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Abstract

The existence of paths of low degree sum of their vertices in planar
graphs is investigated. The main results of the paper are:

1. Every 3-connected simple planar graph G that contains a k-path,
a path on k vertices, also contains a k-path P such that for its weight
(the sum of degrees of its vertices) in G it holds

wG(P ): =
∑

u∈V (P )

degG(u) ≤ 3

2
k2 + O(k) .

2. Every plane triangulation T that contains a k-path also contains
a k-path P such that for its weight in T it holds

wT (P ) :=
∑

u∈V (P )

degT (u) ≤ k2 + 13k .

3. Let G be a 3-connected simple planar graph of circumference
c(G). If c(G) ≥ σ|V (G)| for some constant σ > 0 then for any k,
1 ≤ k ≤ c(G), G contains a k-path P such that

wG(P ) =
∑

u∈V (P )

degG(u) ≤
( 3

σ
+ 3

)

k .
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1. Notation

We will adapt the convention that a graph is planar if it can be embedded
in the plane (without edges crossing), and plane if it is already embedded in
the plane. This paper will be concerned with simple plane graphs. The sets
of vertices, edges and faces of such a graph G will be denoted by V (G), E(G)
and F (G), respectively, or by V,E and F if G is known from the context.

The facial walk of a face α of a connected plane graph G is the shortest
closed walk induced by all edges incident with α. The degree of a face α

is the length of its facial walk and is denoted by degG(α) or deg(α) if G is
known from the context. The degree of a vertex x of a graph is the number
of edges incident with x. Analogously the notation degG(x) or deg(x) is
used for the degree of a vertex x. Let a k-vertex be a vertex of degree k.
Let a k-face be defined similarly.

Let an (a, b)-edge be an edge f if an a-vertex and a b-vertex are endver-
tices of f .

A 3-face α is said to be the (a, b, c)-triangle or a triangle of type (a, b, c)
if vertices incident with α have degrees a, b and c.

Let a k-path and a k-cycle be a path and a cycle on k vertices, re-
spectively. Let a k-path be an (a1, a2, . . . , ak)-path if it passes through the
vertices u1, u2, . . . , uk in order with ai = deg(ui) for all i = 1, 2, . . . , k.

Let an (x; a, b, c)-star be a star K1,3 which is a subgraph of a graph G

with a central x-vertex and an a-vertex, a b-vertex and a c-vertex as leaves.

Let Pκ(δ, ρ) be the family of all κ-connected simple plane graphs with
minimum vertex degree at least δ, δ ≥ 3, and minimum face degree at
least ρ. It is easy to see that Pκ(δ, ρ) is not empty only for (δ, ρ) ∈
{(3, 3), (3, 4), (4, 3), (3, 5), (5, 3)}. Let P(δ, ρ):= P3(δ, ρ) and P(δ, 3̄) := {G ∈
P(δ, 3): G is a triangulation}.

For a subgraph H of a planar graph G, the weight wG(H) of H is defined
to be the sum of degrees of vertices of H in G; namely

wG(H) =
∑

u∈V (H)

degG(u) .

2. Introduction and Results

It is well known that every planar graph contains a vertex of degree at
most 5. In 1955 Kotzig [15, 16] proved that every 3-connected planar graph
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contains an edge of the weight at most 13 in general and most 11 in the
absence of 3-vertices, respectively. These bounds are best possible.

In 1940 Lebesgue [17] proved that every graph G of minimum degree
5 contains a star K1,3 such that its central vertex has, in G, degree at
most 5 and every its leaf has degree at most 8. Recently van den Heuvel
and McGuinness [11] proved that every planar graph of minimum degree
at least 3 contains a (3, a)-edge for a 3 ≤ a ≤ 11, or an (a, 4, b)-path for
3 ≤ a ≤ 7 and a ≤ b ≤ 11, or a (5; a, b, c)-star for 3 ≤ a ≤ 6, a ≤ b ≤ 7 and
b ≤ c ≤ 11.

The following recent result, that strengthens all above mentioned ones,
will be applied later in this paper.

Theorem 1 [9]. Every planar graph G of minimum degree δ(G) ≥ 3 con-

tains

(i) a (3, a)-edge for 3 ≤ a ≤ 10, or

(ii) an (a, 4, b)-path for a = 4 and 4 ≤ b ≤ 10,

or a = 5 and 5 ≤ b ≤ 9,

or 6 ≤ a ≤ 7 and 6 ≤ b ≤ 8, or

(iii) a (5; a, b, c)-star for 4 ≤ a ≤ 5, 5 ≤ b ≤ 6 and 5 ≤ c ≤ 7,

or a = b = c = 6.

