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Abstract

In this note, we consider the partition of a graph into cycles con-
taining a specified linear forest. Minimum degree and degree sum
conditions are given, which are best possible.
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1. Introduction

In this paper, we consider only finite undirected graphs without loops or
multiple edges. We will generally follow notation and terminology of [2].
For a vertex x of a graph G, the neighborhood of x is denoted by NG(x)
and dG(x) = |NG(x)| is the degree of x in G. For a subgraph H of G and
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a vertex x ∈ V (G) − V (H), we also denote NH(x) = NG(x) ∩ V (H) and
dH(x) = |NH(x)|. For a subset S of V (G), we write 〈S〉 for the subgraph
induced by S. For a subgraph H of G and a subset S of V (G), dH(S) =
∑

x∈S dH(x), NH(S) =
⋃

x∈S NH(x) and define G − H = 〈V (G) − V (H)〉
and G − S = 〈V (G) − S〉. For a graph G, |G| = |V (G)| is the order of G,
δ(G) is the minimum degree of G, and

σ2(G) = min{dG(x) + dG(y) |xy /∈ E(G), x, y ∈ V (G), x 6= y}

is the minimum degree sum of nonadjacent vertices. (When G is complete,
we define σ2(G) = ∞.)

A forest is a graph each of whose components is a tree and a linear forest
is a forest consisting of paths. We regard a single vertex as a path of order
1. For a path P = v1v2 · · · vp, we call vi an internal vertex for 2 ≤ i ≤ p− 1.
If P is contained in a cycle C as a subgraph, we denote it by P ⊂ C.

For graphs G and H, G∪H is the union of G and H, and G +H is the
join of G and H. Kn is a complete graph of order n.

Suppose that H1, . . . ,Hk are vertex-disjoint subgraphs such that
V (G) =

⋃k
i=1

V (Hi). Then we say G can be partitioned into H1, . . . ,Hk and
{H1, . . . ,Hk} is a partition of G.

Research on partitions of a graph into cycles with a specified number of
components was started by Brandt et al.

Theorem 1 (Brandt et al. [1]). Suppose that |G| ≥ 4k and σ2(G) ≥ |G|.
Then G can be partitioned into k cycles.

In this paper, we consider partitions into cycles each of which contains
exactly one component of a specified linear forest as a subgraph. In the
following, n always denotes the order of a graph G, and ‘disjoint’ means
‘vertex-disjoint’ because we only deal with partitions of the vertex set.

The special cases where each component of a specified linear forest is
a vertex or an edge were considered in several papers [3–11]. In particular,
the following theorem was obtained in [7].

Theorem 2 (Enomoto and Matsumura [7]). Suppose that n ≥ 10p + 10q,
p + q ≥ 1 and either

δ(G) ≥ max

{

n + q

2
,
n + p + 2q − 3

2

}

,
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or

σ2(G) ≥ max{n + q, n + 2p + 2q − 2}.

Then for any linear forest with components P1, . . . , Pp+q such that |Pi| = 1
for 1 ≤ i ≤ p and |Pi| = 2 for p + 1 ≤ i ≤ p + q, G can be partitioned into

cycles H1, . . . ,Hp+q such that Pi ⊂ Hi.

In this paper, we consider a more general case, that is, we specify not only
vertices and edges but also paths of order at least 3. The main result of this
paper is the following.

Theorem 3. Suppose that n ≥ 10p+10q′, p+ q ≥ 1, p ≥ 0, q′ ≥ q ≥ 0, and

either

δ(G) ≥ max

{

n + q′

2
,
n + p + q + q′ − 3

2

}

,

or

σ2(G) ≥ max{n + q′, n + 2p + q + q′ − 2}.

Then for any linear forest with components P1, . . . , Pp+q such that |Pi| = 1
for 1 ≤ i ≤ p, |Pi| ≥ 2 for p+1 ≤ i ≤ p+ q and

∑p+q
i=p+1

|E(Pi)| = q′, G can

be partitioned into cycles H1, . . . ,Hp+q such that Pi ⊂ Hi.

