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Abstract

Let us call a G (H, k) graph vertex stable if it contains a subgraph
H ever after removing any of its k vertices. By Q(H, k) we will denote
the minimum size of an (H, k) vertex stable graph. In this paper, we
are interested in finding Q(C3, k), Q(C4, k), Q(K1,p, k) and Q(Ks, k).
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1. Introduction

We deal with simple graphs without loops and multiple edges. As usual
V (G) and E(G) denote the vertex set and the edge set of G, respectively,
|G|, e(G) the order and the size of G and degG(v) the degree of v ∈ V (G).
By Cn we denote the cycle of order n and by Kr the complete graph on r
vertices and by K1,p the star on 1+p vertices. The union G∪H of graphs G
and H is defined by V (G∪H) := V (G)∪V (H), E(G∪H) := E(G)∪E(H),
and we shall suppose that the components of the union are vertex disjoint.

By G − e we shall denote the graph without the edge e and by G − v
the graph obtained from G by deleting the vertex v ∈ V (G) and its incident
edges.

In [1] G.Y. Katona and P. Frankl considered the following problem.
What is the minimum size of a r-uniform hypergraph such that after remov-
ing any k hyperedges there is still a hamiltonian chain. To give a lover bound
of the minimum size of the mentioned r-uniform hypergraphs the authors
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of [1] define the (P4, k) edge stable graph as the graph in which after remov-
ing any k edges there is still P4 and ask about the minimum size of (P4, k)
edge stable graph. This was intended as an attempt to solve the problem of
finding the minimum size of a (P4, k) edge stable graph. In [2] G.Y. Katona
and I. Horváth considered the minimum size of (Pn, k) edge stable graphs.
It is worth pointing out that there is no other result concerning edge stable
graphs.

The aim of this paper is to consider a similar problem but in a vertex
version. So let us give the following definition:

Definition 1. Let us call a (H, k) graph vertex stable if it contains a con-
nected subgraph H ever after removing any of its k vertices. By Q(H, k) we
will denote the minimum size of an (H, k) vertex stable graph.

In this paper we estimate Q(C3, k), Q(C4, k), Q(K1,p, k) and give lower and
upper bounds for Q(Ks, k). For simplicity we will write stable instead of
vertex stable.

The proofs are based on the facts given below.

Definition 2. W say that an (H, k) stable graph G is (H, k) strong stable if
G is not (H, k + 1) stable and G− e is not (H, k) stable for every e ∈ E(G).

Proposition 1. If G is an (H, k) stable graph with minimum size, then G
is an (H, k) strong stable graph. Thus Q(H, k) ≤ e(G) where G is an (H, k)
strong stable graph.

Proof. Suppose G is an (H, k) stable graph with minimum size. Then
clearly G− e for any e ∈ E(G) is not (H, k) stable. Suppose G is (H, k + 1)
stable and degG(v) > 0, then G − v is (H, k) stable with smaller size than
e(G), a contradiction.

Lemma 1. If G is an (H, k) strong stable graph then every vertex as well

as every edge of G belongs to some subgraph of G isomorphic to H.

Proof. Suppose there is an edge e which is not in any E(H). Then G− e
is still (H, k) stable with a smaller size than e(G), a contradiction. If there
exists a vertex v which is not in any V (H), then each edge incident with v
is not in E(H), a contradiction.
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Corollary 1. If G is an (H, k) stable graph with a minimum size than every

vertex as well as every edge of G belongs to some subgraph of G isomorphic

to H.

2. Q(Cn, k)

Theorem 2. Q(C3, k) = 3k + 3.

Proof. Let Gk be a graph which is a vertex-disjoint union of k+1 triangles.
Clearly, Gk is a (C3, k) strong stable graph so Q(C3, k) ≤ 3k + 3.

We prove Q(C3, k) ≥ 3k + 3 by induction on k. It is clear that
Q(C3, 0) = 3. Suppose that the statement holds for any k < k0. We prove
the validity of our claim for k0 indirectly.

Suppose that there is a graph Gk0
which is (C3, k) strong stable but

e(Gk0
) < 3k + 3. If the maximum degree in Gk0

is at most 2, then by
Lemma 1 the graph consists only of cycle components. Since the number
of edges in the graph is at most 3k + 2, at most k components can be a
triangle. So removing a vertex from each of these will destroy all triangles,
a contradiction.

