PARTITIONS OF A GRAPH INTO CYCLES CONTAINING A SPECIFIED LINEAR FOREST

Ryota Matsubara
Department of Mathematical Information Science
Tokyo University of Science
Tokyo 162-8601, Japan
e-mail: qq8c6dt9n@able.ocn.ne.jp
AND
Hajime Matsumura*
Kyoto Computer Gakuin
Kyoto 601-8407, Japan
e-mail: h_matsumura@kcg.ac.jp

Abstract

In this note, we consider the partition of a graph into cycles containing a specified linear forest. Minimum degree and degree sum conditions are given, which are best possible.

Keywords: partition of a graph, vertex-disjoint cycle, 2-factor, linear forest.
2000 Mathematics Subject Classification: 05C38, 05C99.

1. Introduction

In this paper, we consider only finite undirected graphs without loops or multiple edges. We will generally follow notation and terminology of [2]. For a vertex x of a graph G, the neighborhood of x is denoted by $N_{G}(x)$ and $d_{G}(x)=\left|N_{G}(x)\right|$ is the degree of x in G. For a subgraph H of G and

[^0]a vertex $x \in V(G)-V(H)$, we also denote $N_{H}(x)=N_{G}(x) \cap V(H)$ and $d_{H}(x)=\left|N_{H}(x)\right|$. For a subset S of $V(G)$, we write $\langle S\rangle$ for the subgraph induced by S. For a subgraph H of G and a subset S of $V(G), d_{H}(S)=$ $\sum_{x \in S} d_{H}(x), N_{H}(S)=\bigcup_{x \in S} N_{H}(x)$ and define $G-H=\langle V(G)-V(H)\rangle$ and $G-S=\langle V(G)-S\rangle$. For a graph $G,|G|=|V(G)|$ is the order of G, $\delta(G)$ is the minimum degree of G, and
$$
\sigma_{2}(G)=\min \left\{d_{G}(x)+d_{G}(y) \mid x y \notin E(G), x, y \in V(G), x \neq y\right\}
$$
is the minimum degree sum of nonadjacent vertices. (When G is complete, we define $\sigma_{2}(G)=\infty$.)

A forest is a graph each of whose components is a tree and a linear forest is a forest consisting of paths. We regard a single vertex as a path of order 1. For a path $P=v_{1} v_{2} \cdots v_{p}$, we call v_{i} an internal vertex for $2 \leq i \leq p-1$. If P is contained in a cycle C as a subgraph, we denote it by $P \subset C$.

For graphs G and $H, G \cup H$ is the union of G and H, and $G+H$ is the join of G and $H . K_{n}$ is a complete graph of order n.

Suppose that H_{1}, \ldots, H_{k} are vertex-disjoint subgraphs such that $V(G)=\bigcup_{i=1}^{k} V\left(H_{i}\right)$. Then we say G can be partitioned into H_{1}, \ldots, H_{k} and $\left\{H_{1}, \ldots, H_{k}\right\}$ is a partition of G.

Research on partitions of a graph into cycles with a specified number of components was started by Brandt et al.

Theorem 1 (Brandt et al. [1]). Suppose that $|G| \geq 4 k$ and $\sigma_{2}(G) \geq|G|$. Then G can be partitioned into k cycles.

In this paper, we consider partitions into cycles each of which contains exactly one component of a specified linear forest as a subgraph. In the following, n always denotes the order of a graph G, and 'disjoint' means 'vertex-disjoint' because we only deal with partitions of the vertex set.

The special cases where each component of a specified linear forest is a vertex or an edge were considered in several papers [3-11]. In particular, the following theorem was obtained in [7].

Theorem 2 (Enomoto and Matsumura [7]). Suppose that $n \geq 10 p+10 q$, $p+q \geq 1$ and either

$$
\delta(G) \geq \max \left\{\frac{n+q}{2}, \frac{n+p+2 q-3}{2}\right\}
$$

or

$$
\sigma_{2}(G) \geq \max \{n+q, n+2 p+2 q-2\} .
$$

Then for any linear forest with components P_{1}, \ldots, P_{p+q} such that $\left|P_{i}\right|=1$ for $1 \leq i \leq p$ and $\left|P_{i}\right|=2$ for $p+1 \leq i \leq p+q, G$ can be partitioned into cycles H_{1}, \ldots, H_{p+q} such that $P_{i} \subset H_{i}$.

