphs G and H such that h(G) = h(H) and h1(G) =
hi(H), then
R4(G) = R4(H).

From Definitions 3.1.2 and 2.1, we have the following theorem.

Theorem 3.2.4. (1) R4(Cy) =0 forn > 4 and R4(Cs) = —2; R4(K;) = 1.
(2) R4(Br1,1) =3 for r>1 and Ry(By1) =4 for r,t > 1.

(3) Ru(Fs) =4,Ry(F,) =3 for n>7 and R4(K, ) = 2.

(4) R4(D4) =0 and R4(Dy) =1 for n>5, Ry(T11,1) = 0.

(5) Ra(Th14y) = 1, Ra(Tugoi,) = 2 and Ra(Ty, 150,) = 3 for I3 > 1o >
l1 > 2.

(6) R4(Cr(P2)) =3 for m >4 and R4(Cs(P3)) = R4(Q1,2) = 4.

(7) R4(P) =0 and R4(P,) = —1 for n > 3. |

4. THE CHROMATICITY OF GRAPH B,,_¢ 12

Lemma 4.1 ([16]). Forn > 4, D,, is adjointly unique if and only if n # 4,8.

Lemma 4.2 ([9]). Let f(x) be a monadic polynomial in x having integral
coefficients. If all the roots of f(x) are non-negative and there exists a
positive integer k such that f(k) is a prime number, then f(x) is a irreducible
polynomial over the rational number field.

Lemma 4.3. [Q11]n = [Ca(P3)]n = {Q11,Ca(P3), K1 UK, }.

Proof. The most understandable proof is that we list all the graphs with
orders 5 and sizes 5, then we obtain the lemma. We can also prove the
lemma by the method used in Theorem 4.3. Here the details are omitted.
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Theorem 4.1. Let G be a graph such that G b By, 61,2, where n > 7.
Then G contains at most two components whose first characters are 1, fur-
thermore, one of both is Py and the other is Py, or one of both is Py and the
other is Cj.

Proof. Let G be one of the components of G such that R;(G) = 1. From
Lemma 2.6, it follows, from Theorem 3.1.2, that h(G1)|h(Bn—s6,,2) if and
only if Gy 2 P, and n = 3k 4+ 6, or G; = P, and n = 5k + 3. According to
(1) of Lemma 2.5, we obtain the following equality:

(4.1) h(Biskt12,1,2) = h(Pi5)M( Bisk—1)+12,1,2) + Th(P1a) h(Bis(—1)411,1,2)-

Noting that {n|n =3k + 6,k > 1} N{n|n =5k + 3,k > 1} = {n|n =
15k + 18,k > 0}, we have that

(4.2) h(P2)h(Py) | M(Bis(k—1)+12,1,2)-

By Lemma 3.1.1, we get h(Py)|h(P14) and h(Py)|h(P14), together with
(h1(P2), h1(Py)) = 1, which leads to

(4.3) h(P2)h(Py) | h(P2o).

From (4.1) to (4.3), we obtain h(Ps)h(Ps)|h(Bisk+12,1,2).- Noting h(Py) =
h(K1UC3), we also have h(P2)h(C3) | h(Bisk+12,1,2), together with Theorem
3.1.3, so the theorem holds. [ |

Theorem 4.2. If graph G with order n satisfies h(G) = h(Bpn—¢6,12), then
it contains K as its component if and only if n = 18.

Proof. From Theorem 3.1.4, we know that the theorem holds.

Theorem 4.3. Let G be a graph such that G b B, 6,12, where n > 7.
Then

(1) If n=17, then [G], = {K1 U Fg, Ba12, Qa2}-
(2) If n=23a, then [G]h = {Kl @] F7, 32,172, 03 U B5}

(3) If n =10, then [G]h = {Kl U Fy, B471,2, CyU Bl,l,la Dy U Bl,l,h
CiUQ12, DyUQr2, C4UCy(P3), DyUCy(P3)}.

(4) If n=12, then [G]h = {Kl U Fiq, 367172, D5 U 327171, D5 U CG(PQ)}
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(5) If n = 18, then [G]h = {Kl U Fir, 312,172, KiudsuCy U K;U
C5(P2), KiUC3U Dy U K4_ U C5(P2),K1 uCsU K4_ @] B57171, C3UCy
UQ1,1 U Cs5(P), C3UDyUQ11UCs(P), C3UCyUCy(Ps) U Cs(Pa),
C3U Dy UCy(P2) UC5(P2), C3 U Cy(Po)U Bs i1, C3 U Qi1 U B,
Py U K4_ U Cy UC5(P2), Py U K4_ @] B57171, Py U K4_ UDy U C5(P2),
Cy U Dy UC5(P,), DyU Dg U C5(P2), DsUBs11}.