Moreover, for every S ∈ {(3, 10)-edge, (4, 4, 9)-path, (5, 4, 8)-path, (6, 4, 8)-
path, (7, 4, 7)-path, (5; 5, 6, 7)-star, (5; 6, 6, 6)-star} there is a 3-connected

plane graph H containing S and no other subgraph from the above list.

In generalizing Kotzig’s theorem there are several other natural directions.
Two possibilities are as follows.

Let k ≥ 1 be an integer.

(A) Find the smallest integer f = f(k, δ, ρ) such that whenever a graph
G ∈ P3(δ, ρ) contains at least k vertices, there is a connected subgraph
H of G of order k whose weight

wG(H) =
∑

u∈V (H)

degG(u) ≤ f(k, δ, ρ) .

(B) Find the smallest integer w = w(k, δ, ρ) such that whenever a graph
G ∈ P3(δ, ρ) contains a k-path there is a k-path Pk in G with weight

wG(Pk) =
∑

u∈V (Pk)

degG(u) ≤ w(k, δ, ρ) .
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The possibility (A) was investigated by Enomoto and Ota [4]. They proved
that for k ≥ 4

8k − 5 ≤ f(k, 3, 3) ≤ 8k − 1

and conjectured the precise value of f(k, 3, 3) to be 8k − 5.
The problem (B) was formulated in [5]. The precise values of w(k, δ, 3)

are known only for small k, e.g. w(1, 3, 3) = 5, w(2, 3, 3) = f(2, 3, 3) = 13,
w(2, 4, 3) = f(2, 4, 3) = 11 (Kotzig [15]), w(2, 5, 3) = f(2, 5, 3) = 11 (Wer-
nicke [21]), w(3, 5, 3) = f(3, 5, 3) = 17 (Franklin [7]), and w(3, 3, 3) =
f(3, 3, 3) = 21 (Ando, Iwasaki and Kaneko [1]). For greater k only esti-
mations are known, see e.g. surveys in [10, 13, 14]. In [5, 6] it was proved
that

k log2 k ≤ w(k, 3, 3) ≤ 5k2 .

Madaras [18] improved the upper bound showing that w(k, 3, 3) ≤ 5
2k(k+1).

Applying Theorem 1 we are able to prove the first main result of this
paper

Theorem 2. Let k be an integer, k ≥ 4. Then

(i) every plane triangulation T , that contains a k-path, also contains a

k-path P such that wT (P ) ≤ k2 + 13k, and

(ii) every 3-connected planar graph, that contains a k-path, also contains a

k-path P such that wG(P ) ≤ w(k, 3, 3) ≤ 3
2k2 + O(k).

Note. As shown in [12], no analogue of Theorem 2 can be proved for the
family P2(3, 3). More precisely: For every pair of integers m, k, m ≥ k ≥ 3,
there is a 2-connected planar graph G in which every k-path Pk has weight
at least m, that is wG(Pk) ≥ m.

For k = 2 the situation is different. In 1972 Erdös conjectured that
Kotzig’s theorem holds for all planar graphs G with minimum degree
δ(G) ≥ 3. This conjecture was proved by Barnette, see [8].

The restriction to 4-connected planar graphs brings a different behaviour.
In 2000 Mohar [19] proved that every 4-connected planar graph of order at
least k contains a k-path Pk of weight

wG(Pk) ≤ 6k − 1 ;

the bound being tight. The difference is that every 4-connected plane graph
contains a k-path whose weight is bounded from above by a function linear
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in k while on the other side there are 3-connected plane graphs in which all
k-paths have weight bounded from below by a function which is not linear
in k.

Developing the ideas of Mohar’s proof [19] we show that a linear in k

upper bound is also true for a wider family of plane graphs. Namely, the
second main result of this paper is

Theorem 3. For G ∈ P(δ, ρ) let c(G) be the length of a longest cycle of G.

Let k be an integer, 3 ≤ k ≤ c(G). If c(G) ≥ σ|V (G)| for some positive

number σ then G contains a k-path Pk such that

wG(Pk) <

(

( 2ρ

ρ − 2
− δ

) 1

σ
+ δ

)

k .

