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Abstract

A subset of vertices of a graph G is k-independent if it induces
in G a subgraph of maximum degree less than k. The minimum and
maximum cardinalities of a maximal k-independent set are respectively
denoted ik(G) and βk(G). We give some relations between βk(G) and
βj(G) and between ik(G) and ij(G) for j 6= k. We study two families
of extremal graphs for the inequality i2(G) ≤ i(G) + β(G). Finally we
give an upper bound on i2(G) and a lower bound when G is a cactus.
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1. Introduction

For notation and graph theory terminology, we in general follow [6, 7]. In
a graph G = (V,E) of order n(G) = n, the neighborhood of a vertex v ∈ V
is NG(v) = {u ∈ V | uv ∈ E}. If X is a subset of vertices, then NG(X) =
∪v∈XNG(v). The closed neighbohoods of v and X are respectively NG[v] =
N(v) ∪ {v} and N [X] = N(X) ∪X. The degree of a vertex v of G, denoted
by dG(v), is the order of its neighborhood. For a subset A of V , let us
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denote by G[A] the subgraph induced in G by A. If x is a vertex of V , then
dA(x) = |N(x) ∩ A| and ∆(A) = max{dA(x) | x ∈ A}. A vertex of degree
one is called a leaf and its neighbor is called a support vertex. We denote
the set of leaves of a graph G by L(G), the set of support vertices by S(G),
and let |L(G)| = `(G), |S(G)| = s(G). If T = P2, then `(P2) = s(P2) = 2.
A double star Sp,q is obtained by attaching p leaves at an endvertex of a
path P2 and q leaves at the second one. A cactus is a graph in which every
edge is contained in at most one cycle. A graph is called trivial if its order
is n = 1.

An independent set is a set of vertices whose induced subgraph has no
edge. The independence number β(G) is the maximum cardinality of an
independent set in G. The independence domination number i(G) is the
minimum cardinality of a maximal independent set in G.

In [5] Fink and Jacobson generalized the concepts of independent and
dominating sets. A subset X of V is k-independent if the maximum de-
gree of the subgraph induced by the vertices of X is less or equal to k − 1.
The subset X is k-dominating if every vertex of V − X is adjacent to at
least k vertices in X. The lower k-independence number ik(G) is the mini-
mum cardinality of a maximal k-independent set in G, the k-independence

number βk(G) is the maximum cardinality of a maximal k-independent set,
and the k-domination number γk(G) is the minimum cardinality of a k-
dominating set of G. A k-independent set with maximum cardinality of a
graph G is called a βk(G)-set. Similarly we define a ik(G)-set and a γ(G)-
set. For k = 1, the 1-independent and 1-dominating sets are the classical
independent and dominating sets and so i1(G) = i (G), β1(G) = β(G),
and γ1(G) = γ(G).

Note that Borowiecki and Michalak [2] gave a generalization of the con-
cept of k-independence by considering other hereditary-induced properties
than the property for a subgraph to have maximum degree at most k − 1.

On the same way that the minmax parameter i is more difficult to study
than β, very few results are known on ik while the literature on βk, and
even more on γk, is rather copious. The irregularity of the behaviour of ik is
shown for instance by the followings two facts. The well-known inequalities
γ(G) ≤ i(G) ≤ β(G) only extend to γk(G) ≤ βk(G) [3] but ik(G) may be
smaller than γk(G). The sequence (βk(G)) is always non-decreasing while
the sequence (ik(G)) is not necessarily monotone. In this paper we show
some properties related to βk and ik.

A matching in a graph G is a collection of pairwise non-adjacent edges.
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The matching is called induced if no two edges of the matching are joined
by an edge in G.

2. Bounds on βk and ik.

Theorem 1. For every graph G and integers j, k with 1 ≤ j ≤ k, βk+1(G) ≤
βj(G) + βk−j+1(G).