The minimum degree condition in Theorem 3 is sharp in the following sense.
(In the following five examples, we let m be a sufficiently large integer.)

Example 1. Suppose that q′ ≥ q ≥ 1 and p + q ≥ 2. Let G1 = (K1
m ∪

K2
m)+Kp+q+q′−2, where K i

m is a complete graph of order m for i = 1, 2. Take
p distinct vertices P1, . . . , Pp and q − 1 disjoint paths Pp+1, . . . , Pp+q−1 in

Kp+q+q′−2 such that |E(Pi)| ≥ 1 and
∑p+q−1

i=p+1
|E(Pi)| = q0 < q′. Moreover,

we take a path Pp+q which connects K1
m and K2

m, |E(Pp+q)| = q′ − q0

and all internal vertices are contained in Kp+q+q′−2. (If q′ − q0 = 1, we
add an edge e which connects K1

m and K2
m directly and let Pp+q = e.)

Then we cannot take a cycle passing through Pp+q without using vertices in
⋃p+q−1

i=1
V (Pi). Hence G1 cannot have the desired partition, while δ(G1) =

(|G1| + p + q + q′ − 4)/2.
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Km Kp+q+q′−2 Km

+ +

Km Kp+q+q′−2 Km

+ +

e

Figure 1. The graph G1.

Example 2. Suppose that q = 0 and let G2 = Km,m+1, a complete bipartite
graph with partite sets of order m and m + 1. Clearly, G2 cannot have the
desired partition, while δ(G) = (|G2| − 1)/2.

Example 3. Suppose that p = 0 and q′ ≥ q ≥ 1 and let G3 = Km+q′ +
(m + 1)K1. Take q disjoint paths P1, . . . , Pq in Km+q′ so that |E(Pi)| ≥ 1
and

∑q
i=1

|E(Pi)| = q′. Then G3 does not have the desired partition, while
δ(G3) = (|G3| + q′ − 1)/2.

Km+q′ (m + 1)K1

+

Figure 2. The graph G3.

The degree sum condition in Theorem 3 is also sharp when there exists some
component Pi such that |Pi| ≤ 2.

Example 4. Suppose that p ≥ 1. Let G4 = (Kp ∪Km) +K2p+q+q′−1. Take
p distinct vertices P1, . . . , Pp in Kp and q disjoint paths Pp+1, . . . , Pp+q in
K2p+q+q′−1 so that

∑p+q
i=p+1

|E(Pi)| = q′. To make a cycle through Pi for
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1 ≤ i ≤ p, we have to use at least 2 vertices in K2p+q+q′−1 but only 2p − 1
vertices are available. Then G4 cannot have the desired partition, while
σ2(G4) = |G4| + 2p + q + q′ − 3.

Kp K2p+q+q′−1 Km

+ +

Figure 3. The graph G4.

Example 5. Suppose that p = 0 and let G5 = (K1 ∪Km) + Kq+q′−1. Take

q − 1 disjoint paths P1, . . . , Pq−1 in Kq+q′−1 so that
∑q−1

i=1
|E(Pi)| = q′ − 1

and an edge Pq connecting K1 and Kq+q′−1. Then we cannot take a cycle
through Pq without using the vertices of other specified paths. Hence G5

cannot be partitioned into cycles H1, . . . ,Hp+q such that Pi ⊂ Hi, while
σ2(G5) = |G5| + q + q′ − 3.

K1 Kq+q′−1 Km

+ +

Pq

Figure 4. The graph G5.

The graphs G2 and G3 show that the condition ‘σ2(G) ≥ n + q′’ cannot be
dropped because σ2(G2) = |G2| − 1 and σ2(G3) = |G3| + q′ − 1.

For the case where each component of a specified linear forest is a path
of order at least 3, the degree sum condition of Theorem 3 is not sharp and
we prove the following.
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Theorem 4. Suppose that n ≥ 3q + q′, q ≥ 1, q′ ≥ 2q and

σ2(G) ≥ max{n + q′, n + q + q′ − 3}.