(6) If n is even such that n > 14 and n # 18, then
(Gln = {Bn-6,1,2, K1 UF,_1, Dan2 U BanS,M}-
(7) If nis odd such that n > 9, then [G], = {Bn—¢,12, K1 U Fy_1}.

Proof. (1) When n = 7, let graph G satisfy h(G) = h(Bi,1,2). From
Lemmas 2.1,2.2 and 2.6, we obtain that p(G) = ¢(G) = 7 and R;(G) = —1.
By direct calculation, we arrive at h(G) = h(B112) = 23(a? + 723 + 132% +
7x + 1). We distinguish the following cases:

Case 1. GG is a connected graph.
From b3(G) = b3(By,1,2) = 7 and (2) of Lemma 2.11, it follows that G €
{Q2,2,B1,12}. By calculation, we have that Q22, B112 € [G]h.

Case 2. (G is not a connected graph.
Noting that hq(Bi12,1) = 29 and from Lemma 4.2, we have that hq(B112)
is a irreducible polynomial over the rational number field, which leads to
G = aKy UGy, where a > 1 and G is a connected graph. It is not difficult
to see that ¢(G1) — p(G1) > 1. By Ri1(G1) = —1 and Lemma 2.7, we arrive
at ¢(G1) —p(G1) < 1. So q(G1) = p(G1) + 1. By Lemma 2.6, it follows that
G1 = Fg, which leads to Gy = K7 U Fg. From (2) of Lemma 3.2.3, we arrive
at Ky U Fg € [G]p.

(2) When n = 8, let G be a graph such that h(G) = h(Bag1,2), which
leads to p(G) = ¢(G) = 8 and R1(G) = —1. We distinguish the following

cases:

Case 1. GG is a connected graph.
By b3(G) = b3(B2,1,3) and (1) of Lemma 2.11, we obtain that G € {C4(Ps),
C5(Py),Cs(P3),Q1,4, Ba1 2} By calculation, we have that By ;2 € [G]p.

Case 2. GG is not a connected graph.
By calculation, we have h(G) = h(Ba,12) = 2t f1(x) fa(z),where f1(z) = 2%+
3z+1 and fa(z) = 2% + 5z + 3. By calculation, we have that Rq(fi(z)) = 1.
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Noting that b1 (f1(z)) = 3, we obtain that fi(x) = hi(Py) or fi(x) = h1(C3)
if f1(z) is a factor of adjoint polynomial of some graph.

Case 2.1. Neither P, nor C3 is not a component of G.
Since G is not connected, then the expression of G is G = aK1 U G, where
a > 1 and G is connected. It is not difficult to obtain that ¢(G1) —p(G1) >
1. We conclude, from Lemma 2.7, that ¢(G1) — p(G1) < 1. Thus ¢(G1) =
p(G1) + 1. From Lemma 2.6, it follows that G; = F; and G = K; U F;. In
terms of (2) of Lemma 3.2.3, we arrive at G = K1 U F; € [G]y,.

Case 2.2. Either P, or C3 is a component of G.

Subcase 2.2.1. P, is a component of G.
Let G = PyUG1, where hy(G1) = x2 + 5+ 3. The following cases are taken
into account:

Subcase 2.2.1.1. G is a connected graph.
Noting that R;(G1) = —2 and ¢(G1) = p(G1)+1 = 5, we have, from Lemma
2.6, that G1 € 1. Nevertheless it contradicts that the order of any graph
belonging to 1 is not less than 5.

Subcase 2.2.1.2. G is not connected.
It follows that G = Py UaK; UGy, where a > 1 and hy(G1) = 22 + 5z + 3.
It is not difficult to get that ¢(G1) — p(G1) > 2. Remarking that R;(G;) =
—2, we obtain, from Lemma 2.7, that ¢(G1) — p(G1) < 2, which results in
¢(G1) = p(G1) + 2. Thus we conclude, from Lemma 2.6, that G; = K,
which contradicts to ¢(G1) = 5.

Subcase 2.2.2. C5 is a component of G.
Let G = C3UG1, where hy(G1) = 22+ 52+ 3. The following cases are taken
into account:

Subcase 2.2.2.1. (1 is a connected graph.
Noting that R1(G1) = —2 and ¢(G1) = p(G1) = 5, we have, from Lemma
2.6, that G; = Bs. By calculation, we arrive at C3 U Bs € [G]p,.

