A CANCELLATION PROPERTY FOR THE DIRECT PRODUCT OF GRAPHS

Richard H. Hammack
Department of Mathematics and Applied Mathematics
Virginia Commonwealth University
Richmond, VA 23284-2014, USA
e-mail: rhammack@vcu.edu

Abstract

Given graphs A, B and C for which $A \times C \cong B \times C$, it is not generally true that $A \cong B$. However, it is known that $A \times C \cong B \times C$ implies $A \cong B$ provided that C is non-bipartite, or that there are homomorphisms from A and B to C. This note proves an additional cancellation property. We show that if B and C are bipartite, then $A \times C \cong B \times C$ implies $A \cong B$ if and only if no component of B admits an involution that interchanges its partite sets.

Keywords: graph products, graph direct product, cancellation.
2000 Mathematics Subject Classification: 05C60.

1. Introduction

Denote by Γ_{0} the class of graphs for which vertices are allowed to have loops. The direct product of two graphs A and B in Γ_{0} is the graph $A \times B$ whose vertex set is the Cartesian product $V(A) \times V(B)$ and whose edges are all pairs $(a, b)\left(a^{\prime}, b^{\prime}\right)$ with $a a^{\prime} \in E(A)$ and $b b^{\prime} \in E(B)$. By interpreting $a a^{\prime}, b b^{\prime}$ and $(a, b)\left(a^{\prime}, b^{\prime}\right)$ as directed arcs from the left to the right vertex, the direct product can also be understood as a product on digraphs. In fact, since any graph can be identified with a symmetric digraph (where each edge is replaced by a double arc) the direct product of graphs is a special case of the direct product of digraphs. However, except where digraphs are needed in one proof, we restrict our attention to graphs.

The direct product obeys a limited cancellation property. Lovász [4] proved that if C is not bipartite, then $A \times C \cong B \times C$ if and only if $A \cong B$. He also proved cancellation holds if C is arbitrary but there are homomorphisms $A \rightarrow C$ and $B \rightarrow C$. Since such homomorphisms exist if both A and B are bipartite (and C has at least one edge) then cancellation can fail only if C is bipartite and A and B are not both bipartite. Failure of cancellation can thus be divided into two cases, both involving a bipartite factor C. On one hand it is possible for cancellation to fail if A and B are both non-bipartite. For example, if $A=K_{3}$ and B is the path of length two with loops at each end, then $A \times K_{2}$ and $B \times K_{2}$ are both isomorphic to the 6 -cycle, but $A \not \approx B$. On the other hand, cancellation can fail if only one of A and B is bipartite. Figures 1(a) and 1(b) show an example. In those figures, A consists of two copies of an edge with loops at both ends, B is the four-cycle, and C is the path of length 2 . The figures show that $A \times C \cong B \times C$, but clearly $A \nsubseteq B$.

This note is concerned with the second case. We describe the exact conditions a bipartite graph B must meet in order for $A \times C \cong B \times C$ to imply $A \cong B$. Specifically, we prove that if B and C are both bipartite, then $A \times C \cong B \times C$ necessarily implies that $A \cong B$ if and only if no component of B admits an involution (that is an automorphism of order two) that interchanges its partite sets. Figure 1 can be taken as an illustration of this. The 4 -cycle B in Figure 1(b) has an involution that interchanges its partite sets (reflection across the vertical axis) and indeed cancellation fails. Our result will imply that if a bipartite graph B does not have this kind of symmetry (or more precisely if no component of B has such symmetry) then $A \times C \cong B \times C$ will guarantee that $A \cong B$. Conversely, if some component of B has a bipartition-reversing involution, then there is a graph A with $A \times C \cong B \times C$ but $A \not \approx B$.

The reader is assumed to be familiar with the basic properties of direct products, including Weichsel's theorem on connectivity. See Chapter 5 of [3] for an excellent survey.