If there is a vertex v of degree greater or equal to 3, then Gk0
−v is clearly

a (C3, k − 1) strong stable graph with less than 3k edges, a contradiction
again.

Lemma 2. If G is (H, k) stable, then G − v is (H, k − 1) stable for any

v ∈ V (G). Moreover, if some edges in G − v cannot be contained in any H
subgraphs, then the graph obtained from G − v by removing all these edges

is still (H, k − 1) stable.

Proof. The first part of the proof follows from the definition of an (H, k)
stable graph. From Corollary 1 it follows that all edges in (H, k − 1) stable
graphs belong to some H subgraph which finishes the proof.

Theorem 3. Q(C4, k) = 4k + 4.

Proof. Let Gk be a graph which is a vertex-disjoint union of (k + 1) C4.
Clearly, Gk is a (C4, k) stable graph so Q(C4, k) ≤ 4k + 4.

We prove Q(C4, k) ≥ 4k + 4 by induction on k. It is clear that
Q(C4, 0) = 4. Suppose that the statement holds for any k < k0. We prove
the validity of our claim for k0 indirectly.
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Suppose that there is a graph Gk0
which is (C4, k) stable with minimum size

and e(Gk0
) < 4k + 4. From Corollary 1 it follows that degGk0

(x) ≥ 2 for
every x ∈ V (Gk0

).

We shall consider the following cases:

Case 1. ∆(Gk0
) ≥ 4.

Let degGk0
(x) ≥ 4. Then Gk0

− x is a (C4, k − 1) stable graph with smaller
size than 4k, a contradiction.

Case 2. ∆(Gk0
) ≤ 3.

Suppose first that Gk0
contains a cycle as a component. Corollary 1 implies

that it is C4. If we delete one vertex of this C4, then the remaining 2 edges
of C4 are not contained in any C4 subgraphs. However, the graph without
these 4 edges is still (C4, k − 1) stable by Lemma 2. This contradicts the
inductive hypothesis. Next suppose that x1x2 ∈ E(Gk0

) and degGk0
(x1) = 3,

degGk0
(x2) = 2. By deleting x1 using Lemma 2 we can derive a similar

contradiction as before. Hence Gk0
contains only cubic components.

If K4 is a component of Gk0
then it may be replaced by C4 since both

of them are (C4, 0) stable, and we get a graph with smaller size than Gk0
,

a contradiction. Since the order of a (C4, 1) cubic graph is at least 6, then
Q(C4, 1) ≥ 9 > 8. Since the order of a (C4, 2) cubic graph is at least 10 (see
[3]), then we may estimate Q(C4, 2) ≥ 15 > 12. Denote by (x1x2x3x4) a
cycle C4 in a cubic graph. If x1x3 or x2x4 is in E(Gk0

) it is in a contradiction
with Corollary 1 or K4 is a component of Gk0

. So we assume neither x1x3

nor x2x4 is in E(Gk0
). In the same way as before after deleting x1 and x3

we may remove all edges from the cycle (x1x2x3x4) and all edges incident
with vertices of the cycle and by Lemma 2 we get a (C4, k − 2) stable graph
with smaller size than 4k − 4, a contradiction.

For n ≥ 6 and k ≥ 0 it is easy to see that a (k + 1) disjoint union of Cn is a
(Cn, k) strong stable graph. The following theorem is evident.

Theorem 4. Q(Cn, k) ≤ kn + n.

3. Q(K1,p, k)

Theorem 5. Let p ≥ 3. Then Q(K1,p, k) = pk + p.
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Proof. Let Gk be a graph which is a vertex-disjoint union of k + 1 stars
K1,p. Clearly, Gk is a (K1,p, k) strong stable graph so Q(K1,p, k) ≤ pk + p.

We prove Q(K1,p, k) ≥ pk + p by induction on k. It is clear that
Q(K1,p, 0) = p. Suppose that the statement holds for any k < k0. We
prove the validity of our claim for k0 indirectly.

Suppose that there is a graph Gk0
which is (K1,p, k) strong stable with

minimum size but e(Gk0
) < pk + p. From Lemma 1 it follows there is at

least one vertex v of degree at least p. So Gk0
− v is clearly a (K1,p, k − 1)

strong stable graph with size smaller than pk, a contradiction.