Then for any disjoint paths of order at least 3 P1, . . . , Pq such that
∑q

i=1
|E(Pi)| = q′, G can be partitioned into cycles H1, . . . ,Hq such that

Pi ⊂ Hi.

The graph G1 shows the sharpness of the degree sum condition in Theorem 4,
because σ2(G1) = |G1| + p + q + q′ − 4.

To prove Theorem 4, we prove the following theorem, which deals with
the case where all paths are of order 3.

Theorem 5. Suppose that n ≥ 5q, q ≥ 1 and

σ2(G) ≥ max{n + 2q, n + 3q − 3}.

Then for any disjoint paths of order 3 P1, . . . , Pq, G can be partitioned into

cycles H1, . . . ,Hq such that Pi ⊂ Hi.

We can prove Theorems 3 and 4 similarly. The proof of Theorem 3 is given in
the next section. Before proving Theorem 4, we will give a proof of Theorem
5 in Section 3. We will prove Theorem 4 in Section 4.

2. Proof of Theorem 3

Let {pi} = V (Pi) for 1 ≤ i ≤ p and xi and yi be endvertices of Pi for
p + 1 ≤ i ≤ p + q.

We generate a new graph G′ from G by deleting all internal vertices of
Pi and adding the edge xiyi if xiyi /∈ E(G) for p + 1 ≤ i ≤ p + q. Then

δ(G′) ≥ max

{

n + q′

2
,
n + p + q + q′ − 3

2

}

− (q′ − q)

= max

{

(n − q′ + q) + q

2
,
(n − q′ + q) + p + 2q − 3

2

}

= max

{

|G′| + q

2
,
|G′| + p + 2q − 3

2

}

,
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and

σ2(G
′) ≥ max{n + q′, n + 2p + q + q′ − 2} − 2(q′ − q)

= max{(n − q′ + q) + q, (n − q′ + q) + 2p + 2q − 2}

= max{|G′| + q, |G′| + 2p + 2q − 2}.

Moreover, |G′| ≥ 10p + 10q′ − (q′ − q) = 10p + 9q′ + q ≥ 10p + 10q. Hence
by Theorem 2, G′ can be partitioned into cycles H ′

1, . . . ,H
′

p+q such that
pi ∈ V (H ′

i) for 1 ≤ i ≤ p and xiyi ∈ E(H ′

i) for p + 1 ≤ i ≤ p + q.
If we replace xiyi by Pi, then we get a cycle Hi from H ′

i for p + 1 ≤ i ≤
p + q and {H1, . . . ,Hp+q} is the desired partition of G.

3. Proof of Theorem 5

To prove Theorem 5, we first prove the following theorem.

Theorem 6. Suppose that n ≥ 5q, q ≥ 1 and σ2(G) ≥ n + 3q − 3. Then

for any disjoint paths of order 3 P1, . . . , Pq, G contains q disjoint cycles

C1, . . . , Cq such that Pi ⊂ Ci and |Ci| ≤ 5.

To complete the proof of Theorem 5, we use the following theorem.

Theorem 7 (Egawa et al. [4]). Suppose that q ≥ 1, σ2(G) ≥ n + q and

C1, . . . , Cq are disjoint subgraphs such that Ci is a cycle or K2 and ei ∈
E(Ci) for 1 ≤ i ≤ q. Then there exist disjoint subgraphs H1, . . . ,Hq such

that V (G) =
⋃q

i=1
V (Hi), ei ∈ E(Hi) and Hi is a cycle if Ci is a cycle and

Hi is a cycle or K2 if Ci is K2 for 1 ≤ i ≤ q.

3.1. Proof of Theorem 6

A cycle C is called admissible if Pi ⊂ C for some i, 1 ≤ i ≤ q, |V (C) ∩
⋃q

i=1
V (Pi)| = 3 and |C| ≤ 5. For 1 ≤ r ≤ q, a set of cycles {C1, . . . , Cr}

is admissible if each Ci is admissible, and Ci and Cj are disjoint if i 6= j.
If we say ‘r admissible cycles’, then it means that the set of these r cycles is
admissible. A set of admissible cycles {C1, . . . , Cr} is minimal if there exist
no r admissible cycles D1, . . . , Dr such that |

⋃r
i=1

V (Di)| < |
⋃r

i=1
V (Ci)|.