In fact Theorem 3 is a corollary of the following more general result

Theorem 4. Let G be a graph with n = |V (G)| vertices, e = |E(G)| edges,

the length of a longest cycle c = c(G), and minimum vertex degree δ = δ(G).
Let k be a positive integer k ≤ c. Then G contains a k-path P with

wG(P ) =
∑

u∈V (P )

degG(u) ≤
(

2e

c
+ δ

(

1 − n

c

))

k .

Immediately we have

Corollary 5. Let G be a hamiltonian graph on n vertices, and let k be a

positive integer, k ≤ n. Then G contains a k-path P such that

wG(P ) ≤ 2e

n
k .

Every 4-connected planar graph G is known to be hamiltonian [20]. Hence
c(G) = |V (G)| and, because in this case e ≤ 3n − 6, we immediately obtain
the above mentioned elegant Mohar’s theorem [19].

Let S be a set of three vertices of a 3-connected planar graph G such
that the graph G − S obtained from G by removing S is disconnected (S is
called a 3-separator in this case). It is known that G−S consists of exactly
two components A and B. G is called to be essentially 4-connected if it is
3-connected and |V (A)| = 1 or |V (B)| = 1 for every 3-separator S of G.
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Theorem 6. Let G be an essentially 4-connected planar graph, and let k be

an integer 1 ≤ k ≤ |V (G)|
2 . Then G contains a k-path P such that

wG(P ) ≤ 9k − 1 .

Moreover, there exists an essentially 4-connected planar graph H in which

every k-path P has weight

wH(P ) ≥ 15

2
k − 13

2
.

The rest of the paper is organized as follows. In Sections 3 and 4 we prove
Theorem 2. Theorems 3, 4 and 6 are proved in Section 5. In Section 6 we
add some remarks concerning the results and open problems.

3. Proof of Theorem 2(i)

First we prove the following theorem

Theorem 7. For a given positive integer k ≥ 4, let G be a 3-connected

plane graph in which every r-face, r ≥ 4, contains at most two vertices of

degree greater than k, and if it contains exactly two, then they are adjacent.

Then G contains a k-path P of the weight

w(P ) ≤ k2 + 13k

that has at most four vertices of degree greater than k.

Proof. We give a constructive proof of Theorem 7. For convenience a
vertex x of G is called major if degG(x) > k, and is called minor otherwise.

For a vertex x of G let Cx be a cycle induced in G by all edges of all faces
incident with the vertex x but not having x as an endvertex (i.e., edges not
incident with x). Clearly all neighbours of x are in V (Cx) and the length of
Cx is at least degG(x).

Let M = M(G) be a subgraph of G induced on major vertices of G.
The graph G and the subgraph M have the properties mentioned in the
lemmas bellow:
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Lemma 1. Let G contain a major vertex x with degM (x) = d and let

degG(x) ≥ kd + 1. Then G contains a k-path P of which all vertices are

minor and therefore w(P ) ≤ k2.

Proof. Since degG(x) ≥ kd + 1 then for the cycle Cx we have |Cx| > kd,
but on Cx there are exactly d major vertices. Hence at least one path between
two consecutive major vertices of Cx contains at least k minor vertices. So
we have a k-path P with w(P ) ≤ k2.

Lemma 2. If G contains a major vertex x with degM (x) ≤ 2, then G

contains a k-path P all vertices, except possibly x, are minor and w(P ) ≤
k2 + k.

Proof. In the case degM (x) ≤ 1 the proof is clear. Let x be a 2-vertex in
M then degG(x) ≥ k+1. If degG(x) ≥ 2k+1, then, by Lemma 1, G contains
a required path. Let degG(x) ≤ 2k. On Cx there are two major vertices, say
y and z, which divide Cx into two subpaths both consisting of minor vertices
that contain two subpaths Pa and Pb with a + b ≥ k − 1 starting in minor
vertices u and v, respectively, which are neighbours of x in G. These two
paths together with the edges ux and xv form an l-path, l ≥ k. This path
contains a k-path P as a subgraph all vertices of which, except possibly x,
are minor. So for P we have

wG(P ) ≤ k(k − 1) + 2k = k2 + k .