In this paper, we consider a more general case, that is, we specify not only vertices and edges but also paths of order at least 3. The main result of this paper is the following.

Theorem 3. Suppose that $n \geq 10 p+10 q^{\prime}, p+q \geq 1, p \geq 0, q^{\prime} \geq q \geq 0$, and either

$$
\delta(G) \geq \max \left\{\frac{n+q^{\prime}}{2}, \frac{n+p+q+q^{\prime}-3}{2}\right\},
$$

or

$$
\sigma_{2}(G) \geq \max \left\{n+q^{\prime}, n+2 p+q+q^{\prime}-2\right\} .
$$

Then for any linear forest with components P_{1}, \ldots, P_{p+q} such that $\left|P_{i}\right|=1$ for $1 \leq i \leq p,\left|P_{i}\right| \geq 2$ for $p+1 \leq i \leq p+q$ and $\sum_{i=p+1}^{p+q}\left|E\left(P_{i}\right)\right|=q^{\prime}, G$ can be partitioned into cycles H_{1}, \ldots, H_{p+q} such that $P_{i} \subset H_{i}$.

The minimum degree condition in Theorem 3 is sharp in the following sense. (In the following five examples, we let m be a sufficiently large integer.)

Example 1. Suppose that $q^{\prime} \geq q \geq 1$ and $p+q \geq 2$. Let $G_{1}=\left(K_{m}^{1} \cup\right.$ $\left.K_{m}^{2}\right)+K_{p+q+q^{\prime}-2}$, where K_{m}^{i} is a complete graph of order m for $i=1,2$. Take p distinct vertices P_{1}, \ldots, P_{p} and $q-1$ disjoint paths $P_{p+1}, \ldots, P_{p+q-1}$ in $K_{p+q+q^{\prime}-2}$ such that $\left|E\left(P_{i}\right)\right| \geq 1$ and $\sum_{i=p+1}^{p+q-1}\left|E\left(P_{i}\right)\right|=q_{0}<q^{\prime}$. Moreover, we take a path P_{p+q} which connects K_{m}^{1} and $K_{m}^{2},\left|E\left(P_{p+q}\right)\right|=q^{\prime}-q_{0}$ and all internal vertices are contained in $K_{p+q+q^{\prime}-2}$. (If $q^{\prime}-q_{0}=1$, we add an edge e which connects K_{m}^{1} and K_{m}^{2} directly and let $P_{p+q}=e$.) Then we cannot take a cycle passing through P_{p+q} without using vertices in $\bigcup_{i=1}^{p+q-1} V\left(P_{i}\right)$. Hence G_{1} cannot have the desired partition, while $\delta\left(G_{1}\right)=$ $\left(\left|G_{1}\right|+p+q+q^{\prime}-4\right) / 2$.

Figure 1. The graph G_{1}.
Example 2. Suppose that $q=0$ and let $G_{2}=K_{m, m+1}$, a complete bipartite graph with partite sets of order m and $m+1$. Clearly, G_{2} cannot have the desired partition, while $\delta(G)=\left(\left|G_{2}\right|-1\right) / 2$.

Example 3. Suppose that $p=0$ and $q^{\prime} \geq q \geq 1$ and let $G_{3}=K_{m+q^{\prime}}+$ $(m+1) K_{1}$. Take q disjoint paths P_{1}, \ldots, P_{q} in $K_{m+q^{\prime}}$ so that $\left|E\left(P_{i}\right)\right| \geq 1$ and $\sum_{i=1}^{q}\left|E\left(P_{i}\right)\right|=q^{\prime}$. Then G_{3} does not have the desired partition, while $\delta\left(G_{3}\right)=\left(\left|G_{3}\right|+q^{\prime}-1\right) / 2$.

Figure 2. The graph G_{3}.

The degree sum condition in Theorem 3 is also sharp when there exists some component P_{i} such that $\left|P_{i}\right| \leq 2$.

Example 4. Suppose that $p \geq 1$. Let $G_{4}=\left(K_{p} \cup K_{m}\right)+K_{2 p+q+q^{\prime}-1}$. Take p distinct vertices P_{1}, \ldots, P_{p} in K_{p} and q disjoint paths P_{p+1}, \ldots, P_{p+q} in $K_{2 p+q+q^{\prime}-1}$ so that $\sum_{i=p+1}^{p+q}\left|E\left(P_{i}\right)\right|=q^{\prime}$. To make a cycle through P_{i} for
$1 \leq i \leq p$, we have to use at least 2 vertices in $K_{2 p+q+q^{\prime}-1}$ but only $2 p-1$ vertices are available. Then G_{4} cannot have the desired partition, while $\sigma_{2}\left(G_{4}\right)=\left|G_{4}\right|+2 p+q+q^{\prime}-3$.

