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Abstract

We derive an upper bound on the number of vertices in graphs of
diameter 3 and given degree arising from Abelian lifts of dipoles with
loops and multiple edges.
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1. Introduction

McKay, Miller and Širáň [1] found a family of the current largest known
graphs for the diameter k = 2 and degrees of the form d = (3q−1)/2, where
q is a prime power congruent to 1 (mod 4). The order of these graphs is
8

9
(d+ 1

2
)2, which is about 89% of the Moore bound d2 +1 diameter two. The

graphs were constructed as Abelian lifts of complete bipartite graphs with
the same number of loops attached to each vertex. In addition, the authors
proved that these graphs are vertex-transitive but non-Cayley. Šiagiová
[3] showed that it is possible to lift the McKay-Miller-Širáň graphs from
quotients having only two vertices, called dipoles, with an Abelian group as
voltage group.

This provides a strong motivation for examining upper bounds on the
number of vertices for graphs that arise as lifts of dipoles with Abelian
voltage group. In [2] Šiagiová proved that the order of Abelian lifts of a
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dipole of large degree d and diameter 2 is bounded above by approximately
0.93d2. This result shows how close the McKay-Miller-Širáň graphs are to
the theoretical maximum, since their order is approximately 0.89d2.

Motivated by this, we considered the problem of deriving an upper
bound on the number of vertices in graphs of diameter 3 and given de-
gree arising from lifts of dipoles in Abelian groups. Our main result is that
for large maximum degree d, the order of such a lift is less than 0.6d3.

2. Preliminaries

Let G be an undirected graph, let D(G) be the set of all directed edges of
G and let Γ be an arbitrary finite group. If e ∈ D(G), then e−1 is the edge
with the reverse direction. A mapping α : D(G) → Γ is a voltage assignment

if α(e−1) = (α(e))−1 for each e ∈ D(G).
A graph G with a voltage assignment α determines a new graph Gα,

called a lift of G. The vertex set of Gα is V (Gα) = V (G) × Γ and the set
of directed edges of Gα is D(Gα) = D(G) × Γ. In Gα, the edge (e, g) is a
directed edge from the vertex (u, g) to the vertex (v, h) if and only if e is
a directed edge from u to v in G and h = gα(e). Since the directed edges
(e, g) and (e−1, gα(e)) form an undirected edge of Gα, the lifted graph Gα is
undirected. The lift Gα is Abelian if the group Γ is Abelian. For any vertex
v of the base graph G, the set {(v, g), g ∈ Γ} forms a fiber above v in the
lifted graph Gα. For the walk W = e1e2 . . . et of directed edges of length t
in G we put α(W ) = α(e1)α(e2) . . . α(et) and call it the voltage of the walk.
Note that if t = 0, then the voltage of a walk of length 0 is the identity
element of Γ. In [1] McKay, Miller and Širáň proved the following lemma,
which helps determine the diameter of Gα.

Lemma A. Let α be a voltage assignment on a graph G in a group Γ. Then

diam(Gα) ≤ k if and only if for each ordered pair of vertices u, v (possibly,
u = v) of G and for each g ∈ Γ there exists a u → v walk W of length ≤ k
such that α(W ) = g.

3. Counting Voltages on Walks

Let Dm,l denote the graph with two vertices u, v, joined by m parallel edges,
and with l loops attached to each vertex. For brevity each such graph will
be called a dipole. Now we state an upper bound on the number of vertices
of Abelian lift of a dipole of diameter 3.
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Lemma 1. Let α be a voltage assignment on a dipole Dm,l in an Abelian

group Γ such that the lifted graph Dα
m,l is of diameter 3. Then the number

of vertices in Dα
m,l is at most w(m, l) = 2min{(4l + 1)m(m − 1) + 2l(2l2 +

3l + 7)/3 + 1,m[m(m − 1)/2 + 8l2 + 4l + 1]}.