Let G be an edge-maximal counterexample and Pi = xiyizi for 1 ≤ i ≤ q.
Clearly, G is not complete. Let x and y be nonadjacent vertices of G and
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define G′ = G + xy, the graph obtained from G by adding the edge xy.
Then G′ is no longer a counterexample and G′ has q admissible cycles.
Since G is a counterexample, the edge xy is contained in some admissi-
ble cycle. This implies that G contains q − 1 admissible cycles and we
take minimal admissible cycles C1, . . . , Cq−1. Without loss of generality,

we may assume that Pi ⊂ Ci for 1 ≤ i ≤ q − 1. Let L = 〈
⋃q−1

i=1
V (Ci)〉,

M = G − L and D = M − V (Pq). Note that xqzq /∈ E(G) and ND(xq) ∩
ND(zq) = ∅. If possible, we take C1, . . . , Cq−1 so that dD(xq) > 0 and
dD(zq) > 0.

Claim 1. We have dD(xq) > 0 and dD(zq) > 0.

Proof. We first remark that we can take C1, . . . , Cq−1 so that dD(xq) > 0.
To see this, suppose that dD(xq) = 0 and take any y ∈ V (D). Since

dM (xq) + dM (y) ≤ 1 + |M | − 2 = |M | − 1,

we have

dL(xq) + dL(y) ≥ n + 3q − 3 − (|M | − 1) = |L| + 3q − 2

=

q−1
∑

i=1

|Ci| + 3q − 2 >

q−1
∑

i=1

(|Ci| + 3).

Hence

dCi
(xq) + dCi

(y) ≥ |Ci| + 4

holds for some i, 1 ≤ i ≤ q − 1.

If |Ci| = 3, then this inequality cannot hold. Hence |Ci| ≥ 4. Without
loss of generality, we may assume that i = 1.

Suppose that |C1| = 4 and let C1 = x1y1z1vx1. Note that NC1
(xq) =

NC1
(y) = V (C1). If we take D1 = x1y1z1yx1 and let Di = Ci for 2 ≤ i ≤

q − 1, then {D1, . . . , Dq−1} is also minimal admissible and xq can have a

neighbor in G −
⋃q−1

i=1
V (Di) because xqv ∈ E(G).

Next suppose that |C1| = 5 and let C1 = x1y1z1vux1. If {x1, z1} ⊂
NC1

(y), then we can find a shorter admissible cycle passing through P1.
Hence we have dC1

(y) = 4. By symmetry, we may assume that NC1
(y) =

{y1, z1, v, u}. Then NC1
(xq) = V (C1). If we take D1 = z1y1x1uyz1 and let

Di = Ci for 2 ≤ i ≤ q − 1, then {D1, . . . , Dq−1} is minimal admissible and
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xq can have a neighbor in G −
⋃q−1

i=1
V (Di) because xqv ∈ E(G). Hence we

may assume that dD(xq) > 0.

Now suppose that the claim is false. In view of the remark made at the
beginning of the proof, we may assume that dD(xq) > 0 and dD(zq) = 0.
Take z ∈ ND(xq) and y ∈ V (D) − {z}. Arguing as above, we see that there
exists j such that dCj

(zq) + dCj
(y) ≥ |Cj | + 4 and we can take admissible

cycles D1, . . . , Dq−1 so that {D1, . . . , Dq−1} is minimal admissible and zq

can have a neighbor in G −
⋃q−1

i=1
V (Di). But this contradicts the choice of

C1, . . . , Cq−1 mentioned immediately before the statement of Claim 1.

Take any z ∈ ND(xq) and w ∈ ND(zq). Note that {zw, xqw, zqz} ∩
E(G) = ∅, ND(xq) ∩ ND(w) = ∅, and ND(zq) ∩ ND(z) = ∅. (It may occur
{yqz, yqw} ∩ E(G) 6= ∅.)