Subcase 2.2.2.2. (G1 is not connected.
It follows that G = C3UaKUGq, where a > 1 and hy(G1) = 22+52+3. Tt is
not difficult to get that ¢(G1) — p(G1) > 1. Remarking that R1(Gy) = -2,
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we conclude, from Lemma 2.6, that 1 < ¢(G1) — p(Gy) < 2. If ¢(Gy) =
p(G1) + 1 or ¢(Gy) = p(G1) + 2, then we can turn to Subcase 2.2.1 for the
same contradiction.

(3) When n = 9, let G be a graph such that h(G) = h(Bsz1,2), which
brings p(G) = ¢(G) = 9 and R;(G) = —1. We distinguish the following

cases:

Case 1. G is a connected graph.
By b3(G) = b3(Bs,1,2), we have, from (2) of Lemma 2.11, that G € {Cy4(Fs),
C5(P5), C@(P4), C7(P3), Q175, 337172}. By calculation, we have that
B371,2 S [G]h

Case 2. (G is not a connected graph.
By calculation, we obtain that h(G) = h(Bs12) = z*fi(z)f2(x), where
filz) = 2 +1 and fo(x) = 2% + 823 + 1822 + 92 + 1. Remarking that
Ri(fi(x)) =1 and b1(f1(z)) = 1, from (1) of Lemma 2.6, we have fi(x) =
hi(Py) if f1(z) is a factor of adjoint polynomial of some graph.

Case 2.1. P, is not a component of G.
Since G is not connected, then the expression of G is G = aK1 U GG1, where
a > 1 and G is a connected graph. It is not difficult to obtain that ¢(G1) —
p(G1) > 1. Noting that R;(G1) = —1, we have, from Lemma 2.7, that
q¢(G1) — p(G1) < 1. Thus ¢(G1) = 9 = p(G1) + 1, which leads to G; = Fy
by Lemma 2.6. By calculation, we arrive at K1 U Fg € [G].

Case 2.2. P5 is a component of G.
Let G = P, UGy, where hy(Gy) = x* 4 823 + 1822 4+ 92 + 1. The following
subcases must be considered:

Subcase 2.2.1. (G is a connected graph.
From R;i(G1) = —2 and ¢(G1) = p(G1) + 1, we have that G; € ¢ by (4) of
Lemma 2.6. By Lemma 2.12, we obtain that b3(G1) > 11, which contradicts
b1(G1) = 9.

Subcase 2.2.2. (1 is not a connected graph.
From hq(G1,1) = 37 and Lemma 2.13, we have that hi(G1) is a irreducible
polynomial over the rational number field, which leads to G1 = aK; U Go
and G = P UaK; UGo, where a > 1 and G» is a connected graph. It is not
difficult to get that ¢(G3) — p(G2) > 2. From (1) of Lemma 2.7, we have
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that ¢(G2) — p(G2) < 2. Hence q(G2) — p(G2) = 2, which leads to Gy = Ky
by (4) of Lemma 2.6. This contradicts ¢(G2) = 8.
(4) When n > 10, let G = (J!_; G;. From Lemma 2.1, we have that

t

(4.4) hG) = [ MGi) = h(Bn—g,1,2);

=1

which results in (G) = 3(Bn_612) € [-2 — V/5,—4) by Lemma 2.10. Let
s, denote the number of components G; such that R;(G;) = —i, where
1 > —1. From Theorem 4.1, Lemmas 2.1 and 2.2, it follows that 0 < s_, <2,
Ri1(G) =3t Ri(G;) = —1 and ¢(G) = p(G), which results in

—-3<Ri(G;) <1,

(4.5) s_1 =25 +2s,+3s;, — 1,
>, (@G =p(Gi) =5,
~3<R1(G;)<0

According to (4.5) and Lemma 2.7, we have that

(4.6) —l+s,4+5 < Y (9(Gi)—p(Gy)) <s,,
Rl(Gi)zfl

We distinguish the following cases by 0 < s_, < 2:

Case 1. s_, =0.
It follows, from (4.5) and (4.6), that

(4.7) s, =0,8,=0,s, =1, and 0<¢q(G;)—p(G1) <1

with R;(G1) = —1.
From (4.7), we set

(48) G =G U (gA Ci)u (ng Di) U fDsUak; UbTy U (Tg% Thtas )

where UTGT@ ﬂl,lg,lg = (UTETl Tl,l,lg) U (UTETQ Tl,lg,lg,) U (UTGTS nl,lg,lg,)v
,11 = {Tl,l,l3|l3 > 2}7 75 = {Tl,lg,l;g |l3 > l2 > 2}3 7?3 = {z_’ll,lg,lg, |l3 >
lo > 11 > 2}, To = Ty UTy U T3, the tree T}, 1,1, is denoted by T' for short,