Proof. Let T be a maximum (k + 1)-independent set of G and X both
a j-independent and j-dominating set of G[T ]. Such a set X exists by [3].
Thus βj(G) ≥ |X|. Let Y = T − X. Since X is j-dominating in G[T ],
∆(G[Y ]) ≤ k − j. Hence Y is a (k − j + 1)-independent set and therefore
βk−j+1(G) ≥ |Y | = |T | − |X| ≥ βk+1(G) − βj(G).

Corollary 2. For every graph G and every integer k ≥ 1,

(a) βk+1(G) ≤ βk(G) + β(G),

(b) βk+1(G) ≤ 2βdk+1/2e(G),

(c) βk+1(G) ≤ (k + 1)β(G).

The next theorem gives a structural property of the graphs satisfying (c).

Theorem 3. Let k ≥ 2 be an integer and G a graph such that βk(G) =
kβ(G). Then every βk(G)-set T is the disjoint union of β(G) cliques U j,

1 ≤ j ≤ β, of order k and every vertex v ∈ V \ T has at least one clique U j

entirely contained in its neighborhood.

Proof. Since T is a k-independent set, ∆(T ) ≤ k − 1. Let X1 be a
maximal independent set of G[T ]. Every vertex of T \ X1 has at least one
neighbor in X1 and thus, ∆(T \ X1) ≤ k − 2. Let X2 be a maximal inde-
pendent set of G[T \ X1]. Every vertex of T \ (X1 ∪ X2) has at least one
neighbor in X1 and one in X2, and thus ∆(T \ (X1 ∪ X2)) ≤ k − 3. We
continue the process until the choice of a maximal independent set Xk−1 of
G[T \ (X1 ∪ · · · ∪Xk−2)]. Then ∆(T \ (X1 ∪ · · · ∪Xk−1) ≤ 0 and thus the set
Xk = T \(X1∪· · ·∪Xk−1) is independent. Therefore every set Xi is indepen-
dent in G and |Xi| ≤ β(G) for 1 ≤ i ≤ k. Hence |T | =

∑k
i=1 |Xi| ≤ kβ(G)

and since T = βk(G) = kβ(G), |Xi| = β(G) (= β for short) for 1 ≤ i ≤ k.

Let X1 = {u1
1, u

2
1, . . . , u

β
1}. Then kβ = |T | = |NT [u1

1] ∪ NT [u2
1] ∪ · · · ∪

NT [uβ
1 ]| ≤

∑β
j=1 |NT [uj

1]| ≤ kβ since dT (uj
1) ≤ k − 1 for 1 ≤ j ≤ β.
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Therefore the sets NT [uj
1] are disjoint and |N [uj

1]| = k for 1 ≤ j ≤ β. If

one of the sets NT [uj
1], say NT [u1

1], does not induce a clique, let a and b two

non-adjacent vertices of NT (u1
1). Then {a, b, u2

1, . . . , u
β
1} is an independent

set of β + 1 elements of G, a contradiction. Hence each U j = N [uj
1] is

a clique and G is the disjoint unions of β cliques of order k. Let now v
be any vertex in V \ T . If every clique U j contains a vertex which is not

adjacent to v, say uj
1v /∈ E(G) for 1 ≤ j ≤ β, then {v, u1

1, u
2
1, . . . , u

β
1} is

an independent set of G of β + 1 elements, a contradiction which completes
the proof.

Corollary 4. Every connected graph with order n and clique number ω < n
satisfies βω(G) < ωβ(G).

Proof. If βω(G) = ωβ(G), then every βω(G)-set T consists of disjoint
cliques Kω(G). Since G is connected and different from Kω, V \ T is not
empty and every vertex v ∈ V \ T forms with one of these cliques a clique
of order ω + 1, a contradiction.

Theorem 5. For every graph G and integers j, k with 1 ≤ j ≤ k, ik+1(G) ≤
(k − j + 2)ij(G). Equality can occur only when j = 1 or j = k.