Proof. Assume that the graph Dα
m,l is of diameter 3. By Lemma A, the

number of vertices in the fiber above u cannot exceed the number of distinct
voltages on the u → u walks in Dm,l of length at most 3. Since the voltage
group is Abelian, on u → u walks we have 1 voltage of a walk of length 0,
at most 2l distinct voltages of a walk of length 1, and by [2] we know that
there are at most m(m− 1)+2l2 distinct voltages on u → u walks of length
2, which are different from the voltage on u → u walk of length 0.

We derive a bound on the number of distinct voltages on u → u walks of
length 3. Here the voltage is a sum of three elements. First, let us estimate
the number of distinct voltages on u → v → v → u walks. Let d1d2d3 be a
u → v → v → u walk of length 3 in Dm,l. The number of ordered triples
of directed edges for such u → u walks is 2lm2. Therefore, the number
of all ordered triples of voltages on the edges of the u → v → v → u
walks is at most 2lm2. Consider the walks where α(d−1

1
) = α(d3). The

number of ordered triples of directed edges for such walks is 2lm. Since
α(d1)α(d2)α(d−1

1
) = α(d2), the number of distinct voltages of the walks

d1d2d
−1

1
is at most 2l. Hence, we have at most 2lm2 − 2lm + 2l = 2l(m2 −

m + 1) distinct voltages on u → v → v → u walks, which are not voltages
of paths of length 1.

Let e1e2e3 be a u → u → v → u walk. Note that the number of ordered
triples of directed edges of the walk e1e2e

−1

2
is 2lm, but α(e1)α(e2)α(e−1

2
) is

equal to α(e1), which is the voltage of the u → u walk of length 1. Hence,
the number of distinct voltages on u → u → v → u walks, which are not
voltages of paths of length 1, is at most 2lm2 − 2lm = 2lm(m − 1).

Let f1f2f3 be a u → v → u → u walk. Remark that the voltage
α(f1)α(f2)α(f3) is equal to α(f3)α(f1)α(f2), which is the voltage on u →
u → v → u walk f3f1f2. It is easy to see that the voltages on u → v → u → u
walks are the same as the voltages on u → u → v → u walks.

Let k1k2k3 be a u → u → u → u walk. If α(ki) = α(k−1

j ) for i, j ∈
{1, 2, 3}, i 6= j, then α(k1)α(k2)α(k3) is equal to the voltage of some u → u
walk of length 1. The number of distinct voltages on u → u → u → u walks
where k1 = k2 = k3 is at most 2l. If some loop appears in the walk exactly
twice, then the number of distinct voltages on such u → u → u → u walks



94 T. Vetŕık

is at most 2l(2l−2)2/2!. Finally, if all three loops of the walks are different,
the number of distinct voltages is at most 2l(2l − 2)(2l − 4)/3!.

Consequently, the number of vertices in the fiber above u can be at most

(4l + 1)m(m − 1) + 2l(2l2 + 3l + 7)/3 + 1.(1)

On the other hand, the number of vertices in Dα
m,l cannot exceed two times

the number of distinct voltages on u → v walks in Dm,l of length at most
3. There are at most m distinct voltages of a walk of length 1 and at most
4lm distinct voltages of a walk of length 2.

Consider now the estimates on the number of distinct voltages of a
walk of length 3. Assume first that d1d2d3 is a u → v → u → v walk. If
α(d1) = α(d−1

2
) or α(d3) = α(d−1

2
), then the voltage on d1d2d3 is the same

as the voltage of some walk of length 1. Therefore, let α(d1) 6= α(d−1

2
) 6=

α(d3). The number of ordered triples of such voltages is bounded above by
m(m− 1)(m− 1). The number of ordered triples of voltages where all three
elements α(d1), α(d2) and α(d3) are different is bounded by m(m−1)(m−2).
Observe that the voltage on the walk d1d2d3 is the same as the voltage on
the walk d3d2d1. Hence, the number of distinct voltages on u → v → u → v
walks is at most m(m − 1)(m − 1) − m(m − 1)(m − 2)/2 = m2(m − 1)/2.