208 J. WANG, Q. Huang, C. YE AND R. Liu

A={i|i >4} and B = {j|j > 5}. From Theorems 3.2.2, 3.2.3 and 3.2.4,
we arrive at

(49) R4(G) = Ry(Bn—6,12) =4=R4(G1)+ |B| +a+ |11 |
' +2| T2 | +3| T3]

We distinguish the following cases by 0 < ¢(G1) — p(G1) < 1:

Case 1.1. q(Gy) = p(G1) + 1.
From Lemmas 2.6 and 2.10, we have G € {F,,,, K, |m > 9}. Recalling that
q(G) = p(@), we obtain the following equality:

(4.10) a+b+ ||+ |T2| + | T3] =1

Subcase 1.1.1. G = F,.
If m > 9, from (3) of Theorem 3.1.6, (4.9) and (4.10), we arrive at | B| +
a+ |Ti| +2|72| + 3|73| = 1, which leads to |B| +a+ |T1] = 1,
| 73| = |73] =0and a+ b+ |77 | = 1. Thus, we have the following three
cases to be considered:
If |B| =1, then a=|7;| =0 and b = 1, which results in

G=F,U(UCC)UD;U fDyUTi,.
i€A

If a =1, then |B| = |7;| = b= 0, which leads to

G:FmU(U CZ‘)UfD4UK1.
i€A

If |71| =1, then | B| = a = b= 0, which brings about

G=F,U ( U CZ) UfDsuU T171713‘
€A

As stated above, we always have, from Lemmas 2.9 and 2.10, that 5(G) =
B(Fp). From (5) of Theorem 3.2.1 and B(G) = [(Bn-6,12), it follows
that 3(F,,) = B(Bp—¢,1,2) if and only if m = n — 1. Note that p(G) =
p(Bn-612) = n, so we arrive at a = 1,A = B =T = 0,f =b = 0,
which leads to G = K1 U F,,_1. From (2) of Lemma 3.2.3, we know that
Ky UF,_1 €[G].
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Subcase 1.1.2. G1 = K .
From Theorem 4.2, we know that p(G) = 18, that is to say,

h(G) = h(Bi12,1,2)
(4.11) =2z + 1) (2 +4)(2% + 32 + 1)(2? + 4z + 2) (23 + 622 + 8z + 1)
= Z’ghl(Cg UDygU C5(P2))

Eliminating the common factors h(K, ) and x of h(G) and h(Bi2,1,2), by
(4.8) and (4.11) we get hi(Hi) = hi(Hz), where Hi = (U;ca Ci)U
(UjEB Dj)UfD4UaK1UbT1,171U(U% Tlh,lz,lg) and Hy = CgUD4UC5(P2). It
is clear that Ry(H;) = 0 and Ry(H2) = —1, which contradicts to Ry (H;) =
Ri(H>).

Case 1.2. q(G1) = p(G1).
Recalling that ¢(G) = p(G), we arrive at, from (4.8), a = b = |T;| =
| 72| = | 73| = 0, which leads to

(4.12) G=04 u( U cl-) u( U Di) U fDy.
i€A jEB
From (3) of Lemma 2.6 and Lemma 2.10, it follows that

(413) Gl S {Bm7t74,1,t7 Cm(P2)7 Q1,27 04(P3)}7

where m — t — 4,t and m satisfy the conditions of Lemma 2.10.

We distinguish the following cases by (4.13):

Subcase 1.2.1. G = Cp,(Pa).
From lemma 2.9 and (2) of Lemma 3.2.2, it follows that 8(G) = 5(Cp,(P2)).
Since (B(G) = B(Bp-7,13), we have, from (4) of Theorem 3.2.1, that
B(Bn-6,1,2) = B(Cm(P)) if and only if n =10,m = 8, or n = 12,m = 6, or
n = 18, m = 5. The four subcases will be discussed:

Subcase 1.2.1.1. n =10,m = 8.
In this subcase, it contradicts to p(G) = p(Bp—6.1,2)-