Figure 3. The graph G_{4}.
Example 5. Suppose that $p=0$ and let $G_{5}=\left(K_{1} \cup K_{m}\right)+K_{q+q^{\prime}-1}$. Take $q-1$ disjoint paths P_{1}, \ldots, P_{q-1} in $K_{q+q^{\prime}-1}$ so that $\sum_{i=1}^{q-1}\left|E\left(P_{i}\right)\right|=q^{\prime}-1$ and an edge P_{q} connecting K_{1} and $K_{q+q^{\prime}-1}$. Then we cannot take a cycle through P_{q} without using the vertices of other specified paths. Hence G_{5} cannot be partitioned into cycles H_{1}, \ldots, H_{p+q} such that $P_{i} \subset H_{i}$, while $\sigma_{2}\left(G_{5}\right)=\left|G_{5}\right|+q+q^{\prime}-3$.

Figure 4. The graph G_{5}.
The graphs G_{2} and G_{3} show that the condition ' $\sigma_{2}(G) \geq n+q^{\prime}$ ' cannot be dropped because $\sigma_{2}\left(G_{2}\right)=\left|G_{2}\right|-1$ and $\sigma_{2}\left(G_{3}\right)=\left|G_{3}\right|+q^{\prime}-1$.

For the case where each component of a specified linear forest is a path of order at least 3 , the degree sum condition of Theorem 3 is not sharp and we prove the following.

Theorem 4. Suppose that $n \geq 3 q+q^{\prime}, q \geq 1, q^{\prime} \geq 2 q$ and

$$
\sigma_{2}(G) \geq \max \left\{n+q^{\prime}, n+q+q^{\prime}-3\right\}
$$

Then for any disjoint paths of order at least $3 P_{1}, \ldots, P_{q}$ such that $\sum_{i=1}^{q}\left|E\left(P_{i}\right)\right|=q^{\prime}, G$ can be partitioned into cycles H_{1}, \ldots, H_{q} such that $P_{i} \subset H_{i}$.

The graph G_{1} shows the sharpness of the degree sum condition in Theorem 4, because $\sigma_{2}\left(G_{1}\right)=\left|G_{1}\right|+p+q+q^{\prime}-4$.

To prove Theorem 4, we prove the following theorem, which deals with the case where all paths are of order 3.

Theorem 5. Suppose that $n \geq 5 q, q \geq 1$ and

$$
\sigma_{2}(G) \geq \max \{n+2 q, n+3 q-3\}
$$

Then for any disjoint paths of order $3 P_{1}, \ldots, P_{q}, G$ can be partitioned into cycles H_{1}, \ldots, H_{q} such that $P_{i} \subset H_{i}$.

We can prove Theorems 3 and 4 similarly. The proof of Theorem 3 is given in the next section. Before proving Theorem 4, we will give a proof of Theorem 5 in Section 3. We will prove Theorem 4 in Section 4.

2. Proof of Theorem 3

Let $\left\{p_{i}\right\}=V\left(P_{i}\right)$ for $1 \leq i \leq p$ and x_{i} and y_{i} be endvertices of P_{i} for $p+1 \leq i \leq p+q$.

We generate a new graph G^{\prime} from G by deleting all internal vertices of P_{i} and adding the edge $x_{i} y_{i}$ if $x_{i} y_{i} \notin E(G)$ for $p+1 \leq i \leq p+q$. Then

$$
\begin{aligned}
\delta\left(G^{\prime}\right) & \geq \max \left\{\frac{n+q^{\prime}}{2}, \frac{n+p+q+q^{\prime}-3}{2}\right\}-\left(q^{\prime}-q\right) \\
& =\max \left\{\frac{\left(n-q^{\prime}+q\right)+q}{2}, \frac{\left(n-q^{\prime}+q\right)+p+2 q-3}{2}\right\} \\
& =\max \left\{\frac{\left|G^{\prime}\right|+q}{2}, \frac{\left|G^{\prime}\right|+p+2 q-3}{2}\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
\sigma_{2}\left(G^{\prime}\right) & \geq \max \left\{n+q^{\prime}, n+2 p+q+q^{\prime}-2\right\}-2\left(q^{\prime}-q\right) \\
& =\max \left\{\left(n-q^{\prime}+q\right)+q,\left(n-q^{\prime}+q\right)+2 p+2 q-2\right\} \\
& =\max \left\{\left|G^{\prime}\right|+q,\left|G^{\prime}\right|+2 p+2 q-2\right\}
\end{aligned}
$$