Observe that a disjoint union of (k + 1) stars K(1,p) is a (K(1,p),k) strong
stable graph.

4. Q(Ks, k)

Let k ≥ 0 and s ≥ 0. Let G = (V (G);E(G)) be a graph of order greater
than k + s.

For a fixed k, k > 0 cases for s = 0, 1, 2 are trivial, the case for s = 3
was considered as C3, so we turn to the case s = 4.

4.1. Q(K4, k)

Theorem 6.

Q(K4, k) =

{

6 for k = 0,

5k + 5 for k ≥ 1.

Proof. It is obvious that Q(K4, 0) = 6. Let Gk be a graph which is
a vertex-disjoint union of k+1

2 K5 for k odd, and a vertex-disjoint union of

(k−2
2 K5)∪K6 for k even. Clearly, Gk is (K4, k) strong stable, so Q(K4, k) ≤

5k + 5.
We prove Q(K4, k) ≥ 5k + 5 by induction on k. It is easy to see that

Q(K4, 1) = 10. Suppose that the statement holds for any k < k0. We prove
the validity of our claim for k0 indirectly.

Suppose that there is a Gk0
graph which is (K4, k) strong stable with

minimum size and e(Gk0
) < 5k + 5.

We shall consider the following cases.

Case 1. ∆(Gk0
) ≥ 5.

Let v ∈ Gk0
and degGk0

(v) ≥ 5. Then Gk0
− v is (K4, k − 1) strong stable

and e(Gk0
− v) < 5k, a contradiction.
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Case 2. ∆(Gk0
) = 4 and δ(Gk0

) = 3.
Let v, z ∈ V (Gk0

) and degGk0
(v) = 4, degGk0

(z) = 3.

Subcase 2a. Suppose vz ∈ E(Gk0
). Since edges incident to z in Gk0

− v
are not in K4, then we may remove them. The graph obtained is (K4, k−1)
strong stable and e(Gk0

− v) < 5k − 1, a contradiction.

Subcase 2b. Suppose there is no vertex of degree 3 adjacent to vertex
of degree 4. It is easy to see that by Lemma 1 since every edge must be in
K4 it means that Gk0

contains K4 as a component (K5 will be considered in
Case 3). Deleting one vertex from K4 we get three edges which cannot be
in any K4 so we may delete them. We get a (K4, k − 1) strong stable graph
with smaller size than 5k − 1, a contradiction.

Case 3. ∆(Gk0
) = 4 and δ(Gk0

) = 4.
By Lemma 1 we have that every edge must be in K4, so it means that Gk0

is a vertex disjoint union of K5. Because e(Gk0
) < 5k + 5, there is at most

(dk+1
2 e − 1) K5. If we delete k vertices, two from every K5, we will destroy

all K4, a contradiction.

Observe that the family given in the above theorem is also (K4, k) strong
stable with minimum size.

4.2. The upper bound of Q(Ks, k) for s ≥ 5

The following assumption will be needed throughout this subsection

1. k ≥ 0 and s ≥ 5 is fixed,

2. 1 ≤ r ≤ k + 1, j ∈ {1, 2, . . . , r}, ij ≥ s and i1 ≤ i2 ≤ . . . ≤ ir.

Let A(Ks,k)
r be a family of graphs consisting of vertex disjoint unions of r

complete graphs Kij satisfying the following condition:

r
∑

j=1

(ij − s) + r − 1 = k .

For simplicity, we will write A(Ks,k)
r without repetition of the above assump-

tion.
Observe that for r = 1 the family A(Ks,k)

r is reduced to a complete graph
Ks+k, and for r = k + 1 it consist only of a vertex disjoint union of k + 1
graphs Ks. Obviously, these graphs are (Ks, k) strong stable.
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For a fixed k, we will show that all graphs from A (Ks,k)
r are (Ks, k) strong

stable and give the construction of a family A(Ks, k) with the smallest size.
This gives us an upper bound of Q(Ks, k).

Lemma 3. For a fixed k, k ≥ 0. Then G ∈ A(Ks,k)
r is (Ks, k) strong stable.

Proof. The proof will be divided into two steps. Let G ∈ A(Ks,k)
r .

Step 1. We show that G is (Ks, k) stable.

