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Abstract

A set D of vertices in a graph G = (V, E) is a weakly connected
dominating set of G if D is dominating in G and the subgraph weakly
induced by D is connected. The weakly connected domination number
of G is the minimum cardinality of a weakly connected dominating
set of G. The weakly connected domination subdivision number of a
connected graph G is the minimum number of edges that must be
subdivided (where each egde can be subdivided at most once) in order
to increase the weakly connected domination number. We study the
weakly connected domination subdivision numbers of some families of
graphs.
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1. Introduction

Let G = (V,E) be a simple graph with |V (G)| = n(G). The neighbourhood
NG(v) of a vertex v ∈ V (G) is the set of all vertices adjacent to v in G and
the closed neighbourhood NG[v] is the set NG(v)∪ {v}. The degree dG(v) of
v is the number of edges incident to v in G, dG(v) = |NG(v)|. If X ⊆ V (G),
then NG[X] =

⋃

v∈X NG[v] is the closed neighbouhood of X. Let L(G) be
the set of all leaves of G, that is the set of vertices degree 1, and let n1(G)
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be the cardinality of L(G). A vertex v is called a support vertex if v is a
neighbour of a leaf. Denote by S(G) the set of all supports in G and let
nS(G) be the cardinality of S(G).

A setD ⊆ V (G) is a dominating set of G if for every vertex v ∈ V (G)−D
there exists a vertex u ∈ D such that v and u are adjacent. The minimum
cardinality of a dominating set in G is the domination number of G denoted
γ(G). A minimum dominating set of a graph G is called a γ(G)-set.

From now on, G will be assumed to be connected. The subgraph weakly
induced by a set D ⊆ V (G) is the graph 〈D〉w = (NG[D], Ew), where Ew

consists of the set of all edges of G having at least one vertex in D. A
set D ⊆ V (G) is a weakly connected dominating set (WCDS) of G if D
is dominating and 〈D〉w is connected. The weakly connected domination
number of G, denoted γw(G), is the minimum cardinality of a WCDS of G.
A minimum WCDS of a graph G is called a γw(G)-set.

In this paper we define and study the weakly connected domination sub-
division number sdγw

(G) of a connected graph G to be the minimum num-
ber of edges that must be subdivided (where each egde can be subdivided at
most once) in order to increase the weakly connected domination number.
We assume that the graph G has at least three vertices, since the weakly
connected domination number of the graph K2 does not increase when its
only edge is subdivided. We show that for every connected graph of order at
least 3 the weakly connected domination subdivision number is well defined.
For any unexplained terms and symbols see [3].

Some results, namely Proposition 4, Theorems 10 and 16, Corollaries 18
and 19, as well as a part of Corollary 15 are independently obtained by
Hattingh, Jonck and Marcus [5].

2. Preliminary Results

In this section we study basic properties of weakly connected domination
subdivision numbers of graphs.

Proposition 1. If G is a connected graph of order at least 3 and e is an
edge of G, then for the graph G′ obtained from G by subdividing e,

γw(G) ≤ γw(G′) ≤ γw(G) + 1.
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Proof. If we subdivide any edge of G, then obviously the resulting graph
cannot have smaller weakly connected domination number. Hence γw(G) ≤
γw(G′).
Let x be the vertex obtained by subdividing e. Then any γw(G)-set D

can be extended to a WCDS of G′ by adding to it x. In this way γw(G′) ≤
|D| + 1 = γw(G) + 1.

Observation 2. Let G = Km1,m2,...,mk
be the complete k partite graph,

k ≥ 2 with m1 ≤ m2 ≤ · · · ≤ mk.

• If m1 = 1, then sdγw
(G) = 1;

• If m1 ≥ 2, then sdγw
(G) = 2.

The weakly connected domination number of a path or a cycle is easy to
compute.

Proposition 3. For a path Pn and a cycle Cn on n ≥ 3 vertices,

γw(Pn) = γw(Cn) =

⌈

n − 1

2

⌉

.

An immediate consequence of Proposition 3 now follows.

Proposition 4. For a path Pn and a cycle Cn on n ≥ 3 vertices,

sdγw
(Pn) = sdγw

(Cn) =

{

1, if n is odd,

2, if n is even.