Moreover, $\left|G^{\prime}\right| \geq 10 p+10 q^{\prime}-\left(q^{\prime}-q\right)=10 p+9 q^{\prime}+q \geq 10 p+10 q$. Hence by Theorem $2, G^{\prime}$ can be partitioned into cycles $H_{1}^{\prime}, \ldots, H_{p+q}^{\prime}$ such that $p_{i} \in V\left(H_{i}^{\prime}\right)$ for $1 \leq i \leq p$ and $x_{i} y_{i} \in E\left(H_{i}^{\prime}\right)$ for $p+1 \leq i \leq p+q$.

If we replace $x_{i} y_{i}$ by P_{i}, then we get a cycle H_{i} from H_{i}^{\prime} for $p+1 \leq i \leq$ $p+q$ and $\left\{H_{1}, \ldots, H_{p+q}\right\}$ is the desired partition of G.

3. Proof of Theorem 5

To prove Theorem 5, we first prove the following theorem.
Theorem 6. Suppose that $n \geq 5 q, q \geq 1$ and $\sigma_{2}(G) \geq n+3 q-3$. Then for any disjoint paths of order $3 P_{1}, \ldots, P_{q}, G$ contains q disjoint cycles C_{1}, \ldots, C_{q} such that $P_{i} \subset C_{i}$ and $\left|C_{i}\right| \leq 5$.

To complete the proof of Theorem 5, we use the following theorem.
Theorem 7 (Egawa et al. [4]). Suppose that $q \geq 1, \sigma_{2}(G) \geq n+q$ and C_{1}, \ldots, C_{q} are disjoint subgraphs such that C_{i} is a cycle or K_{2} and $e_{i} \in$ $E\left(C_{i}\right)$ for $1 \leq i \leq q$. Then there exist disjoint subgraphs H_{1}, \ldots, H_{q} such that $V(G)=\bigcup_{i=1}^{q} V\left(H_{i}\right), e_{i} \in E\left(H_{i}\right)$ and H_{i} is a cycle if C_{i} is a cycle and H_{i} is a cycle or K_{2} if C_{i} is K_{2} for $1 \leq i \leq q$.

3.1. Proof of Theorem 6

A cycle C is called admissible if $P_{i} \subset C$ for some $i, 1 \leq i \leq q, \mid V(C) \cap$ $\bigcup_{i=1}^{q} V\left(P_{i}\right) \mid=3$ and $|C| \leq 5$. For $1 \leq r \leq q$, a set of cycles $\left\{C_{1}, \ldots, C_{r}\right\}$ is admissible if each C_{i} is admissible, and C_{i} and C_{j} are disjoint if $i \neq j$. If we say ' r admissible cycles', then it means that the set of these r cycles is admissible. A set of admissible cycles $\left\{C_{1}, \ldots, C_{r}\right\}$ is minimal if there exist no r admissible cycles D_{1}, \ldots, D_{r} such that $\left|\bigcup_{i=1}^{r} V\left(D_{i}\right)\right|<\left|\bigcup_{i=1}^{r} V\left(C_{i}\right)\right|$.

Let G be an edge-maximal counterexample and $P_{i}=x_{i} y_{i} z_{i}$ for $1 \leq i \leq q$. Clearly, G is not complete. Let x and y be nonadjacent vertices of G and
define $G^{\prime}=G+x y$, the graph obtained from G by adding the edge $x y$. Then G^{\prime} is no longer a counterexample and G^{\prime} has q admissible cycles. Since G is a counterexample, the edge $x y$ is contained in some admissible cycle. This implies that G contains $q-1$ admissible cycles and we take minimal admissible cycles C_{1}, \ldots, C_{q-1}. Without loss of generality, we may assume that $P_{i} \subset C_{i}$ for $1 \leq i \leq q-1$. Let $L=\left\langle\bigcup_{i=1}^{q-1} V\left(C_{i}\right)\right\rangle$, $M=G-L$ and $D=M-V\left(P_{q}\right)$. Note that $x_{q} z_{q} \notin E(G)$ and $N_{D}\left(x_{q}\right) \cap$ $N_{D}\left(z_{q}\right)=\emptyset$. If possible, we take C_{1}, \ldots, C_{q-1} so that $d_{D}\left(x_{q}\right)>0$ and $d_{D}\left(z_{q}\right)>0$.