2. Results

In what follows, let $V\left(K_{2}\right)=\{0,1\}$. For $\varepsilon \in V\left(K_{2}\right)$, set $\bar{\varepsilon}=1-\varepsilon$, so $\overline{1}=0$ and $\overline{0}=1$. An involution of a graph is an automorphism β for which β^{2} is the identity. Recall that if G is a connected non-bipartite graph, then $G \times K_{2}$ is a connected bipartite graph, and $(g, \varepsilon) \mapsto(g, \bar{\varepsilon})$ is an involution of $G \times K_{2}$ that interchanges the partite sets $V(G) \times\{0\}$ and $V(G) \times\{1\}$. By contrast, if G is bipartite, then $G \times K_{2} \cong 2 G$, where $2 G$ designates the disjoint union of two copies of G. We will need the following lemma. It appeared in [1], but it is included here for completeness.

Lemma 1. Suppose A, B and C are graphs and C has at least one edge. Then $A \times C \cong B \times C$ implies $A \times K_{2} \cong B \times K_{2}$.

Proof. Given digraphs X and Y, let $\operatorname{hom}(X, Y)$ be the number of homomorphisms from X to Y. We will use the following theorem of Lovász: If D and D^{\prime} are digraphs, then $D \cong D^{\prime}$ if and only if $\operatorname{hom}(X, D)=\operatorname{hom}\left(X, D^{\prime}\right)$ for all digraphs X ([2], Theorem 2.11). We will also use the fact that $\operatorname{hom}(X, A \times B)=\operatorname{hom}(X, A) \operatorname{hom}(X, B)$ for all digraphs X, A and B. ([2], Corollary 2.3).

Identify A, B, C and K_{2} with their symmetric digraphs (i.e., each edge is replaced with a double arc). If we can show $A \times C \cong B \times C$ implies $A \times K_{2} \cong B \times K_{2}$ for the symmetric digraphs, then certainly this holds for the underlying graphs as well.

From $A \times C \cong B \times C$ we get $\left(A \times K_{2}\right) \times C \cong\left(B \times K_{2}\right) \times C$. Let X be a digraph. Then

$$
\begin{aligned}
\operatorname{hom}\left(X, A \times K_{2}\right) \operatorname{hom}(X, C) & =\operatorname{hom}\left(X,\left(A \times K_{2}\right) \times C\right) \\
& =\operatorname{hom}\left(X,\left(B \times K_{2}\right) \times C\right) \\
& =\operatorname{hom}\left(X, B \times K_{2}\right) \operatorname{hom}(X, C) .
\end{aligned}
$$

If X is bipartite (i.e., if its underlying graph is bipartite) then hom $(X, C) \neq 0$ because the map sending two partite sets to the two endpoints of a double arc of C is a homomorphism. Thus $\operatorname{hom}\left(X, A \times K_{2}\right)=\operatorname{hom}\left(X, B \times K_{2}\right)$.

On the other hand, if X is not bipartite, then there can be no homomorphism from X to a bipartite graph, and hence $\operatorname{hom}\left(X, A \times K_{2}\right)=0=\operatorname{hom}(X$, $\left.B \times K_{2}\right)$. Thus hom $\left(X, A \times K_{2}\right)=\operatorname{hom}\left(X, B \times K_{2}\right)$ for any X, so Lovász's theorem gives $A \times K_{2} \cong B \times K_{2}$.

We are now in a position to prove our main result.
Proposition 1. Suppose A, B and C are graphs for which B and C are bipartite and C has at least one edge. If $A \times C \cong B \times C$ and no component of B admits an involution that interchanges its partite sets, then $A \cong B$. Conversely, if some component of B admits an involution that interchanges its partite sets, then there is a graph A for which $A \times C \cong B \times C$ and $A \not \approx B$.