Further, it can be easily shown that we have at most 2l2m distinct
voltages on u → u → u → v walks, at most 2l2m distinct voltages on u →
v → v → v walks, and at most 4l2m distinct voltages on u → u → v → v
walks.

It follows that the maximum number of distinct voltages on u → v walks
in Dm,l of length at most 3 is

m[m(m − 1)/2 + 8l2 + 4l + 1].(2)

Since there are two fibers in the lifted graph, the number of vertices of Dα
m,l

satisfies | V (Dα
m,l) |≤ w(m, l), where w(m, l) = 2 min {(4l + 1)m(m − 1) +

2l(2l2 + 3l + 7)/3 + 1,m[m(m − 1)/2 + 8l2 + 4l + 1]}.

4. The Main Result

We have now enough tools to present an upper bound on the number of
vertices in graphs of diameter 3 and given degree that arise as lifts of dipoles
in Abelian groups.



An Upper Bound for Graphs of Diameter 3 and ... 95

Theorem 2. Let D be a dipole of degree d, let Γ be an Abelian group and

let α be a voltage assignment on D in Γ, such that the lifted graph Dα has

diameter 3.
I. If d ≥ 36, then | V (Dα) |< 0.608d3.

II. If d ≥ 378, then | V (Dα) |< 0.6d3.

Proof. Let us suppose that the degree d ≥ 36. Since d = m + 2l, ac-
cording to (2) the number of vertices in the graph Dα is at most p1(l) =
1

2
[−40l3 + (28d − 20)l2 + (−6d2 + 12d − 4)l + d3 − d2 + 2d]. Similarly, by

(1), | V (Dα) |≤ p2(l) = 1

3
[52l3 + (−48d + 42)l2 + (12d2 − 24d + 20)l +

3d2 − 3d + 3]. Then the bound w(m, l) from Lemma 1 can be expressed as
w(d) = 2max min{p1(l), p2(l)}, where the maximum is taken over all l such
that 1 ≤ l < d

2
.

We first find the coordinates in which the polynomials p1(l) and p2(l)
attain the local extremes, and then we estimate the coordinates of the points
of intersection of the graphs of p1(l) and p2(l).

The function p1(l) has the local minimum at m1 = (−28d + 20 +√
D1)/(−120), where D1 = 64d2 + 320d − 80, and the local maximum at

M1 = (−28d + 20−
√

D1)/(−120). It can be shown that for d ≥ 36 we have
0.16d < m1 < 0.17d and 0.29d < M1 < 0.30d. The local minimum of p2(l)
is attained at m2 = (24d−21+

√
D2)/78, where D2 = 108d2−72d−339 and

0.43d < m2 < 0.45d, and the local maximum at M2 = (24d−21−
√

D2)/78,
where 0.16d < M2 < 0.175d.

Now we estimate the coordinates of the points of intersection of the
graphs of p1(l) and p2(l). Let p(l) = p2(l) − p1(l) = 1

6
[224l3 + (−180d +

144)l2 +(42d2 − 84d+52)l− 3d3 +9d2 − 12d+6]. For the first root l1 of the
equation p(l) = 0 we obtain 0.148d < l1 < 0.16d. Since the function p1(l)
is in this interval decreasing and p1(0.148d) < 0.3035d3, the value 0.3035d3

gives the upper bound for p1(l1). For the second root of p(l) = 0 one has
0.175d < l2 < 0.1974d. Because here p2(l) is decreasing and p2(0.175d) <
0.304d3, obviously 0.304d3 is an upper bound for p2(l2). Finally, 0.45d <
l3 < 0.46d and p2(0.46d) < 0.16d3, hence w(d) < 0.608d3.

If d ≥ 378, then for l2 we have 0.1955d < l2 < 0.1974d. Since
p2(0.1955d) < 0.3d3 and p1(0.148d) < 0.2985d3, one has | V (Dα) |< 0.6d3.

Comparing our result with the well-known Moore bound d3 − d2 + d + 1
for the diameter k = 3, we notice a considerable gap, explained by severe
restrictions imposed by the fact that the graphs under consideration are
Abelian lifts of dipoles.
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