Observation 5. If G is a graph of order at least 3, then there exists a
γw(G)-set containing no leaf and γw(G) ≥ nS(G).

Now we present two sufficient conditions for the weakly connected domina-
tion subdivision number of a connected graph to be equal one.

Proposition 6. If G is a connected graph of order at least 3 and γw(G) = 1,
then

sdγw
(G) = 1.

Proof. If γw(G) = 1, then clearly G has a vertex of degree n(G)−1, say u.
Then {u} is γw(G)-set. Let G′ be a graph obtained from G by subdividing
any edge of G. Since n(G) ≥ 3, no vertex of G′ has degree n(G′) − 1 and
thus γw(G′) > 1.
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A strong support vertex is a vertex adjacent to at least two leaves.

Proposition 7. If a connected graph G has a strong support vertex, then

sdγw
(G) = 1.

Proof. Let u be a strong support vertex and let v1, v2 be any two leaves
adjacent to u. Let G′ be the graph obtained from G by subdividing the edge
uv1 and let x1 be the new vertex. It is easy to see that x1 and u are elements
of a γw(G′)-set containing no leaf, say D′. Moreover, D = D′ − {x1} is a
WCDS of G, which implies that γw(G) < γw(G′).

Proposition 8. If a connected graph G of order at least 3 has adjacent
support vertices, then

sdγw
(G) ≤ 3.

Proof. Let u1 and u2 be two adjacent supports and let v1 and v2 be two
leaves adjacent to u1 and u2, respectively. Denote by G′ the graph obtained
from G by subdividing edges u1u2, u1v1 and u2v2 and let x1 and x2 be the
new vertices in G′ adjacent to v1 and v2, respectively, and let y be the new
vertex in G′ adjacent to u1 and u2. Let D

′ be a γw(G′)-set containing no leaf.
Then x1 and x2 are elements of D

′. Moreover, since D′ is weakly connected
and dominating, at least one vertex of {u1, u2, y} belongs to D′. For this
reasons, D = (D′ − {x1, x2, y}) ∪ {u1, u2} is a WCDS of G of cardinality
smaller than γw(G′). We conclude that sdγw

(G) ≤ 3.

3. Weakly Connected Domination Subdivision Numbers

of Trees

Proposition 9. If T is a tree of order at least 3, D is a γw(T )-set of T
and uv is an edge, then u or v is contained in D.

Proof. Suppose both u and v belong to V (G)−D. Since D is dominating,
we have that dT (u) > 1 and dT (v) > 1. Therefore there exists a path
(x1, . . . , u, v, . . . , xl) such that x1, xl ∈ L(T ). We conclude that there exist
vertices x, y ∈ D such that the unique (x − y) path in T contains u and v.
For this reason D is not weakly connected in T .
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Theorem 10. For any tree T of order at least 3,

1 ≤ sdγw
(T ) ≤ 2.

Proof. Let D be a γw(T )-set. Assume first that u is a strong support
vertex of T . Then Proposition 7 implies that sdγw

(T ) = 1.

Assume now that each support vertex of T is adjacent to exactly one
leaf. Let (s0, s1, . . . , sl) be a longest path of a tree T . Since T has no strong
support vertex, l ≥ 3. Let T ′ be the tree obtained from T by subdividing
edges s0s1 and s1s2 such that (s0, x, s1, y, s2, . . . , sl) is the longest path of
T ′. Note that in this situation dT (s1) = dT ′(s1) = 2. Obviously there
exists a γw(T ′)-set, denoted D′, containing x and y, and not containing
s0 and s1. Consider the set D = (D′ − {x, y}) ∪ {s1}. It is immediate
that D is a WCDS of T . Obviously |D| = |D ′| − 1, which implies that
γw(T ′) = |D′| > |D| ≥ γw(T ) and hence sdγw

(T ) ≤ 2.

Since the weakly connected domination subdivision number of a tree is either
1 or 2, trees can be classified as Class 1 or Class 2 depending on whether their
weakly connected domination subdivision number is 1 or 2, respectively. In
what follows, we characterize all trees in Class 2. To this aim we introduce
some additional notation. A graph G is a γw-excellent graph if each vertex
of G is contained in some γw(G)-set. If T is a tree and e = uv is an edge
of T , then by Tuv(u) and Tuv(v) we denote the two components of T − uv,
where u ∈ Tuv(u) and v ∈ Tuv(v).