Proof. Let S be a ij(G)-set, X = {x ∈ S|dS(x) = j − 1} and Y = S \X =
{y ∈ S|dS(y) < j − 1}. Since j < k + 1, the set S is a (k + 1)-independent
set of G. Let I be a maximal (k + 1)-independent set of G containing
S, A = NI\S(X) and B = I \ (A ∪ S). Since I is (k + 1)-independent,
dA(x) ≤ k − j + 1 for every x ∈ X, which implies |A| ≤ (k − j + 1)|X|,
and dI(y) ≤ k for every y ∈ Y . Since the j-independent set S is maximal
in G, dY (v) ≥ j for every v ∈ B. Hence the number m(Y,B) of edges
of G between Y and B satisfies j|B| ≤ m(Y,B) ≤ k|Y |, which implies
|B| ≤ k|Y |/j ≤ (k − j + 1)|Y |. Therefore

ik+1(G) ≤ |I| = |A|+|B|+|S| ≤ (k−j+1)(|X|+|Y |)+|S| = (k−j+2)ij(G).

If ik+1(G) = (k − j + 2)ij(G), then ik+1(G) = |I|, |A| = (k − j + 1)|X|,
and |B| = k|Y |/j = (k − j + 1)|Y |. Equality |A| = (k − j + 1)|X| implies
dA(x) = k− j +1 for every x ∈ X. Equality |B| = k|Y |/j implies dB(y) = k
for every y ∈ Y and dY (v) = j for every v ∈ B. Finally, k/j = k − j + 1 if
and only if j = 1 or j = k.
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Case j = 1. If ik+1(G) = (k + 1)i(G) for some k ≥ 1, then Y = ∅,
X = S is an independent set, A = I \ S, |A| = k|X|, the neighborhoods in
A of the i(G) vertices of S are disjoint and each of order k, and G[A] has
maximum degree at most k − 1.

Case j = k. If ik+1(G) = 2ik(G) for some k ≥ 1, then |A| = |X|,
|B| = |Y |, the edges of G between A and X form a perfect matching M and
the edges of G between B and Y form a k-regular bipartite graph.

Corollary 6. For every graph G of order n and maximum degree ∆, i∆(G) ≥
n/2, and this bound is sharp.

Proof. Obvious consequence of ik+1(G) ≤ 2ik(G) obtained from Theo-
rem 5 when j = k and i∆+1(G) = n.

Let G be obtained by attaching one pendant vertex at each vertex of a
clique Kk. Then n = 2k, ∆ = k and ik(G) = k. Hence i∆ = n/2.

Corollary 7. If a graph G of order n ≥ 2 satisfies i2(G) = 2i(G), then G
contains an induced matching of size i(G).

Proof. In the equality case k = j = 1 in Theorem 5, S = X, G contains
a perfect matching between A and X, and this matching is induced of size
S = i(G) since G[A] has maximum degree 0.

The converse of Corollary 7 is not true. For instance the cycle C6 admits
an induced mathing M of size i(C6) = 2 but i2(C6) = 3 < 2i(G).

The inequality i2(G) ≤ 2i(G) cannot be improved to i2(G) ≤ 2γ(G),
even for trees, as shown by the caterpillar obtained by adding k ≥ 5 pendant
vertices at each vertex of a path P3. However the next theorem improves it
to i2(G) ≤ γ(G) + i(G) in the class of trees and unicyclic graphs.

Theorem 8. If the graph G contains at most one cycle, then i2(G) ≤
γ(G) + i(G).

Proof. Let S be a i(G)-set and I a maximal 2-independent set of G
containing S. With the notation of Theorem 5, X = S is independent,
A = NI(S) = I \ S, and the edges of G[I] form an induced matching M
between A and a subset A′ of S. Let Z be a γ(G)-set, M1 the edges of M
with no endvertex in Z, and A1 (A′

1 respectively) the set of the endvertices
of the edges of M1 in A (A′ respectively). If γ(G) < |M |, then M1 6= ∅
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and since M is induced, the vertices of A1 ∪ A′
1 cannot be dominated by

vertices in Z ∩ (A ∪ A′). Hence the set W = Z \ (A ∪ A′) is not empty
and dominates A1 ∪A′

1. Therefore the induced subgraph G[W ∪A1 ∪A′
1] of

order |W |+2|M1| contains at least 3|M1| edges. Moreover, since Z contains
at least one endvertex of each edge in M \ M1, |W | ≤ |Z| − |M \ M1| =
(γ(G)−|M |)+|M1| < |M1|. Thus 3|M1| > |W |+2|M1|, which contradicts the
assumption that G contains at most one cycle. Therefore γ(G) ≥ |M | = |A|
and i2(G) ≤ |S| + |A| ≤ i(G) + γ(G).