Claim 1. We have $d_{D}\left(x_{q}\right)>0$ and $d_{D}\left(z_{q}\right)>0$.
Proof. We first remark that we can take C_{1}, \ldots, C_{q-1} so that $d_{D}\left(x_{q}\right)>0$. To see this, suppose that $d_{D}\left(x_{q}\right)=0$ and take any $y \in V(D)$. Since

$$
d_{M}\left(x_{q}\right)+d_{M}(y) \leq 1+|M|-2=|M|-1,
$$

we have

$$
\begin{aligned}
d_{L}\left(x_{q}\right)+d_{L}(y) & \geq n+3 q-3-(|M|-1)=|L|+3 q-2 \\
& =\sum_{i=1}^{q-1}\left|C_{i}\right|+3 q-2>\sum_{i=1}^{q-1}\left(\left|C_{i}\right|+3\right) .
\end{aligned}
$$

Hence

$$
d_{C_{i}}\left(x_{q}\right)+d_{C_{i}}(y) \geq\left|C_{i}\right|+4
$$

holds for some $i, 1 \leq i \leq q-1$.
If $\left|C_{i}\right|=3$, then this inequality cannot hold. Hence $\left|C_{i}\right| \geq 4$. Without loss of generality, we may assume that $i=1$.

Suppose that $\left|C_{1}\right|=4$ and let $C_{1}=x_{1} y_{1} z_{1} v x_{1}$. Note that $N_{C_{1}}\left(x_{q}\right)=$ $N_{C_{1}}(y)=V\left(C_{1}\right)$. If we take $D_{1}=x_{1} y_{1} z_{1} y x_{1}$ and let $D_{i}=C_{i}$ for $2 \leq i \leq$ $q-1$, then $\left\{D_{1}, \ldots, D_{q-1}\right\}$ is also minimal admissible and x_{q} can have a neighbor in $G-\bigcup_{i=1}^{q-1} V\left(D_{i}\right)$ because $x_{q} v \in E(G)$.

Next suppose that $\left|C_{1}\right|=5$ and let $C_{1}=x_{1} y_{1} z_{1} v u x_{1}$. If $\left\{x_{1}, z_{1}\right\} \subset$ $N_{C_{1}}(y)$, then we can find a shorter admissible cycle passing through P_{1}. Hence we have $d_{C_{1}}(y)=4$. By symmetry, we may assume that $N_{C_{1}}(y)=$ $\left\{y_{1}, z_{1}, v, u\right\}$. Then $N_{C_{1}}\left(x_{q}\right)=V\left(C_{1}\right)$. If we take $D_{1}=z_{1} y_{1} x_{1} u y z_{1}$ and let $D_{i}=C_{i}$ for $2 \leq i \leq q-1$, then $\left\{D_{1}, \ldots, D_{q-1}\right\}$ is minimal admissible and
x_{q} can have a neighbor in $G-\bigcup_{i=1}^{q-1} V\left(D_{i}\right)$ because $x_{q} v \in E(G)$. Hence we may assume that $d_{D}\left(x_{q}\right)>0$.

Now suppose that the claim is false. In view of the remark made at the beginning of the proof, we may assume that $d_{D}\left(x_{q}\right)>0$ and $d_{D}\left(z_{q}\right)=0$. Take $z \in N_{D}\left(x_{q}\right)$ and $y \in V(D)-\{z\}$. Arguing as above, we see that there exists j such that $d_{C_{j}}\left(z_{q}\right)+d_{C_{j}}(y) \geq\left|C_{j}\right|+4$ and we can take admissible cycles D_{1}, \ldots, D_{q-1} so that $\left\{D_{1}, \ldots, D_{q-1}\right\}$ is minimal admissible and z_{q} can have a neighbor in $G-\bigcup_{i=1}^{q-1} V\left(D_{i}\right)$. But this contradicts the choice of C_{1}, \ldots, C_{q-1} mentioned immediately before the statement of Claim 1.