Theorem 11. A tree T of order at least 3 is in Class 2 if and only if T is
a γw-excellent tree.

Proof. Assume first that T is a γw-excellent tree. It suffices to show that
γw(T ) = γw(T ′) for any tree T ′ which can be obtained from T by subdividing
one edge.

Let e = uv ∈ E(T ) be an edge. If there exists a γw(T )-set D containing
u and v, then obviously D is a WCDS of the tree T ′ obtained from T by
subdividing the edge e. Hence γw(T ′) = γw(T ). If not, then since T is a
γw-excellent tree, there exists a γw(T )-set Du which contains u and not con-
tains v and there exists a γw(T )-set Dv which contains v and not contains u.
Denote by x the vertex obtained by subdividing the edge e in order to obtain
T ′. It is immediate that D′

u = (Dv ∩V (Tuv(u)))∪{x} is a weakly connected
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dominating set of T ′

xv(x) and D′

v = (Du ∩ V (Tuv(v))) ∪ {x} is a weakly
connected dominating set of T ′

xu(x). Hence, D′ = D′

u ∪ D′

v is a WCDS of
T ′. Moreover, Du ∩ V (Tuv(u)) is a WCDS of Tuv(u) and Dv ∩ V (Tuv(v)) is
a WCDS of Tuv(v). In this way we conclude that D = (Du ∩ V (Tuv(u))) ∪
(Dv ∩ V (Tuv(v))) is a WCDS of T . Since a γw(T )-set containing u and v
does not exist, |D| ≥ γw(T ) + 1. Thus

2γw(T ) = |Du| + |Dv | = |D| + |D′ − {x}| ≥ γw(T ) + 1 + |D′| − 1

and therefore |D′| ≤ γw(T ). Hence D′ is a γw(T ′)-set and γw(T ′) = γw(T ).

Assume now that T is not a γw-excellent tree. We show that there exists
an edge e ∈ E(T ) such that γw(T ′) > γw(T ) for the tree T ′ which can be
obtained from T by subdividing e. Let u be a vertex which does not belong
to any γw(T )-set. Let e be an edge incident with u and let x be the vertex
of T ′ obtained by subdividing e. Denote by D ′ a γw(T ′)-set. Since T ′ is
a tree, Proposition 9 implies that at least one of u and x belongs to D ′.
If u, x ∈ D′, then D = D′ − {x} is clearly a WCDS of T implying that
γw(T ′) > γw(T ). If u ∈ D′ and x /∈ D′, then D′ is a WCDS of T and since
u ∈ D′, we conclude that γw(T ′) = |D′| > γw(T ). If x ∈ D′ and u /∈ D′,
then D = (D′ − {x}) ∪ {u} is a WCDS of T and since u ∈ D, we again
conclude that γw(T ′) = |D′| = |D| > γw(T ).

A similar result for general connected graphs is not true. Since each vertex
of the cycle C3 is contained in some minimum weakly connected set, C3 is a
γw-excellent graph, but sdγw

(C3) = 1. Moreover, vertex v of the graph G in
Figure 1 does not belong to any γw(G)-set, however it is possible to verify
that subdividing any one edge of G does not increase its weakly connected
domination number.

Domke et al. [1] have defined the class E to be the class of trees obtained
from P2 by a finite sequence of the following operation: attach to any vertex
a P2. They have proved the following results.

Theorem 12 (Domke et al. [1]). A nontrivial tree T is γw-excellent if and
only if T belongs to the family E.

A set S of vertices of G = (V,E) is an independent set if no two vertices
of S are adjacent. The vertex independence number, denoted β(G), is the
maximum cardinality of an independent set of G.
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v

Figure 1. Graph G

Theorem 13 (Domke et al. [1]). A nontrivial tree T is γw-excellent if and
only if

β(T ) =
n(T )

2
.

The following result appears in [2].

Theorem 14 (Dunbar et al. [2]). If T is a nontrivial tree, then

γw(T ) = n(T ) − β(T ).

Theorems 11, 12, 13 and 14 imply what follows.