The result of Theorem 8 is not valid for all graphs as shown by the following
example. We consider eight disjoint triangles xiyizi and identify the ver-
tex xi with xi+1 for i = 1, 3, 5, 7. Let w1, w2, w3, w4 denote the resulting
new vertices. To complete G, we add the edges w1w2, w1w3 and w1w4.
Then {w2, y3, w3, y5, w4, y7, y1, z1, y2, z2} is a i2(G)-set and thus i2(G) =
10, γ(G) = 4, and i(G) = 5. By attaching q triangles at each vertex wi in-
stead of 2, γ(G) does not change while now i(G) = 3+q and i2(G) = 6+2q.
Therefore the difference i2(G)− (i(G) + γ(G)) can be done arbitrarily large
and the ratio i2(G)/(i(G) + γ(G)) arbitrarily close to 2.

The next corollary is another consequence of Theorem 5. A graph G is
well-covered if i(G) = β(G) and well-k-covered if ik(G) = βk(G).

Corollary 9. For any k ≥ 1, ik+1(G) ≤ (k + 1)i(G) ≤ ki(G) + β(G) and if

ik+1(G) = ki(G) + β(G), then G is well-covered and well-(k + 1)-covered.

Proof. The inequality comes from Theorem 5 with j = 1. If ik+1(G) =
ki(G)+β(G) then i(G) = β(G), that is G is well-covered, and thus ik+1(G) =
(k + 1)β(G). Therefore βk+1(G) ≤ ik+1(G) from Corollary 2, which implies
βk+1(G) = ik+1(G) and proves that G is well-(k + 1)-covered.

3. Graphs with i2 = i + β

In this section we are interested in graphs G satisfying the equality in Corol-
lary 9 when k = 1. We describe two particular classes of them defined by
forbidden subgraphs.

Definition 10

• The graphs F of the family F are formed by five disjoint cliques Xi of
cardinality at least 2 together with all the edges between Xi and Xi+1

for 1 ≤ i ≤ 5 (mod 5).
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• The graphs C4 and g are shown in Figure 1.

Figure 1

Clearly every non-trivial clique and every graph of F satisfies i2(G) = i(G)+
β(G) with i(G) = β(G) = 1 for a clique, i(G) = β(G) = 2 for a graph of F .

Theorem 11. Let G be a graph such that i2(G) = i(G) + β(G). Then

1. If G is g-free, the component of G are λ1 non-trivial cliques with λ1 =
i(G).

2. If G is C4-free, the components of G are λ1 ≥ 0 non-trivial cliques and

λ2 ≥ 0 graphs of F with λ1 + 2λ2 = i(G).

Proof. From Corollary 9, i(G) = β(G) and i2(G) = β2(G). The maximal
independent sets of G have all the same cardinality and each maximal 2-
independent set induces a matching M of size i(G). In particular, G has
no isolated vertex. We make an induction on the common value λ of i(G)
and β(G). If λ = 1, then G is a clique of cardinality at least 2. For λ > 1,
suppose the property true when i2(G) = i(G)+β(G) < 2λ and let G be a g-
free or C4-free graph such that i2(G) = i(G)+β(G) = β2(G) = 2λ. Let a be
a vertex of G such that β(N [a]) is maximum and let G′ = G − N [a]. Every
maximal independent set of G′ can be completed to a maximal independent
set of G by adding a. Hence i(G′) = β(G′) = λ − 1. If S ′ is a i2(G