Take any $z \in N_{D}\left(x_{q}\right)$ and $w \in N_{D}\left(z_{q}\right)$. Note that $\left\{z w, x_{q} w, z_{q} z\right\} \cap$ $E(G)=\emptyset, N_{D}\left(x_{q}\right) \cap N_{D}(w)=\emptyset$, and $N_{D}\left(z_{q}\right) \cap N_{D}(z)=\emptyset$. (It may occur $\left\{y_{q} z, y_{q} w\right\} \cap E(G) \neq \emptyset$.)

Let $S=\left\{x_{q}, z_{q}, z, w\right\}$. Since

$$
d_{M}(S) \leq 8+2(|M|-5)=2|M|-2,
$$

we have

$$
\begin{aligned}
d_{L}(S) & \geq 2(n+3 q-3)-(2|M|-2)=2|L|+6 q-4 \\
& =\sum_{i=1}^{q-1} 2\left|C_{i}\right|+6 q-4>\sum_{i=1}^{q-1}\left(2\left|C_{i}\right|+6\right) .
\end{aligned}
$$

This means that

$$
d_{C_{i}}(S) \geq 2\left|C_{i}\right|+7
$$

for some $i, 1 \leq i \leq q$.
If $\left|C_{i}\right|=3$, then this inequality cannot hold. Hence $\left|C_{i}\right| \geq 4$.
Suppose that $\left|C_{i}\right|=4$ and let $C_{i}=x_{i} y_{i} z_{i} v x_{i}$. By symmetry, we may assume that $N_{C_{i}}\left(x_{q}\right)=N_{C_{i}}(z)=V\left(C_{i}\right)$. Then $v \notin N_{C_{i}}\left(z_{q}\right) \cup N_{C_{i}}(w)$, because otherwise we can find two admissible cycles. But this means that $d_{C_{i}}(S) \leq 14$, a contradiction.

Next, suppose that $\left|C_{i}\right|=5$ and let $C_{i}=x_{i} y_{i} z_{i} v u x_{i}$. If $d_{C_{i}}(z)=5$, then we can find an admissible cycle $x_{i} y_{i} z_{i} z x_{i}$, which is shorter than C_{i}. Hence $d_{C_{i}}(z) \leq 4$. Similarly, $d_{C_{i}}(w) \leq 4$. If $\left(N_{C_{i}}\left(x_{q}\right) \cap N_{C_{i}}\left(z_{q}\right)\right) \cap\{v, u\} \neq$ \emptyset, we can also find shorter admissible cycle passing through P_{q}. Hence $d_{C_{i}}\left(x_{q}\right)+d_{C_{i}}\left(z_{q}\right) \leq 8$. But this implies that $d_{C_{i}}(S) \leq 16$, a contradiction.

This completes the proof of Theorem 6 .

3.2. Proof of Theorem 5

By Theorem 6, there exist disjoint cycles C_{1}, \ldots, C_{q} such that $P_{i} \subset C_{i}$. Let $P_{i}=x_{i} y_{i} z_{i}$ for $1 \leq i \leq q$.

We make G^{\prime} from G by deleting $\left\{y_{1}, \ldots, y_{q}\right\}$ and adding the edge $x_{i} z_{i}$ for $1 \leq i \leq q$ if $x_{i} z_{i} \notin E(G)$. Then we have disjoint subgraphs $C_{1}^{\prime}, \ldots, C_{q}^{\prime}$ of G^{\prime} such that $x_{i} z_{i} \in E\left(C_{i}^{\prime}\right)$, and C_{i}^{\prime} is a cycle if $\left|C_{i}\right| \geq 4$, and C_{i}^{\prime} is K_{2} if $\left|C_{i}\right|=3$. Moreover,

$$
\begin{aligned}
\sigma_{2}\left(G^{\prime}\right) & \geq \max \{n+3 q-3, n+2 q\}-2 q \\
& =\max \{(n-q)+2 q-3,(n-q)+q\} \\
& =\max \left\{\left|G^{\prime}\right|+2 q-3,\left|G^{\prime}\right|+q\right\} \geq\left|G^{\prime}\right|+q
\end{aligned}
$$

Hence by Theorem 7, there exist disjoint subgraphs $H_{1}^{\prime}, \ldots, H_{q}^{\prime}$ satisfying $V\left(G^{\prime}\right)=\bigcup_{i=1}^{q} V\left(H_{i}\right), x_{i} z_{i} \in E\left(H_{i}^{\prime}\right)$ for $1 \leq i \leq q$ and H_{i}^{\prime} is a cycle if C_{i}^{\prime} is a cycle and H_{i}^{\prime} is a cycle or K_{2} if C_{i}^{\prime} is K_{2}.