Subcase 1.2.1.2. n =12, m = 6.
From (4.12) and p(G) = 12, we only have that G = Cg(P2) UC5 or G =
Cs(P2) U D5, By calculation, we arrive at Cg(P2) U D5 € [G]p.
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Subcase 1.2.1.3. n =18, m = 5.
By (4.12) and p(G) = 18, we get that G € {3D4 U C5(P,),3Cs U C5(P2),
2D, UCy U C5(P2), 2C4,UD4 U C5(P2), Cy,uCsu C5(P2), CyUDgU C5(P2),
DyuUCgU C5(P2), DyU Dg U C5(P2), Cio U C5(P2), Dy U C5(P2), Cs U Cr
UC5(P2), Cs U D7 U C5(P2), Ds U Cr U C5(P2), Ds U D7 U C5(P2), 2CsU
C5(P2), 2DgUC5(P,), CsUDgUC5(P2), }. By Lemma 2.3 and by calculation,
it follows that C4 U Dg U 05(P2), DyUDgU C5(P2) € [G]h

Subcase 1.2.2. G1 = Q12 or G1 = Cy(P3).
From (6) and (7) of Theorem 3.2.1 and Lemma 2.9, we have that 3(G) =
B(G1) = B(Bn-71,3) if and only if n = 10, which brings about G € G; =
{QLQ U Cy, QLQ U Dy, C4(P3) U Cy, C4(P3) U D4} by (4.12). By calculation,
we have G; C [G]p,.

Subcase 1.2.3. G1 = By—p—4.14-
We distinguish the following subcases:

Subcase 1.2.3.1. t = 1.

From Lemma 2.9 and (4) of Lemma 3.2.2, it follows that 5(G) = S(Bm—51,1)-
According to (8) of Theorem 3.2.1, we obtain that 8(Bp,—51.1) = S(Bn-7,13)
if and only if n = 2k,m = k + 1, where k£ > 1. By (2) of Lemma 3.2.3 and
eliminating the common factor h(Bg_41,1) of h(G) and h(Bak_¢12), we
obtain that h((UZEA Cz) @] (UjEB D]) @] fD4) = h(Dk_l)

If k =4,then4 € Aand B=0or f =1 and B = (), which results
in GeGy,={CyUBy11,D4UB;;:}. By direct calculation, we have that
G2 C [G]n-

If k =9, from Lemma 2.6, we have 3(Dg) = —4, which leads to A = 0,
f=0and8 € B. Thus G = DgUBs51,1. By calculation, we have DgUDBs5 11 €
(Gl

If K # 5 and k # 9, from Lemma 4.1, we obtain A = (), f = 0 and
k—1€B. SoG =Dy, 1UBp_411 = Dan2 U Bans’Ll, where n > 10 is

even. In terms of Lemma 3.2.3, we arrive at Dn—2 U Bn_s | ; € [G]j.
2 2

Subcase 1.2.3.2. t = 2.
From (3) and (7) of Theorem 3.2.1 and Lemma 2.9, it follows that 5(G) =
B(Bm—-6,1,2) = B(Bn—s1,2) if and only if m = n, which leads to G = B;,_¢ 1 2.
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Subcase 1.2.3.3. t > 3.
From (7) and (9) of Theorem 3.2.1, we arrive at 5(G) = B(Bpn—t—4,14) <
B(Bn—61,2), which contradicts to (G) = S(Bn—612)-

Case2. s | =1.
It follows, from (4.5), that s, + 2s, + 3s, = 2, which leads to s, = 0 and
s, +2s, = 2. Hence

(4.14) s,=1,5, =0, ors, =0,s, =2.
We distinguish the following cases by (4.14):

Case2.1. s, =1,5, =0.
Without loss of generality, let G; be the component such that R1(Gy) = —2.
From Corollary 2.1, we know that 3(G1) < —2 — v/5, which contradicts
B(Bn-6.12) € [-2 — V5, —4).

Case2.2. s, =0,s, =2.
Without loss of generality, let

G:G1UG2UG3U( U ci)u( U Di)UfD4UaK1
(4.15) icA jEB

UbTi1U (TUT ﬂlyl%lS)’
€To

where UTE% Ty iols = (UTeTl T1717l3) U (UT6T2 Tl,lz,la) U (UTeTg, Tl1J2,l3)a
T = {Tiags 1l > 2} T2 = {Tipslls > 12 > 2}, T3 = {Thy 1005 |13 >
lo > 11 > 2}, Ty = Ty UTo U T3, the tree T}, 1,1, is denoted by T for short,
G, € {PQ,PG}, Rl(GQ) = RQ(G3) =-1, A= {’L"L > 4} and B = {] |] > 5}.