Proof. Let A, B and C be as stated. Suppose $A \times C \cong B \times C$, and no component of B admits an involution that interchanges its partite sets. From $A \times C \cong B \times C$, the lemma yields $A \times K_{2} \cong B \times K_{2}$. List the components of A as $A_{1}, A_{2}, \ldots A_{m}$, and those of B as $B_{1}, B_{2}, \ldots B_{n}$, so that $A=\sum_{i=1}^{m} A_{i}$ and $B=\sum_{i=1}^{n} B_{i}$, where the sums indicate disjoint union. Then

$$
\begin{aligned}
A \times K_{2} & \cong B \times K_{2}, \\
\left(\sum_{i=1}^{m} A_{i}\right) \times K_{2} & \cong\left(\sum_{j=1}^{n} B_{j}\right) \times K_{2}, \\
\sum_{i=1}^{m}\left(A_{i} \times K_{2}\right) & \cong \sum_{j=1}^{n} 2 B_{j} .
\end{aligned}
$$

From this last equation we see that if A had a component A_{i} that was not bipartite, then some component B_{j} of B would be isomorphic to $A_{i} \times K_{2}$. But $A_{i} \times K_{2}$ has a bipartition-reversing involution $(a, \varepsilon) \mapsto(a, \bar{\varepsilon})$, contradicting the fact that no component of B has such an involution. Therefore every component A_{i} of A is bipartite, so A is bipartite. Then $A \times K_{2} \cong$ $B \times K_{2}$ implies $2 A \cong 2 B$, whence $A \cong B$.

Conversely, suppose B has a component B_{1} for which there is an involution $\beta: B_{1} \rightarrow B_{1}$ that interchanges the partite sets of B_{1}. We need to produce a graph A with $A \not \approx B$, but $A \times C \cong B \times C$.

Say the partite sets of B_{1} are X and Y, so $\beta(X)=Y$. Define a graph B_{1}^{\prime} as $V\left(B_{1}^{\prime}\right)=V\left(B_{1}\right)$ and $E\left(B_{1}^{\prime}\right)=\left\{b \beta\left(b^{\prime}\right): b b^{\prime} \in E\left(B_{1}\right)\right\}$. Notice that for each edge $b b^{\prime}$ of B_{1}, the graph B_{1}^{\prime} has edges $b \beta\left(b^{\prime}\right)$ and $\beta(b) b^{\prime}$, and conversely
every edge of B_{1}^{\prime} has such a form. It follows that every edge of B_{1}^{\prime} has both endpoints in X or both endpoints in Y, so B_{1}^{\prime} is disconnected. (Example: Let B_{1} be the graph B in Figure 1(b), and let β be reflection across the vertical axis. Then B_{1}^{\prime} is the graph A in Figure 1(a).)

Let $A=B_{1}^{\prime}+B_{2}+B_{3}+\cdots+B_{n}$. In words, A is identical to B except the component B_{1} of B is replaced with B_{1}^{\prime}. Then $A \not \approx B$ because A has more components than B.

However, we claim $A \times C \cong B \times C$. To prove this, it suffices to show $B_{1}^{\prime} \times C \cong B_{1} \times C$. (For A and B are identical except for B_{1}^{\prime} and B_{1}.) Select a bipartition $V(C)=C_{0} \cup C_{1}$ of C. Define a map $\theta: B_{1} \times C \rightarrow B_{1}^{\prime} \times C$ as

$$
\theta(b, c)=\left\{\begin{aligned}
(b, c) & \text { if } c \in C_{0} \\
(\beta(b), c) & \text { if } c \in C_{1}
\end{aligned}\right.
$$