Deleting
∑r

j=1(ij − s) = k − (r − 1) vertices we obtain a union of complete
graphs in which:

Case 1a. There is a complete graph of order greater than or equal to
s + r − 1. Hence after removing any r − 1 vertices from the graph we still
have Ks.

Case 1b. All complete graphs have their size less than s + r − 1.

It means that it is a union of exactly r complete graphs and each of them
contains Ks. Hence after removing any r − 1 vertices we still have Ks.

Step 2. We show that G is not (Ks, k + 1) stable and G − e is not (Ks, k)
stable for every e ∈ E(G).

Deleting k vertices from G we obtain that the order of the remaining
graph is: i1 + i2 + . . . + ir = r(s − 1) + 1. So we may create a union of r
graphs containing (r − 1) graphs Ks−1 and exactly one Ks. The proof is
completed by removing one vertex or one edge from Ks.

Definition 3. For a fixed k, k ≥ 0. We call G ∈ A(Ks,k)
r a balanced union if

|ij − iq| ∈ {0, 1} j, q ∈ {1, 2, . . . , r}.

Remark 1. For a fixed k and r there is exactly one balanced union B
(Ks,k)
r ∈

A(Ks,k)
r .

Proof. For a fixed k and r let G ∈ A(Ks,k)
r . Suppose G consists of a vertex

disjoint union of p graphs Ks+i+1 and r − p graphs Ks+i. G ∈ A(Ks,k)
r

therefore:
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r−p
∑

1

(s + i − s) +
p
∑

1

(s + i + 1 − s) + r − 1 = k,

(r − p)i + p(i + 1) + r − 1 = k,

ri + p + r − 1 = k.

Hence p = k − ri − r + 1 and i = (k−r+1)
r

− p
r
. Obviously, i must be

an integer. Moreover, 0 ≤ p < r, so there is exactly one p such that
⌊

k−r+1
r

⌋

= (k−r+1)
r

− p
r

= i. Therefore G is a unique balanced union, hence,

G = B
(Ks,k)
r .

We leave it to the reader to verify that:

Proposition 7. For a fixed k and r, B
(Ks,k)
r has the smallest possible size

among all graphs G ∈ A(Ks,k)
r .

Lemma 4. Let s ≥ 5. There exists k1(s) such that e(B
(Ks,k)
2 ) < e(Ks+k)

for k ≥ k1(s).

Proof. Let B
(Ks,k)
2 = Ki1 ∪ Ki2 . We will consider two cases:

Case 1. i1 = i2.

Then

k =
2
∑

j=1

(ij − s) + 2 − 1 = 2(i1 − s) + 1

so i1 = 1
2(k − 1 + 2s) and the inequality:

2

(

1
2 (k − 1 + 2s)

2

)

= e(Ki1) + e(Ki2) = e(B
(Ks,k)
2 ) < e(Ks+k) =

(

s + k

2

)

holds for k ≥ k1(s) =
⌈√

2s2 + 6s + 4
⌉

.

Case 2. i1 + 1 = i2.

A similar inequality holds for k ≥ k1(s) =
⌈√

2s2 + 6s + 5
⌉

.
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It is easily seen that:

Proposition 8. If B
(Ks,k)
2 = Ki1 ∪ Ki2 and G = Ki1+1 ∪ Ki2 , then G =

B
(Ks,k+1)
2 .

Lemma 5. Let k1(s) be a value given by Lemma 4. If Ks+k′ is a component

of B
(Ks,k)
r for k′ ≥ k1(s), then there is a graph B

(Ks,k)
r′ such that e(B

(Ks,k)
r′ ) <

e(B
(Ks,k)
r ) and r′ > r.

Proof. Suppose that Ks+k′ and Ks+k′+1 are components of B
(Ks,k)
r for

k′ ≥ k1(s). Note that Ks+k′ is a (Ks, k
′) strong stable graph. From Lemma

4 it follows that there are integers i1 and i2 such that

e(Ki1) ∪ e(Ki2) = e
(

B
(Ks,k′)
2

)

< e(Ks+k′).

Denote by H∗ a graph obtained by replacing all Ks+k′ in B
(Ks,k)
r by Ki1∪Ki2

and replacing all Ks+k′+1 in B
(Ks,k)
r by Ki1+1 ∪ Ki2 .