Due to Lemma 1 and Lemma 2 we may suppose that degM (x) = d ≥ 3
and degG(x) ≤ kd for every major vertex x of G. Then we apply to M our
Theorem 1. By it there is a major vertex u with degM (u) = a ≤ 5. Due
to hypothesis of Theorem 7 all other vertices of Cu are minor. Among these
major neighbours of u there are at most two vertices, say y and z, whose
degrees are not known, and

(i) if degM (u) = 3 then there is a major neighbour v with degM (v) =
b ≤ 10, or

(ii) if degM (u) = 4 then there are two more major neighbours of u, say v

and w, such that degM (v) = b and degM (w) = c with 4 ≤ b ≤ 5 and
4 ≤ c ≤ 10 or 6 ≤ b ≤ 7 and 6 ≤ c ≤ 8, respectively, or

(iii) if degM (u) = 5 then there are three more major neighbours v, w and
x of degrees b, c, and d, respectively, where b ≤ 5, c ≤ 6, d ≤ 7 or
b = c = d = 6.
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We may suppose that (1) and (2) below hold:

(1) For the vertex t ∈ {v, w, x} with degM (t) = r degG(t) ≤ (r − 1)k.

Proof of (1). Suppose degG(t) ≥ (r − 1)k + 1. Consider the cycle Ct.
Except of the vertex u of degree at most 5k there are other r − 1 major
vertices on Ct. These major vertices split Ct into r − 1 subpaths. At least
one of these subpaths contains a k-path P on k − 1 minor vertices and the
k-th (possibly exceptional) vertex of this path is either a minor vertex or the
vertex u which has degree at most 5k. This means that the k-path P has
at most one major vertex and we have wG(P ) ≤ k(k − 1) + 5k = k2 + 4k.

(2) For the vertex u degG(u) ≤ 2k holds.

Proof of (2). Suppose the contrary. Let the cycle Cu have at least 2k +1
vertices. There are at most five major vertices among them (all are neigh-
bours of u), namely the vertices y and z, and at most three from the set
{v, w, x} as described above. The vertices y and z divide the cycle Cu into
two subpaths Pp and Pq with p + q ≥ 2k − 1. Hence max{p, q} ≥ k and
on Cu there is a k-path P all vertices of which except of at most three
(from the set {v, w, x}) are minor. This path has in the case (i) the weight
wG(P ) ≤ k(k−1)+(b−1)k ≤ k2−k+10k−k = k2 +8k because P contains
at most one major neighbour of degree ≤ 9k. In the case (ii) (the case (iii))
the path P has weight

wG(P ) ≤ k(k − 2) + (b − 1)k + (c − 1)k ≤ k2 + 11k

(wG(P ) ≤ k(k − 3) + (b − 1)k + (c − 1)k + (d − 1)k ≤ k2 + 12k)

and contains at most two major vertices (at most three major vertices,
respectively).

Because u is a major vertex, |Cu| ≥ k + 1 and the vertices y and z divide
the cycle Cu into two subpaths that contain two subpaths Pp and Pq with
p + q ≥ k − 1 starting in vertices u∗ and v∗ which are neighbours of u in G.
These two subpaths together with the vertex u and edges u∗u and uv∗ form
an l-path, l ≥ k, which contains as a subgraph a k-path P passing through
at least (k − 4) minor vertices and at most four major vertices all from the
set {u, v, w, x}.

Applying Properties (1) and (2), and distinguishing three cases (i), (ii)
and (iii) according to the degree of u in M we obtain, similarly as in the
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proof of (2), the following upper bound on wG(P ), the weight of P ,

wG(P ) ≤ k2 + 13k .

From Theorem 7 we immediately have the upper bound for Theorem 2(i).

4. Proof of Theorem 2(ii)

To prove Theorem 2(ii) consider first the following construction and then
modify the proof of Theorem 2(i). Suppose H ∈ P(3, 3).

Let G0 = H,G1, . . . , Gp = G be a sequence of plane graphs defined as
follows: If Gi, i = 0, 1, . . . , p − 1, is a 3-connected plane graph having an
r-face α, r ≥ 4, incident with two non-adjacent major vertices u and v we
insert a diagonal d = uv into α joining the vertices u and v. The result is a
3-connected plane graph Gi+1 = Gi + d. If Gi does not contain any face α

having the above-mentioned property we put i = p and G = Gp.

It is easy to see that the graph Gp = G satisfies the hypothesis of
Theorem 7. If G contains a major vertex x of degree degM (x) ≤ 2 then,
analogously as in the proof of Lemma 2, one can prove that G contains
a k-path P of the weight w(P ) ≤ k2 + k with at most one major vertex.
Clearly this path is also present in the graph H. If for each major vertex
x in G degM (x) ≥ 3 then, by Theorem 1, there is a major vertex u with
3 ≤ degM (u) ≤ 5 such that on Cu there are at most two major vertices y and
z of unknown degree and at most three major vertices with known degree
bounds. Because of our above construction there is, on Cu −{y, z}, at most
one edge or one pair of adjacent edges, incident neither with y nor z that
is not present in H. These edges together with the vertices y and z divide
the cycle Cu into at most three subpaths consisting of at least k − 2 vertices
with at least k − 4 minor ones among them. All these subpaths are clearly
present in H. Two longest ones of them joined through the vertex u form
in H a path Q on at least 2