′)-set
then, by Theorem 5, |S ′| = i2(G

′) ≤ 2i(G′) = 2λ − 2. The 2-independent
set S′ ∪ {a} of G can be completed to a maximal 2-independent set of G
by adding at most one vertex of N(a). Hence i2(G) ≤ |S′| + 2 ≤ 2λ. Since
i2(G) = 2λ, i2(G

′) = 2λ − 2 = i(G′) + β(G′). By the induction hypothesis
applied to G′, which is g-free or C4-free as G, the components of G′ are µ1

non-trivial cliques if G is g-free, µ1 non-trivial cliques and µ2 graphs of F if
G is C4-free, with µ1 + 2µ2 = λ − 1. To continue, we distinguish two cases.
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Case 1. N [a] is a clique of G. By the choice of a, N [x] is a clique
for every vertex x of G. Therefore the components of G are λ non-trivial
cliques.

Case 2. N [a] is not a clique. Let b and c be two non-adjacent vertices
of N(a). If for each component H of G′, V (H) \ (N(b)∪N(c)) 6= ∅ if H is a
clique and β(V (H)\N(b)∪N(c)) = 2 if H ∈ F , then β(G) ≥ β(G′)+2 = λ+1
which is impossible. Therefore there exists a component H of G′ such that
either H is a non-trivial clique and V (H) ⊆ N(b) ∪ N(c) or H ∈ F and
β(V (H) \ N(b) ∪ N(c)) < 2.

Subcase 2.1. Suppose first that H ∈ F and β(V (H)\ (N(b)∪N(c)) ≤ 1.
Then G is not g-free and thus is C4-free. We will prove that this subcase is
impossible. Let Xi, 1 ≤ i ≤ 5 be the five cliques of H as described in the
definition of F . Then V (H) \ (N(b) ∪ N(c)) is a (possibly empty) clique U
and since G is C4-free, N(b) ∩ N(c) ∩ V (H) = ∅. If V (H) ⊆ N(b), then a
maximal 2-independent set I of G containing {a, b} contains no other vertex
in N [a]∪V (H) and at most 2µ1 +4(µ2 − 1) = 2λ− 6 vertices in G′−V (H),
that is |I| ≤ 2λ − 4 which is impossible. Hence V (H) is not contained in
N(b), neither in N(c) by symmetry. If V (H) ∩ N(b) and V (H) ∩ N(c) are
cliques, then U 6= ∅ and H contains an edge uv with u ∈ U and v ∈ N(c).
The set S = {u, v, a, b} dominates V (H) ∪ N [a]. If N(b) ∩ V (H) is not a
clique, say b is adjacent to x1 ∈ X1 and to x3 ∈ X3, then by C4-freeness, b
is adjacent to every vertex x2 of X2 and to no vertex of X4 ∪ X5 for oth-
erwise V (H) ⊆ N(b). Similarly, if V (H) ∩ N(c) is neither a clique then
N(c) entirely contains X4 or X5, say N(c) contains vertices in X3 and
in X5 and entirely contains X4. The set U is contained in X1 ∪ X5. If
U 6= ∅, then U contains a vertex u adjacent to some vertex v in X2 or
in X4, say v ∈ X4. The set S = {u, v, a, b} dominates V (H) ∪ N [a]. If
U = ∅, then b (respectively c) entirely dominates X1 (respectively X5). Let
u and v be vertices in X4. Again S = {u, v, a, b} dominates V (H) ∪ N [a].
Finally, if V (H) ∩ N(b) is not a clique and V (H) ∩ N(c) is a clique C, we
can find two adjacent vertices u and v with u in C or in U , depending
on whether U is or not equal to ∅, and v in C. The set S = {u, v, a, b}
dominates V (H) ∪ N [a]. In any case, the set S is 2-independent and
a maximal 2-independent set of G containing S contains no other ver-
tex in V (H) ∪ N [a] and at most 2µ1 + 4(µ2 − 1) = 2λ − 6 vertices in
G′ − V (H). Hence i2(G) ≤ 2λ − 2, a contradiction. Therefore Subcase 2.1
is impossible.
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Subcase 2.2. H is a non-trivial clique contained in N(b) ∪ N(c). Since
every maximal 2-independent set S of G contains at most two vertices
in each clique-component and four vertices in each F -component of G′,
2λ = i2(G) ≤ 2(µ1 −1)+4µ2 + i2(V (H)∪N [a]) = 2λ−4+ i2(V (H)∪N [a]),
which gives i2(V (H) ∪ N [a]) ≥ 4. Hence if S is a maximal 2-independent
set of G[V (H) ∪ N [a]] containing {a, c}, then |S ∩ (V (H) \ N(c)| ≥ 2.
Let x and x′ be two vertices in V (H) \ N(c) ⊆ V (H) ∩ N(b). Simi-
larly, V (H) \ N(b) contains at least two vertices y and y ′ which are ad-
jacent to c. The induced subgraph G[{a, b, c, x, x′, y, y′}] is equal to g.
Hence G is C4-free and V (H) is partitioned into V (H) ∩ N(b) and
V (H) ∩ N(c).