It is obvious that e(H∗) < e(B
(Ks,k)
r ). Moreover, H∗ is (Ks, k) strong

stable and it is a balanced union, therefore there is an integer r ′ such H∗ =

B
(Ks,k)
r′ .

Lemma 5 may be used to show by similar arguments as in Lemma 4 that

there exists kn(s) such that e(B
(Ks,k)
n+1 ) < e(B

(Ks,k)
n ) for k ≥ kn(s).

Thus we may construct graphs A(Ks, k) such that for kn(s) ≤ k <

kn+1(s), A(Ks, k) = B
(Ks,k)
n+1 . From the above construction the following

theorem follows easily:

Theorem 9. Q(Ks, k) ≤ e(A(Ks, k)) ≤ e(G) for every G ∈ A(Ks,k)
r where

r ∈ {1, . . . , k + 1}.

From the proof of Remark 1 we have the following estimation of this upper
bound by sizes of (Ks, k) strong stable balanced unions

Q(Ks, k) ≤ min
r∈{1,...,k+1}

(

r

(

s + ir
2

)

+ pr(s + ir)

)

,

where ir =
⌊

k−r+1
r

⌋

and pr = k − r + 1 − rir.

For a sufficiently large k, we may estimate the upper bound differently.
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Theorem 10. There is an integer k(s) such that Q(Ks, k) ≤ (2s−3)(k +1)
for k > k(s).

Proof. Let G be a vertex disjoint union of p graphs K2s−2 and r − p
graphs K2s−3 where r ∈ {1, . . . , k + 1} and p ∈ {0, . . . , r}. Suppose that

G ∈ A(Ks,k)
r . Then

r−p
∑

1

(2s − 3 − s) +
p
∑

1

(2s − 2 − s) + r − 1 = k,

r(s − 3) + p + r − 1 = k,

r(s − 2) + p − 1 = k.

If k > (s− 2)(s− 2) + (s− 2)− 1, then r ≥ (s− 2). Hence p ∈ {0, . . . , s− 2,
. . . , r}, and so there is a pair r′, p′ (not necessarily unique) which satisfies

the equation. Therefore G = B
(Ks,k)
r′

Now we will show by induction on k that e(B
(Ks,k)
r′ ) = (2s − 3)(k + 1).

For some integer a > (s−2) let k = a(s−2)−1, then r ′ = a and p′ = 0.

Therefore B
(Ks,k)
r′ is a vertex disjoint union of a complete graphs K(2s−3). So

e(B
(Ks,k)
r′ ) = a

(2s−3
2

)

where a = k+1
s−2 , hence e(B

(Ks,k)
r′ ) = k+1

s−2 (s−2)(2s−3) =
(k + 1)(2s − 3).

For k + 1 we shall consider two cases:

Case 1. p′ < r′.

Denote by G a graph obtained by replacing one K2s−3 in B
(Ks,k)
r′ by K2s−2.

Then it is easy to see that G = B
(Ks,k+1)
r′ and e(B

(Ks,k+1)
r′ ) = e(B

(Ks,k)
r′ ) +

(2s − 3) and by induction e(B
(Ks,k+1)
r′ ) = (k + 1)(2s − 3) + (2s − 3) =

((k + 1) + 1)(2s − 3).

Case 2. p′ = r′.

Since B
(Ks,k)
r′ is a vertex disjoint union of r′ graphs K2s−2 so:

r′(2s − 3 − s) + r′ + r′ − 1 = k, hence r′ = k+1
s−1 . Now let us consider

a graph B
(Ks,k+1)
r′′ which is a vertex disjoint balanced union of p′′ graphs

K2s−2 and r′′ − p′′ graphs K2s−3, where r′′ = r′ + 1 and p′′ ∈ {0, . . . , r′′}.
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Then

r′′(2s − 3 − s) + p′′ + r′′ − 1 = k + 1,

(r′ + 1)(2s − 3 − s) + p′′ + (r′ + 1) − 1 = k + 1,

(2s − 3 − s) + p′′ + r′(2s − 3 − s) + r′ + r′ + 1 − 1 = k + 1 + r′,

(2s − 3 − s) + p′′ + k + 1 = k + 1 + r′,

p′′ = r′ − (2s − 3 − s).