3 (k − 2) + 1 = 2k−1
3 vertices. On the path Q

there are the vertex u, at most two vertices from the set {v, w, x} and all
remaining vertices are minor. Hence, by Theorem 1, for the weight of Q we
have w(Q) ≤ (d 2k−1

3 e − 3)k + 5k + 7k + 8k = d 2k−1
3 ek + 17k.

Hence we have

Theorem 8. Every graph G ∈ P(3, 3) contains a d 2k−1
3 e-path Q of the

weight w(Q) ≤ d 2k−1
3 ek + 17k with at most four major vertices.
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From this theorem we immediately have our Theorem 2(ii).

5. Light Paths with Linear Weights

In this section we are going to prove Theorems 3, 4 and 6. We start with

Proof of Theorem 4. Let C be a longest cycle of G. For the number e

of edges of G,

2e =
∑

x∈V (G)

degG(x) =
∑

x∈V (C)

degG(x) +
∑

x∈V (G)\V (C)

degG(x) .

Thus,

∑

x∈V (C)

degG(x) = 2e−
∑

x∈V (G)\V (C)

degG(x) ≤ 2e−δ·|V (G)\V (C)| = 2e−δ(n−c).

For x ∈ V (C), let P (x) denote the path on C starting in x and following
a fixed orientation of C such that |V (P (x))| = k (because k ≤ c this is
possible). Then every vertex of C is contained in exactly k of these c paths.
Hence,

∑

x∈V (C)

(

∑

y∈V (P (x))

degG(y)
)

= k
∑

x∈V (C)

degG(x) ≤ (2e + δ(c − n))k .

Among these c paths there is one, say P , with

∑

x∈V (P )

degG(x) ≤
(

2e

c
+ δ

(

1 − n

c

)

)

k ,

and Theorem is proved.

Proof of Theorem 3. Theorem 3 is a simple consequence of Theorem
4. For a connected plane graph G with e edges, f faces and minimum face
degree ρ we have

2e =
∑

α∈F (G)

degG(α) ≥ ρf .

This immediately yields f ≤ 2e
ρ

. Using this inequality and Euler’s poly-

hedral formula we obtain e ≤ ρ(n−2)
ρ−2 . Applying this fact together with the
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inequality c ≥ σn on parameters c and n in Theorem 4 we obtain

wG(P ) ≤
(

2e

c
+ δ

(

1 − n

c

)

)

k ≤
(

2ρ(n − 2)

c(ρ − 2)
+ δ − δn

c

)

k

=

(

( 2ρ

ρ − 2
− δ

)n

c
+ δ − 4ρ

c(ρ − 2)

)

k <

(

( 2ρ

ρ − 2
− δ

) 1

σ
+ δ

)

k

which is the statement of Theorem 3. Note that ( 2ρ
ρ−2 − δ) is positive for all

five admissible pairs (δ, ρ).

Proof of Theorem 6. Theorem 4 and next theorem give the upper
bound in Theorem 6.

Theorem 9. For every 3-connected essentially 4-connected plane graph G

on n vertices there is

n ≤ 2c − 4

where c = c(G) is the length of a longest cycle of G.

Proof. Consider G to be embedded into the plane π. For a cycle C of G,
the bounded and the unbounded region of π \ C are denoted by int(C) and
out(C), respectively. A cycle C of G is called to be int-feasible if, for every
x ∈ V (G) ∩ int(C), deg(x) = 3, N(x) ⊆ V(C), and any two y, z ∈ N(x)
are not adjacent on C. A cycle to be out-feasible is defined similarly. Recall
that N(x) denotes the neighbourhood of x.

Lemma 3. Given an int-feasible cycle C of G on at least 4 vertices, |V (G) ∩
int(C)| ≤ |V(C)|

2 − 2.

Proof. By induction on c = |V (C)|. If c = 4 then C is int-feasible only if
|V (G) ∩ int(C)| = 0.