If β(N [a]) > 2, let {a1, a2, . . . , a`} be a β(N [a])-set with ` ≥ 3. For each
pair {ai, aj} of nonadjacent vertices of N(a), there exists, by Subcase 2.1,
a non-trivial clique-component Hij of G′ contained in N(ai)∩N(aj). Since
G is C4-free, V (Hij) ∩ N(ai) and V (Hij) ∩ N(aj) partition V (Hij) and the
`(`− 1)/2 cliques Hij are different. Then any maximal independent set I of
G containing {a1, a2, . . . , a`} satisfies β(G) − |I| ≥ `(` − 1)/2 + 1 − ` > 0,
contradicting i(G) = β(G). Therefore β(N [a]) = 2.

Let u be a vertex of N(a) adjacent to c but not to b, if any. As above,
let H ′ be the clique-component of G′ contained in N(b)∪N(u). If H ′ 6= H,
then N(b) contains at least one vertex in V (H), one vertex in V (H ′) and a,
that is β(N [b]) ≥ 3, in contradiction to the choice of a. Therefore H ′ = H
and N(u) ∩ V (H) = N(c) ∩ V (H). Similarly, N(v) ∩ V (H) = N(b) ∩ V (H)
for every vertex v of N(a) adjacent to b but not to c. Hence every vertex
z in N [a] ∪ H satisfies β(N [z] ∩ (V (H) ∪ N [a])) = 2 and by the choice of
a, N [z] ⊆ V (H) ∪ N [a] and N [a] ∪ V (H) forms a component L of G. For
each vertex z of L, the vertices of L which are not adjacent to z form a
clique. The clique V (L) \ N [a] is H. Let B, C,X ,Y be respectively the
cliques V (L) \N [b], V (L) \N [c], V (L) \ N [x], V (L) \ N [y]. Let B = C ∩ Y,
A = Y ∩ X , C = X ∩ B, Y = B ∩ H, X = H ∩ C. Then a ∈ A, b ∈ B,
c ∈ C, x ∈ X and y ∈ Y . Since G is C4-free, A ∩ B = ∅ and (A,B) form a
partition of Y. Similarly (A,C), (C, Y ), (Y,X) and (X,B) respectively form
a partition of X , B, V (H) and C. Finally if, say, |A| = 1, then every maximal
2-independent set of G containing {x, y, a} contains no other vertex in L and
thus at most 2(µ1 − 1) + 4µ2 + 3 = 2(λ − 1) + 1 vertices, in contradiction
to i2(G) = 2λ. Therefore each of the five cliques A,B,X, Y,C has at least
two vertices and L is a graph of F . The components of G′ are µ1 non-trivial
cliques and µ2 graphs of F with µ1 + 2µ2 = λ − 1. Hence the components
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of G are λ1 = µ1 − 1 non-trivial cliques and λ2 = µ2 + 1 graphs of F with
λ1 + 2λ2 = µ1 + 2µ2 + 1 = λ. This completes the proof.