Subcase 2.2.1. G = (.
From (4.6), we obtain that

3
(4.16) 1<) (q(Gy) —p(Gy)) < 2.
=2

We distinguish the following cases by (4.16):
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Subcase 2.2.1.1. 33, (q(Gy) — p(Gy)) = 1.
From Lemmas 2.6 and 2.10, it follows that Ga € {Cp,(FP2), Byt Ca(Ps), Q1,2}
and G3 € {F,,, K, |m > 9}, where m,r and ¢ satisfy the conditions of
Lemma 2.10. Recalling that ¢(G) = p(G), we have, from (4.15), that

(4.17) a+b+ |71 + |2 + T3] =1

In terms of Theorem 3.2.4, we have that R4(G) = R4(C3) + R4(G2) +
Ry(G3) + |B| +a+ |Th| +2|72] +3|73| = 4 if and only if Gy €

{Cs(P2), Brin}, Gy = Fpy and |B| = a = |Ti| = [Ta] = [T3] =0,
or Gy € {By1+,Cy(P3),Q12}, Gz € {K  }and |B| =a=|T| = |T2| =
| T3] =0, or Gy € {Cs(P2),Br1,1}, Gz € {K,}, |Ta| = |73] = 0 and

a+ |B|+|71| =1, where s, r and m satisfy the conditions of Lemma 2.10.

Subcase 2.2.1.1.1. Gy € {Cs(P2),Br1,1}, G3 = F,, and |B| = a =
T = T = |T| =0.

From (4.17), we arrive at b = 1. If Go = C5(P,) and m = 9, we have,
from (1) of lemma 3.2.2 and Lemma 2.9, that 5(G) = 5(G2) = B(Cs(P)) =
B(Fy), which contradicts to p(G) = 10. If m > 10, then 5(G) = B(Cs(P)) =
B(Bpn—61,2) if and only if s = 6,n = 12, or s = 5,n = 18, which contradicts
to p(G) = p(Bn-6,1,2)-

If Gy = By, it is clear that 8(G) = B(Br1,1). Or else, if 8(G) =
B(Fp) = B(Bp—6,1,2), we obtain, from (5) of Theorem 3.2.1, that m =n—1,
which contradicts to p(Br1,1) > 6. So B(G) = B(Br1,1) = B(Bn—¢1,2) iff
n = 2k and r = k — 4. By (2) of Lemma 3.2.3 and eliminating the com-
mon factor h(Bj_4,1,1) of h(G) and h(Bak_¢,1,2), we conclude, from (4.4),
(4.15) and Lemma 2.9, that 5(F},) = B(Dk—1), which is impossible by (3)
of Lemma 3.2.2.

Subcase 2.2.1.1.2. Gy € {B,1+,Cs(P3),Q12}, G € {K; } and |B| =
o= |T| = |T| = |T| =0

From (4.18), it follows that b = 1. Noting that 5(Q1,2) = B(Cs(P3)) =
B(By,2) and by Lemma 2.9, we have that §(G) = [(By14). It is clear
that p(By1+) < n — 7, which implies, from (9) of Theorem 3.2.1, that
ﬁ(BT,l,t) 7£ ﬂ(anG,l,Z) for r,t > 2.

Subcase 2.2.1.1.3. Gy € {Cs(P2),Br11}, Gs € {K, }, |T2| = |73] =0
anda+ |B|+ |71] =1.
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If a =1, then |B| = |7;| = 0. By Theorem 4.2, we have that K, is a
component of G if and only if n = 18. By (4) and (8) of Theorem 3.2.1
and Lemma 2.9, we arrive at §(G) = [B(G2) = [(Bi2,1,2) if and only if
s =5or r =5. We conclude, from (4.11), that G € G3 = {K; U C3 U C4U
K4_ @] C5(P2), KiUC3U Dy U K4_ U C5(P2), KiuCsu K4_ UB57171}. From
Lemma 4.3, we arrive a G € G4 = {Ql,l UuCs3uUuCyuU C5(P2), Q171 U Cs U
Dy U C5(P2), C3UCy U C4(P2) @] C5(P2), C3U Dy U C4(P2) U C5(P2),
Q1,1 UC3U Bs11, Cy(Pr) UC3 U Bsi1}. By calculation, we arrive at
G3 UGy C [G]p.