Certainly this is a bijection of vertex sets. But it is an isomorphism as well, as follows. Suppose $(b, c)\left(b^{\prime}, c^{\prime}\right) \in E\left(B_{1} \times C\right)$. Then $b b^{\prime} \in E\left(B_{1}\right)$ and $c c^{\prime} \in E(C)$. We may assume $c \in C_{0}$ and $c^{\prime} \in C_{1}$, so $\theta(b, c) \theta\left(b^{\prime}, c^{\prime}\right)=$ $(b, c)\left(\beta\left(b^{\prime}\right), c^{\prime}\right)$. But $b \beta\left(b^{\prime}\right) \in E\left(B_{1}^{\prime}\right)$, by definition of B_{1}^{\prime}, so it follows $\theta(b, c) \theta\left(b^{\prime}, c^{\prime}\right) \in E\left(B_{1}^{\prime} \times C\right)$. In the other direction, suppose $\theta(b, c) \theta\left(b^{\prime}, c^{\prime}\right) \in$ $E\left(B_{1}^{\prime} \times C\right)$. From this and by definition of θ, it follows that $c c^{\prime} \in E(C)$, so we may assume $c \in C_{0}$ and $c^{\prime} \in C_{1}$. Then we have $\theta(b, c) \theta\left(b^{\prime}, c^{\prime}\right)=$ $(b, c)\left(\beta\left(b^{\prime}\right), c^{\prime}\right) \in E\left(B_{1}^{\prime} \times C\right)$. In particular, $b \beta\left(b^{\prime}\right) \in E\left(B_{1}^{\prime}\right)$, and by definition of the edge set of B_{1}^{\prime}, this means that either $b b^{\prime} \in E\left(B_{1}\right)$ or $\beta^{-1}(b) \beta\left(b^{\prime}\right) \in$ $E\left(B_{1}\right)$. In the latter case, since β is an involution we have $\beta(b) \beta\left(b^{\prime}\right) \in E\left(B_{1}\right)$, so $b b^{\prime} \in E\left(B_{1}\right)$. Either way, $b b^{\prime} \in E\left(B_{1}\right)$, so $(b, c)\left(b^{\prime}, c^{\prime}\right) \in E\left(B_{1} \times C\right)$. Thus θ is an isomorphism.

Consequently, $A \times C \cong B \times C$, but $A \nsubseteq B$.
To conclude, we mention one open question suggested by our result. In the introduction we noted that cancellation of $A \times C \cong B \times C$ can fail only if C is bipartite and at least one of A or B is not bipartite. (We assume, as always, that C has at least one edge.) Given that C is bipartite, our result completely characterizes whether or not cancellation holds in the case that B is bipartite. It does not address the situation in which neither A nor B is bipartite. Thus, to complete the picture we would need to understand structural properties of non-bipartite graphs A and B that characterize whether or not cancellation of $A \times C \cong B \times C$ holds.

Here is one perspective on this question. The article [1] introduces an equivalence relation on graphs as $A \sim B$ if and only if $A \times K_{2} \cong B \times K_{2}$.

It is proved that if C is bipartite (and has an edge), then $A \times C \cong B \times C$ if and only if $A \sim B$. Let $[A]=\left\{G \in \Gamma_{0}: G \sim A\right\}$ be the equivalence class containing A. Then for bipartite C, cancellation in $A \times C \cong B \times C$ holds if and only if the class $[A]$ (hence also $[B]$) contains only one graph. The present note implies that for a bipartite graph B, we have $[B]=\{B\}$ if and only if no component of B admits a bipartition-reversing involution. It remains to characterize which classes contain a single non-bipartite graph.

References

[1] R. Hammack, A quasi cancellation property for the direct product, Proceedings of the Sixth Slovenian International Conference on Graph Theory, under review.
[2] P. Hell and J. Nešetřil, Graphs and Homomorphisms, Oxford Lecture Series in Mathematics (Oxford U. Press, 2004).
[3] W. Imrich and S. Klavžar, Product Graphs; Structure and Recognition (Wiley Interscience Series in Discrete Mathematics and Optimization, 2000).
[4] L. Lovász, On the cancellation law among finite relational structures, Period. Math. Hungar. 1 (1971) 59-101.

Received 13 August 2007
Revised 5 December 2007
Accepted 5 December 2007