4. Bounds on i2

In [4], it is proved that every graph G of maximum degree ∆ ≥ 1 satisfies
ik(G) ≥ (n + k − 1)/(∆ + 1) for 1 ≤ k ≤ n − 1 and examples of extremal
graphs are given for k ≥ 3. Here we slightly improve the bound when k = 2
and characterize the extremal graphs.

Theorem 12. Let G be a connected graph of order n ≥ 2 and maximum

degree ∆. Then i2(G) ≥ (n+2)/(∆+1), with equality if and only if G = P2

or G is obtained from a double star S∆−1,∆−1 by adding zero or more edges

between its leaves without creating a vertex of degree larger than ∆.

Proof. If n = 2, then i2(P2) = 2 = (n + 2)/(∆ + 1). If n = 3 then
G = P3 or C3 and i2(G) = 2 > (n + 2)/(∆ + 1). So assume that n ≥ 4
and ∆ ≥ 2 since G is connected. Let S be a i2(G)-set, p be the number
of edges in G[S] and t the number of edges joining the vertices in S and
V − S. Assume first that p ≥ 1. Then since the p edges are independent,
t ≤ 2p(∆ − 1) + (|S| − 2p)∆. Also since S dominates V − S, t ≥ |V − S|. It
follows that |V − S| ≤ t ≤ 2p(∆ − 1) + (|S| − 2p)∆. Thus

i2(G) = |S| ≥ (n + 2p)/(∆ + 1) ≥ (n + 2)/(∆ + 1).

If further i2(G) = (n + 2)/(∆ + 1), then we must have equality throughout
the above inequality chain, in particular we have p = 1, every vertex of
〈S〉 has degree ∆ and every vertex of V − S is adjacent to exactly one
vertex of S. If 〈S〉 contains an isolated vertex say u, then S ∪ {v} is a 2-
independent set of G, where v ∈ V −S is any neighbor of u, contradicting the
maximality of S. Therefore S contains only two adjacent vertices, each of
degree ∆, and G has the structure described in the theorem. The converse is
easy to show.

Now assume that p = 0. Then t ≤ ∆|S|. If V − S contains any vertex,
say w, that has only one neighbor in S then S ∪ {w} is a 2-independent set
of G, a contradiction with the maximality of S. Thus each vertex of V − S
has at least two neighbors in S and hence t ≥ 2|V − S|. It follows that
∆|S| ≥ t ≥ 2|V − S| and so i2(G) ≥ 2n/(∆ + 2). Notice that 2n/(∆ + 2) ≥
(n + 2)/(∆ + 1) for n ≥ 4 with equality if and only if n = 4 and ∆ = 2.
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If further i2(G) = (n + 2)/(∆ + 1) then n = 4, ∆ = 2 and every vertex of
V −S has exactly two neighbors in S. Thus G is a cycle C4 which is obtained
from a double star S1,1 by adding an edge joining the two leaves.

In [1], Blidia et al. have given an upper bound on i2(G) for every nontrivial
connected bipartite graph.

Theorem 13. If G is a connected nontrivial bipartite graph with s(G)
support vertices, then i2(G) ≤ (n + s(G))/2.

When G is a cactus, this upper bound can be extended to non-bipartite
graphs. First we give a lemma related to matchings in cactus.

Lemma 14. In every cactus G with k odd cycles, there exists a matching

of size k containing exactly one edge in each odd cycle of G.