Observe that B
(Ks,k+1)
r′′ can be constructed from B

(Ks,k)
r′ by replacing r′−p′′

graphs K2s−2 with K2s−3 and adding one graph K2s−3. Therefore,

e
(

B
(Ks,k+1)
r′′

)

= e
(

B
(Ks,k)
r′

)

− (r′ − p′′)(2s − 2) + e(K2s−3),

and by induction

(

B
(Ks,k+1)
r′′

)

= (k + 1)(2s − 3) − (r′ − r′ + (2s − 3 − s))(2s − 2) +

(

2s − 3

2

)

= (k + 1)(2s − 3) − (s − 3)(2s − 2) + (2s − 3)(s − 2)

= (k + 1)(2s − 3) + (2s − 3) = ((k + 1) + 1)(2s − 3).

Conjecture 1. There is an integer k(s) such that Q(Ks, k) = (2s−3)(k+1)
for k > k(s).

4.3. Q(Ks, k) for s ≥ 5 and s ≥ s(k)

Now we assume s ≥ 5 is fixed.

Theorem 11. For every k ∈ N there exists s(k) such that Q(Ks, k) =
(s+k

2

)

for every s ≥ s(k).

Proof. For k = 0 the proof is evident, we may assume k ≥ 1. The
inequality Q(Ks, k) ≤

(s+k
2

)

is immediate. Now we prove that Q(Ks, k) ≥
(s+k

2

)

. Let G be a (Ks, k) stable graph with e(G) = Q(Ks, k). Let |V (G)| =
s + k + β where β ≥ 0. The proof falls naturally into two cases.

Case 1. 0 ≤ β ≤ k.
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Subcase 1a. There are at most β vertices x ∈ V (G) such that degG(x) ≤
s + k − 2. Therefore, there are at least s + k vertices x ∈ V (G) such that
degG(x) ≥ s + k − 1. Then

Q(Ks, k) ≥ (s + k)(s + k − 1)

2
=

(

s + k

2

)

.

Subcase 1b. There are at least β + 1 vertices x ∈ V (G) such that
degG(x) ≤ s + k − 2.

Assume that s ≥ 2k2 +5k +2. Put: B = {vj ∈ V (G); j = 1, 2, . . . , β +1
and degG(vj) ≤ s+ k− 2 for every j = 1, 2, . . . , β +1} and W = {v ∈ V (G);
such that there is vj ∈ B such that vvj /∈ E(G)}.

The number of elements in W is bounded above by the number of ele-
ments of V (G) that are not adjacent to some vj for j = 1, . . . , β + 1. But
each element vj is not adjacent to at most s + k + β − (s− 1) elements from
V (G) (there are s + k + β elements in V (G) and vj is adjacent to at least
s− 1 elements). Note that in this reasoning vj lies in W . Therefore, we get
|W | ≤ (β+1)(s+k+β−(s−1)) = (β+1)(k+β+1). Since 0 ≤ β ≤ k we esti-
mate |W | ≤ (k+1)(2k+1). Observe that 2k2+5k+2 = (k+1)(2k+1)+2k+1.
Therefore, we may find vertices w1, w2, . . . , wk ∈ V (G)\(W ∪ B). Observe
that wivj ∈ E(G) for every i = 1, 2, . . . , k and j = 1, 2, . . . , β + 1. Denote
by G′ a graph obtained from a graph G by removing all the vertices wi

for i = 1, 2, . . . , k. G is (Ks, k) stable so G′ contains Ks as a subgraph.
Since we removed exactly k vertices and wi 6= vj for every i = 1, 2, . . . , k
and j = 1, 2, . . . , β + 1 we have |V (G′)| = s + β and every vertex of B is
a vertex of G′. We deduce there is at least one vertex of B which is a ver-
tex in a complete subgraph Ks. Since degG′(vj) ≤ s − 2 < s − 1 for every
j = 1, 2, . . . , β + 1 we get a contradiction.

Case 2. β ≥ k + 1.
If s ≥ k2 + k + 1, then since Lemma 1 implies that the minimum degree is
≥ s − 1,

Q(Ks, k) ≥ (s + 2k + 1)(s − 1)

2
≥
(

s + k

2

)

.

Since k2 + k + 1 < 2k2 + 5k + 2 for k ≥ 1 we complete the proof with
s(k) := 2k2 + 5k + 2.

Remark 2. It follows from the proof that Ks+k is the only (Ks, k) stable
graph with minimum size for s ≥ 2k2 + 5k + 2.
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