Subcase 2.2.1.2. 33, (q(Gy) — p(Gy)) = 2.
From Lemmas 2.6 and 2.10, we have G; € {F},,, K, |m > 9} for i =2,3. In
terms of (4.15), we arrive at

(4.18) a+b+ |Ti| + [ T2 + | T3] =2.
In terms of Theorem 3.2.4, we have that

R4(G) :R4(C3)+R4(G2)+R4(G3)—|— |B| +a+ |'T1|
+2|2| +3|T3| =4

(4.19)

By (3) of Theorem 3.2.4, it follows that R4(G2)+ R4(G3) > 4, which leads to
| 73| = 0 from (4.19). If | 73| = 1, then we conclude, from (4.19), that G =
G3 & K . Since h(Ky ) = 23(x + 1)(z + 4), we know that (z + 1)?| h(G),
that is, hi(P2)?|h(Bn—612), which contradicts to Theorem 3.1.3. Hence
| 72| = 0. In the light of (4.19) again, we obtain that R4(G) = 4 if and only
it Go = F,,,G3 = Fy, and |B| =a=|71| =0,0r Gy = F,,,G3 = K
and |B|+a+ |T1| =1.

Subcase 2.2.1.2.1. Gy 2 F,,,,G3 =2 F,,, and |B| =a= |T1| =0.
From (4.18) we arrive at b = 2. In terms of Lemmas 2.9 and 2.10, we
have that ﬂ(G) = min{ﬂ(Fm1)7ﬁ(Fm2)} - /B(le) if my < mg. By (5) of
Theorem 3.2.1, it follows that 3(G) = B(Fm,) = B(Bn-6,1,2) if and only if
mq = n — 1, which contradicts to mg > 9.

Subcase 2.2.1.2.2. Gy =2 F,,,G3 = K, and |B| +a+ |T1| =1
If any one in {a, | B|, | 71| } is equal to 1, then we obtain, from Lemmas 2.9
and (3) of Lemma 3.2.2, that 8(G) = $(F). Thus we can turn to Subcase
2.2.1.2.1 for the same contradiction.
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Case 2.2.2. G1 = Py.
With the same analytic method as that of Case 2.2.1, we conclude, from
Theorem 3.2.4, that R4(G) = Ra(Py)+ R4(G2)+R4(G3)+ | B| +a+ |71 | +
2|73 | +3|T3| =4ifand only if Go € {Cs(P2),Bri1},Gs = Ky and |B| =
a=|T| =|T2| =|T3] =0,or G 2G3= K, , |B|+a+ |T1| =1and
| 72| = |73| =0, where r and s satisfy the conditions of Lemma 2.10.

Subcase 2.2.2.1. Gy € {Cs(FP2),Br1,1},Gs = K, and |B| = a =
Tl = || = T =0.

From Theorem 4.2, we know that K, is a component of G if and only
if n = 18. According to (1) and (4) of Lemma 3.2.2, (4) and (8) of Theorem
3.2.1 and Lemma 2.9, we obtain that 3(G) = 5(G2) = B3(Bi2,1,2) if and only
ifs=5,orr=25. Thus G € G5 = {P4UKZ UB5,171, P4UK47 U Cyu C5(P2),
P, UK, UD4UC5(P,)}. By calculation, we arrive at Gs C [G]p,.

Subcase 2.2.2.2. Gy = Gz =2 K, |B| +a+ |71| =1and |T2| =
FARE

If Gy = G3 = K, , then we can turn to Subcase 2.2.1.2 for the same
contradiction.

Case 2.2.3. G1 =2 P,.
From Lemmas 2.6 and 2.10, it follows that G € {Cy,(P2), By, Ca(P3), Q1.2}
and Gs € {F,,K; |m > 9}, where m,r and ¢ satisfy the conditions of
Lemma 2.10. we conclude, from Theorem 3.2.2, that

Ry(G) = Ry(P2) + Ry(G2) + Ry(G3) + | B| +a+ | 71| +2[T2| +3|T3].

Noting that R4(P2) = 0 and R4(G2) + R4(G3) > 5, we conclude, from the
above equality, that R4(G) > 5, which contradicts R4(G) = 4.

Case 3. s_, = 2.
From (4.5), we arrive at s, +2s, +3s, = 3, which brings about the following
cases:

Case 3.1. s, =1and s, =5, =0.
Let the component G such that Ry(G1) = —3, which contradicts 5(G) €
[-2 — /5, —4) by Corollary 2.1.

Case 3.2. s, =1and s, =5, =0.
According to the same reason as that of case 3.1, we have a contradiction.
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Case 3.3. s, =3 and 5, =5, = 0.

Case 3.3.1. The components of GG, with the first characters 1, are Ps

and Pjy.
Without loss of generality, from Theorem 4.1, we set

3
I AR ORI

UaK,UbTi 11U ( U Tll,lz,la)v
TeTo

where Urer, Thytots = (Urery T1105) YU (Uren, Do) U (Urery Thiols)s
To={T1, |13 > 2}, To = {Tipu,lls > 1o > 2}, T3 = {1}, 150, |13 >
lo > 11 > 2}, To = Ty UTy U T3, the tree T}, 1,1, is denoted by T' for short,
Ri(Gr)=—-1for 1<k <3, A={i|i>4}and B={j|j > 5}.