Corollary 15. Let T be a tree of order at least 3. Then the following con-
ditions are equivalent:

1. T belongs to the family E;

2. T is a γw-excellent tree;

3. sdγw
(T ) = 2;

4. γw(T ) = n(T )
2 ;

5. β(T ) = n(T )
2 .
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4. Weakly Connected Domination Subdivision Numbers of

Graphs

In this section first we give an upper bound for the weakly connected domi-
nation subdivision number of an arbitrary connected graph.

Theorem 16. Let G be a connected graph of order at least 3 and let δL(G)
be the smallest degree among vertices of V (G) − L(G). Then

sdγw
(G) ≤ δL(G).

Proof. Let v be a vertex of G of degree δL(G). Denote by u1, . . . , udG(v)

the neighbours of v in G and denote by x1, . . . , xdG(v) the neighbours of v
in the graph G′ obtained from G by subdividing all edges incident with v,
so that ui and xi, for i = 1, . . . , dG(v), are adjacent in G′. For notational
convience we let U = {u1, . . . , udG(v)} and X = {x1, . . . , xdG(v)}. It suffices
to show that γw(G′) > γw(G).
Let D′ be a γw(G′)-set. We consider three cases.

Case 1. If |X ∩D′| ≥ 2, then obviously D = (D′ −X)∪ {v} is a WCDS
of G of cardinality smaller than γw(G′).

Case 2. If |X ∩D′| = 1, then without loss of generality we let X ∩D ′ =
{x1}. If v ∈ D′, then clearly D = D′ − {x1} is a WCDS of G. Otherwise, if
v /∈ D′, then since D′ is a WCDS of G′, we obtain that u2, . . . , udG(v) ∈ D′.
Moreover, at least two vertices of NG′ [u1] belong to D′, where one of them
is x1. For this reasons D = D′−{x1} is a WCDS of G of cardinality smaller
than γw(G′).

Case 3. If |X ∩ D′| = 0, then v ∈ D′ and since D′ is a WCDS of G′,
|D′ ∩U | ≥ 1. In this situation D = D′ −{v} is a WCDS of G of cardinality
smaller than γw(G′).

In all cases γw(G) ≤ |D| < γw(G′) and we conclude that sdγw
(G) ≤ δL(G).

Corollary 17. The weakly connected subdivision number is defined for every
connected graph G of order at least 3.

Proof. Every such a graph G contains a vertex u with dG(u) > 1. Hence
1 ≤ sdγw

(G) ≤ dG(u) ≤ |E(G)|.
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Corollary 18. For any r × s grid graph Gr×s of order at least 3,

1 ≤ sdγw
(Gr×s) ≤ 2.

Proof. Corollary follows from the simple observation that if either r = 1
or s = 1, then Gr,s is a path and 1 ≤ sdγw

(Gr×s) ≤ 2 by Theorem 10.
Otherwise Gr,s must contain a corner vertex of degree two and Theorem 16
implies the desired result.

Corollary 19. For a k-regular connected graph G, where k ≥ 2 and with
n(G) ≥ 3,

1 ≤ sdγw
(G) ≤ k.

Corollary 20. For any connected cubic graph G of order at least 3,

1 ≤ sdγw
(G) ≤ 3.

A k-tree is any graph which can be obtained from a complete graph on k
vertices, by repeatedly adding a new vertex and joining to it every vertex
in a complete subgraph of order k of the existing graph. Since every k-tree
contains a vertex of degree k, we obtain what follows.

Corollary 21. For any k-tree T , k ≥ 2, of order greater than 2,

1 ≤ sdγw
(G) ≤ k.

Next we show that the weakly connected domination subdivision number of
a graph can be arbitralily large. Our construction of a graph G is similar
to the construction of a graph G of similar result for the total subdivision
number of a graph by Haynes, Henning and Hopkins [4].

Theorem 22. For any integer k ≥ 2, there exists a connected graph G with
sdγw

(G) = k.

Proof. Let X = {1, 2, . . . , 3(k − 1)} and let Y = {Y ⊆ X : |Y | = k}.