Let S = {xq, zq, z, w}. Since

dM (S) ≤ 8 + 2(|M | − 5) = 2|M | − 2,

we have

dL(S) ≥ 2(n + 3q − 3) − (2|M | − 2) = 2|L| + 6q − 4

=

q−1
∑

i=1

2|Ci| + 6q − 4 >

q−1
∑

i=1

(2|Ci| + 6).

This means that

dCi
(S) ≥ 2|Ci| + 7

for some i, 1 ≤ i ≤ q.

If |Ci| = 3, then this inequality cannot hold. Hence |Ci| ≥ 4.

Suppose that |Ci| = 4 and let Ci = xiyizivxi. By symmetry, we may
assume that NCi

(xq) = NCi
(z) = V (Ci). Then v /∈ NCi

(zq) ∪ NCi
(w),

because otherwise we can find two admissible cycles. But this means that
dCi

(S) ≤ 14, a contradiction.

Next, suppose that |Ci| = 5 and let Ci = xiyizivuxi. If dCi
(z) = 5,

then we can find an admissible cycle xiyizizxi, which is shorter than Ci.
Hence dCi

(z) ≤ 4. Similarly, dCi
(w) ≤ 4. If (NCi

(xq) ∩ NCi
(zq)) ∩ {v, u} 6=

∅, we can also find shorter admissible cycle passing through Pq. Hence
dCi

(xq) + dCi
(zq) ≤ 8. But this implies that dCi

(S) ≤ 16, a contradiction.

This completes the proof of Theorem 6.
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3.2. Proof of Theorem 5

By Theorem 6, there exist disjoint cycles C1, . . . , Cq such that Pi ⊂ Ci. Let
Pi = xiyizi for 1 ≤ i ≤ q.

We make G′ from G by deleting {y1, . . . , yq} and adding the edge xizi

for 1 ≤ i ≤ q if xizi /∈ E(G). Then we have disjoint subgraphs C ′

1, . . . , C
′

q

of G′ such that xizi ∈ E(C ′

i), and C ′

i is a cycle if |Ci| ≥ 4, and C ′

i is K2 if
|Ci| = 3. Moreover,

σ2(G
′) ≥ max{n + 3q − 3, n + 2q} − 2q

= max{(n − q) + 2q − 3, (n − q) + q}

= max{|G′| + 2q − 3, |G′| + q} ≥ |G′| + q.

Hence by Theorem 7, there exist disjoint subgraphs H ′

1, . . . ,H
′

q satisfying
V (G′) =

⋃q
i=1

V (Hi), xizi ∈ E(H ′

i) for 1 ≤ i ≤ q and H ′

i is a cycle if C ′

i is a
cycle and H ′

i is a cycle or K2 if C ′

i is K2.

By replacing the edge xizi by Pi, we make a cycle Hi from H ′

i for
1 ≤ i ≤ q. Then {H1, . . . ,Hk} is the desired partition of G.

This completes the proof of Theorem 5.

4. Proof of Theorem 4

Let Pi = xizi · · · yi for 1 ≤ i ≤ q. We make G′ from G by deleting all
internal vertices except zi of Pi and adding the edge ziyi if ziyi /∈ E(G) for
1 ≤ i ≤ q. Then

σ2(G) ≥ max{n + q′, n + q + q′ − 3} − 2(q′ − 2q)

≥ max{(n − q′ + 2q) + 2q, (n − q′ + 2q) + 3q − 3}

≥ max{|G′| + 2q, |G′| + 3q − 3}.

Moreover, |G′| ≥ 3q + q′ − (q′ − 2q) = 5q. Hence by Theorem 5, G′ can be
partitioned into cycles H ′

1, . . . ,H
′

q such that P ′

i ⊂ H ′

i for 1 ≤ i ≤ q, where
P ′

i = xiziyi.

We replace P ′

i by Pi and get a cycle Hi from H ′

i for 1 ≤ i ≤ q. Then
{H1, . . . ,Hk} is the desired partition of G.

This completes the proof of Theorem 4.
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