Let c > 4, d = |V (G) ∩ int(C)| > 0, and φ be an orientation of C.
Consider a fixed x ∈ V (G) ∩ int(C) and let x1, x2, x3 be the neighbours
of x on C met in this sequence following φ. For i = 1, 2, 3, let Ci be
the cycle obtained by the union of the path on C from xi to xi+1 fol-
lowing φ and the two edges xxi and xxi+1(x4 = x1), ci = |V (Ci)|, and
di = |V (G) ∩ int(Ci)|. Obviously, Ci is int-feasible and ci ≥ 4, i = 1, 2, 3.
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We have c1+c2+c3 = c+6, d1+d2+d3 = d−1, and, by induction hypothesis,
di ≤ ci

2 − 2(i = 1, 2, 3). This implies d ≤ c
2 − 2.

A consequence of a result of Tutte [20] is the following

Lemma 4. G contains a cycle T (a so-called Tutte-cycle) such that deg(x) =
3 and N(x) ⊆ V (T ) for every x ∈ V (G) \ V (T ).

If a Tutte-cycle T of G is not int-feasible (assume the edge yz belongs to
T for certain y, z ∈ N(x), x ∈ V (G) ∩ int(T )) then the cycle obtained
from T by removing the edge yz and adding the edges xy and yz is also a
(longer!) Tutte-cycle of G. Hence, we may assume that there is a Tutte-
cycle C being both int-feasible and out-feasible. Since c = |V (C)| ≥ 6 if s =
|V (G) \ V (C)| > 0 and n = c ≥ 4 if s = 0, we may apply Lemma 3. Because

C is also out-feasible, by symmetry, we have |V (G) ∩ out(C)| ≤ |V (C)|
2 − 2.

Hence, s ≤ c − 4, n ≤ 2c − 4.

To prove the second part of Theorem 6, take a 4-connected plane triangu-
lation H containing only 5- and 6-vertices such that the distance between
arbitrary two 5-vertices is at least k. Such triangulations are well known, see
e.g. [3]. They are the duals to the famous fullerene graphs. Let K(H) be
the graph obtained from H by inserting a new vertex into each face α and
joining it to all vertices incident with α. Then K(H) contains 12 vertices of
degree 10, |V (H)|−12 vertices of degree 12, the remaining vertices of K(H)
are independent 3-vertices, and every 3-separator forms the neighbourhood
of a 3-vertex. Since every k-path P contains at most one vertex of degree
10, the proof is complete.

6. Remarks

6.1. Comparison of the upper bounds

Theorem 4 provides the upper bound ( 3n
c

+ 3− 12
c

)k on wG(P ) for a k-path
P of graphs G from the family P(3, 3) if G has circumference c = c(G) and
k ≤ c. Here n = |V (G)|.

Theorem 2, on the other side, gives for G ∈ P(3, 3̄), with G containing
a k-path, the upper bound k(k + 13) on wG(P ).

It is easy to see that for plane triangulations the first mentioned upper
bound is better than the second one if and only if

3n − 12

c
− 10 ≤ k ≤ c and c ≥ −5 +

√
3n + 13 .



Paths of Low Weight in Planar Graphs 133

Note that the best known lower bound for circumference of a 3-connected
planar graph G is Ω(nlog3 2) recently proved by Chen and Yu [2].

7. Matchings and Kotzig’s Type Theorems

The idea of the proof of Theorem 4 can be used e.g. in proving the following
Kotzig’s type theorem.

Theorem 10. For a graph G let n, e, δ and m be the number of its vertices,

edges, the minimum degree, and the edge independence number, respectively.

Let M be a matching of G of the cardinality m. Then G contains an edge

h ∈ M of weight

wG(h) ≤ 2e − δ(n − 2m)

m
.

Proof. Let M = {h1, h2, . . . , hm} be a maximum matching of G. Put
V1 = V (M) and V2 = V \ V1. Then

∑

h∈M

wG(h) =
∑

u∈V1

degG(u) = 2e −
∑

v∈V2

degG(v) ≤ 2e − δ(n − 2m) ,

which immediately yields the required inequality.

For a graph G having perfect matching there is m = n
2 , so we get

Corollary 11. If a graph G has a perfect matching M then G contains an

edge h ∈ M of weight

wG(h) ≤ 4e

n
.

The number e edges of planar graph G is bounded by e ≤ 3n − 6 or e ≤
2n − 4 in general and in the absence of 3-faces, respectively. Using these
inequalities in Corollary 11 we obtain

Corollary 12. If a planar graph G has a perfect matching M then it con-

tains an edge h of weight

wG(h) ≤ 11 and wG(h) ≤ 7

in general and in the absence of 3-faces, respectively.
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Preprint series (A) No. 1 (2004).

[15] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat. Čas. SAV
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