Thus, Y consists of all k-element subsets of X, and so |Y| =
(3(k−1)

k

)

. Let
G be the graph with vertex set X ∪ Y and with edge set constructed as
follows: add an edge joining every two distinct vertices of X and for each
x ∈ X and Y ∈ Y add an edge joining x and Y if and only if x ∈ Y .
Then G is a connected graph of order n =

(3(k−1)
k

)

+ 3(k − 1). The set X
induces in G a complete graph on 3(k − 1) vertices, while the set Y is an
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independent set where each vertex has degree k in G.
To dominate Y, any dominating set of G must contain at least 2(k − 1)

vertices of X, since otherwise there would be at least k vertices belonging
to X and not belonging to a dominating set of G. Then by the construction
of G, one vertex belonging to Y would not be dominated. Hence γw(G) ≥
2(k − 1). On the other hand, any subset of X of cardinality 2(k − 1) is
a WCDS of G, implying that γw(G) ≤ 2(k − 1). Consequently, γw(G) =
2(k − 1).
Let F = {u1v1, . . . , uk−1vk−1} be an arbitrary subset of k − 1 edges of

G. Let H be the graph obtained from G by subdividing each edge of F .
We show that γw(H) = γw(G). Since every edge of G is incident with at
least one vertex of X, we may assume that ui ∈ X for i = 1, . . . , k − 1. If
vi ∈ Y, then since dG(vi) = k and |F | = k − 1, vi is adjacent to a vertex
wi ∈ X such that wivi /∈ F . If vi ∈ X, then let wi be any vertex of X
such that wivi /∈ F . Let DF =

⋃k−1
i=1 {ui, wi}. Then |DF | ≤ 2(k − 1). If

|DF | < 2(k − 1), then let D be any subset of 2(k − 1) vertices of X that
contains DF . If |DF | = 2(k − 1), then let D = DF . Then D is a WCDS
of H, and so γw(H) ≤ 2(k − 1) = γw(G). Since subdividing any number
of edges of G cannot decrease its weakly connected domination number,
γw(H) ≥ γw(G). Consequently, γw(H) = γw(G), whence sdγw

(G) ≥ k.
Since each vertex of Y has degree k, Theorem 16 implies that sdγw

(G) ≤
k. Hence we conclude that sdγw

(G) = k.

Our last result gives a sufficient condition for the weakly connected domi-
nation subdivision number of an arbitrary graph to be equal to one.

Theorem 23. If G is a connected graph of order at least 3 and G has
exactly one minimum weakly connected dominating set, then

sdγw
(G) = 1.

Proof. Suppose D is the unique minimum weakly connected dominating
set of G and sdγw

(G) > 1. If u is a leaf in G and v is a support, then
since D is the unique minimum weakly connected dominating set of G, it
is easy to see that the weakly connected domination number of the graph
obtained from G by subdividing the edge uv is greater than γw(G) = |D|,
which contradicts with fact that sdγw

(G) > 1. Hence we conclude that G
has no leaf. Suppose next that uv ∈ E(G) is an edge such that u, v /∈ D.
Then the weakly connected domination number of the graph obtained from
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G by subdividing the edge uv is clearly greater than γw(G) = |D|, which
again contradicts sdγw

(G) > 1. Hence each edge of G is incident with at
least one vertex of D and for this reason, for each vertex u belonging to
V (G) − D we have NG(u) ⊆ D and |NG(u)| ≥ 2.
Let S = (s0, s1, . . . , sl) be a longest path in G. It is possible to observe

that G − s0 is a connected graph. If s0 ∈ D and u is a neighbour of s0

which does not belong to D, then since each vertex of V (G)−D has at least
two neighbours in D, it is clear that (D − {s0}) ∪ {u} is another weakly
connected dominating set of G of size γw(G), a contradiction. If s0 ∈ D and
each neighbour of s0 is in D, then we conclude that D − {s0} is a smaller
weakly connected dominating set of G, again a contradiction. If s0 /∈ D,
then s1 ∈ D and v ∈ D, where v 6= s1 is a neighbour of s0. If G − s1

is disconnected, then since S is a longest path, s1 and v are adjacent. In
this situation (D − {v}) ∪ {s0} is also a weakly connencted dominating set
of G of cardinality γw(G), a contradiction. If G − s1 is connected, then
since each edge of G is incident with at least one vertex of D, it is possible
to verify that (D − {s1}) ∪ {s0} is also a weakly connencted dominating
set of G of cardinality γw(G), a contradiction. Therefore we conclude that
sdγw

(G) = 1.
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