Proof. We proceed by induction on the number of odd cycles. Clearly the
property is true for k = 0 and k = 1. Let k ≥ 2. Assume the property true
for cactus with less than k odd cycles and let G be a cactus with k odd
cycles. Let C = x1x2 · · · x2p+1 with p ≥ 1 be an odd cycle of G. For each
xi ∈ V (C), let Ai = N(xi) \ V (C). By the definition of cactus, all the sets
Ai are disjoint. Let G′ be the graph obtained from G by contracting the
cycle C into one vertex c. More precisely, V (G′) = (V (G) \ V (C)) ∪ {c}
and for 1 ≤ i ≤ 2p + 1, the edges between xi and Ai are replaced by the
edges between c and Ai. Every cycle C 6= C of G is unchanged in G′ if
V (C) ∩ V (C) = ∅ or is replaced by a cycle C ′ of same length and containing
c if |V (C) ∩ V (C)| = 1. Hence G′ is a cactus with k − 1 odd cycles and by
the inductive hypothesis, contains a matching M ′ of size k − 1 with exactly
one edge in each of its odd cycles. All the edges of M ′ are edges of G except
possibly one, say cy1 with y1 ∈ A1. In this case, the edge cy1 belongs to
an odd cycle C ′

1 of G′ corresponding to an odd cycle C1 of G containing x1.
The set M = M ′ ∪ {x2x3} if M ′ ⊆ E(G), M = (M ′ \ {cy1}) ∪ {x1y1, x2x3}
if cy1 ∈ M ′, is a matching of G containing exactly one edge in each of its
odd cycles.

Theorem 15. If G is a connected nontrivial cactus graph with k odd cycles

and s(G) support vertices, then i2(G) ≤ (n + s(G) + k)/2 and this bound is

sharp.
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Proof. Let G be a connected nontrivial cactus graph with k odd cycles
and s(G) support vertices. If k = 0, then G is a bipartite graph and hence by
Theorem 13 the result is valid. So assume that G contains at least one odd
cycle. By Lemma 14, there exists in G a matching M of size k containing
one edge in each odd cycle of G. We subdivide each edge of M by exactly
one vertex. Let D be the set of such vertices and G′ = (V ′, E′) the resulting
graph. Then every vertex of D has degree two and G′ is a connected bipartite
graph of order n + k with s(G′) = s(G) and different from a tree. Let C
be a set of leaves of G′ so that every support vertex has exactly one leaf in
C. Clearly |C| = s(G). Let A and B be the two classes of the bipartition
of G′[V ′ \ C] with |A| ≤ |B|. Then |B| ≥ (n + k − s(G′))/2 ≥ |A| > 0. Let
SA, CA denote the set of support vertices and leaves of G′ belonging to A,
respectively, and let A′ = A \ (SA∪ CA). Likewise, we define SB , CB and
B′. The 2-independent set S ′ = A ∪ C is maximal in G′ since every leaf of
B is adjacent to a support vertex of A, which has degree one in G′[S′], and
the other vertices of B have at least two neighbors in A. Its order satisfies

∣

∣S′
∣

∣ = |A ∪ C| ≤ (n + k − s(G′))/2 + |C| = (n + s(G) + k)/2.

We shall construct a maximal 2-independent set S of G with |S| ≤ (n +
s(G) + k)/2. Let DA = D ∩ A, DB = D ∩ B, FB = N(DA) ∩ B and
FA = N(DB) ∩ A. Note that each of G[FA] and G[FB ] consists of disjoint
copies of P2. Then FB ⊂ B \ (CB ∪ DB), FA ⊂ A \ (CA ∪ DA). Thus each
component in G[A\DA] is either an isolated vertex or a path P2. So A\DA

is a 2-independent set but (A \ DA) ∪ C may be not 2-independent. This
occurs if FA ∩ SA 6= ∅. In that case delete from C all leaves adjacent to
FA ∩ SA and let C ′ ⊆ C be the resulting set. Thus (A \ DA) ∪ C ′ is a
2-independent set. To extend it to a maximal 2-independent set of G, we
can only add vertices of B \ DB having only one neighbor in A \ DA and
this neighbor must be isolated in G[(A \ DA) ∪ C ′]. Hence we add at most
one endvertex of each edge of G[FB ], that is at most |DA| vertices. Thus
i2(G) ≤ |(A \ DA) ∪ C ′| + |DA| ≤ |A ∪ C| = |S ′|. This completes the proof.
Odd cycles are examples of graphs attaining the bounds.
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