From (4.6), it follows that

3
(4.21) 2<) (9(Gr) = p(Gr)) < 3.
k=1

We distinguish the following cases by (4.21):

Subcase 3.3.1.1. Y3_1(q(Gy) — p(Gr)) = 2.
From ((G) € [-2 — /5, —4) and Lemmas 2.6 and 2.10, we have that G €
{Cr(P2), By, Ca(P3), Q12} and Go,G3 € {F,, K, |r > 9}, where r and ¢
satisfy the conditions of Lemma 2.10. Recalling that ¢(G) = p(G), we have,
from (4.20), that

a=b=|N|=|T2| =[T] =0,

which leads to

3
(4.22) Ry(G) =4 = Ry(P2) + Ra(Ps) + ) _ Ra(Gr) + | BI.
k=1

From Theorem 3.2.4 and (4.22), we obtain that R4(G) = 4 > |B| + 6,
which results in | B| < —2. This is obviously a contradiction.

Subcase 3.3.1.2. S3_,(q(Gr) — p(Gr)) = 3.
From lemmas 2.6 and 2.10, we have G, € {F,, K, |r > 9}. By (4.20) and
Theorem 3.1.4, we obtain
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3
Ry(G) =4 = Ry(P2)+Ru(Ps)+ > Ru(G)+a+ | B|+|T1 | +2| T2 | +3| T .
=1

In terms of Theorem 3.2.4, we arrive at Ry(G) =4 >5+4a+ |B| + |71 | +
2|73| +3|73|, which leads to a+ |B| + |71 | +2|T2| +3|73| < -1
This is also a contradiction.

Case 3.3.2. The components of GG, with the first characters 1, are Ps
and Cs.

Without loss of generality, from Theorem 4.1, we set

G—P2u03u(]£)1ak)u( U Ci)u( U Di)UfD4

(4.23) i€A jeB

UaKiUbTy 11U (TUT Tll,lz,ls)’
€lo

where Urezy Thiais = (Uren T115) U (Urer, Tiias) U (Urer, Tiiads)s
T = {Tia, |13 > 2}, To = {Tigu,|l3 > 1o > 2}, T3 = {1,050, |13 >
lo > 11 > 2}, Ty = Ty UTo U T3, the tree T}, 1,1, is denoted by T' for short,
Ri(Gp)=—-1for 1<k<3, A={i|i>4}and B={j|j > 5}.

From (4.6), it follows that

3
(4.24) 2<) (9(Gr) = p(G)) < 3.
k=1

We distinguish the following cases by (4.24):

Subcase 3.3.2.1. Y3_1(q(Gy) — p(Gr)) = 2.
From 3(G) € [-2 — /5, —4) and Lemmas 2.6 and 2.10, we get that G €
{Cr(P2), By, Ca(P3), Q12} and Go,G3 € {F,, K |r > 9}, where r and ¢
satisfy the conditions of Lemma 2.10. Recalling that ¢(G) = p(G), we have,
from (4.23), that

a+b+ |Ti| + || + |13 =1

Recalling that the number of component K, is 1, we conclude, from The-
orem 3.2.4, that Y3 _; R4(Gy) > 8, which lead to R4(G) = 4 > Ry(Py) +
R4(C3) + 33_  Ry(Gy) + |B| = 6+ | B|, that is, |B| < —2 which is
impossible.
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Subcase 3.3.2.2. Yi_1(q(Gy) — p(Gr)) = 3.
From B(G) € [-2 — /5,—4) and Lemmas 2.6 and 2.10, we have that
G1,G2,Gs € {Fy,, K; |r > 9}, where m satisfies the conditions of Lemma
2.10. Recalling that ¢(G) = p(G), we have, from (4.23), that

a+b+ |Ti| + | 2| + | T3] =2.

Recalling that the number of component K, is 1, we conclude, from (3)
of Theorem 3.2.4, that > 3_, Ry(Gy) > 8, which lead to R4(G) = 4 >
Ry(P2) + Ry(C3) + X3_ Ry(Gy) + |B| = 6+ |B], that is, |B| < —2
which is impossible.

This completes the proof of the theorem.

Corollary 4.1. For n > 7, the chromatic equivalence class of By_¢1,2 only
contains the complements of graphs described in Theorem 4.3.
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