By replacing the edge $x_{i} z_{i}$ by P_{i}, we make a cycle H_{i} from H_{i}^{\prime} for $1 \leq i \leq q$. Then $\left\{H_{1}, \ldots, H_{k}\right\}$ is the desired partition of G.

This completes the proof of Theorem 5.

4. Proof of Theorem 4

Let $P_{i}=x_{i} z_{i} \cdots y_{i}$ for $1 \leq i \leq q$. We make G^{\prime} from G by deleting all internal vertices except z_{i} of P_{i} and adding the edge $z_{i} y_{i}$ if $z_{i} y_{i} \notin E(G)$ for $1 \leq i \leq q$. Then

$$
\begin{aligned}
\sigma_{2}(G) & \geq \max \left\{n+q^{\prime}, n+q+q^{\prime}-3\right\}-2\left(q^{\prime}-2 q\right) \\
& \geq \max \left\{\left(n-q^{\prime}+2 q\right)+2 q,\left(n-q^{\prime}+2 q\right)+3 q-3\right\} \\
& \geq \max \left\{\left|G^{\prime}\right|+2 q,\left|G^{\prime}\right|+3 q-3\right\}
\end{aligned}
$$

Moreover, $\left|G^{\prime}\right| \geq 3 q+q^{\prime}-\left(q^{\prime}-2 q\right)=5 q$. Hence by Theorem $5, G^{\prime}$ can be partitioned into cycles $H_{1}^{\prime}, \ldots, H_{q}^{\prime}$ such that $P_{i}^{\prime} \subset H_{i}^{\prime}$ for $1 \leq i \leq q$, where $P_{i}^{\prime}=x_{i} z_{i} y_{i}$.

We replace P_{i}^{\prime} by P_{i} and get a cycle H_{i} from H_{i}^{\prime} for $1 \leq i \leq q$. Then $\left\{H_{1}, \ldots, H_{k}\right\}$ is the desired partition of G.

This completes the proof of Theorem 4.

References

[1] S. Brandt, G. Chen, R.J. Faudree, R.J. Gould and L. Lesniak, Degree conditions for 2-factors, J. Graph Theory 24 (1997) 165-173.
[2] G. Chartrand and L. Lesniak, Graphs \& Digraphs, 4th edition (Chapman \& Hall, London, 2004).
[3] Y. Egawa, H. Enomoto, R.J. Faudree, H. Li and I. Schiermeyer, Two factors each component of which contains a specified vertex, J. Graph Theory 43 (2003) 188-198.
[4] Y. Egawa, R.J. Faudree, E. Györi, Y. Ishigami, R.H. Schelp and H. Wang, Vertex-disjoint cycles containing specified edges, Graphs Combin. 16 (2000) 81-92.
[5] Y. Egawa and R. Matsubara, Vertex-disjoint cycles containing specified vertices in a graph, AKCE Int. J. Graphs Comb. 3 (1) (2006) 65-92.
[6] H. Enomoto, Graph partition problems into cycles and paths, Discrete Math. 233 (2001) 93-101.
[7] H. Enomoto and H. Matsumura, Cycle-partition of a graph with specified vertices and edges, to appear in Ars Combinatoria.
[8] Y. Ishigami and H. Wang, An extension of a theorem on cycles containing specified independent edges, Discrete Math. 245 (2002) 127-137.
[9] A. Kaneko and K. Yoshimoto, On a 2-factor with a specified edge in a graph satisfying the Ore condition, Discrete Math. 257 (2002) 445-461.
[10] R. Matsubara and T. Sakai, Cycles and degenerate cycles through specified vertices, Far East J. Appl. Math. 20 (2005) 201-208.
[11] T. Sakai, Degree-sum conditions for graphs to have 2 -factors with cycles through specified vertices, SUT J. Math. 38 (2002) 211-222.

Received 2 October 2006
Revised 5 February 2007
Accepted 5 February 2007

[^0]: *This work was partially supported by the JSPS Research Fellowships for Young Scientists.

