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Abstract

A graph G = (V, E) is called a split graph if there exists a parti-
tion V = I ∪K such that the subgraphs G[I ] and G[K] of G induced
by I and K are empty and complete graphs, respectively. In 1980,
Burkard and Hammer gave a necessary condition for a split graph G

with |I | < |K| to be hamiltonian. We will call a split graph G with
|I | < |K| satisfying this condition a Burkard-Hammer graph. Fur-
ther, a split graph G is called a maximal nonhamiltonian split graph
if G is nonhamiltonian but G + uv is hamiltonian for every uv 6∈ E

where u ∈ I and v ∈ K. Recently, Ngo Dac Tan and Le Xuan Hung
have classified maximal nonhamiltonian Burkard-Hammer graphs G

with minimum degree δ(G) ≥ |I | − 3. In this paper, we classify max-
imal nonhamiltonian Burkard-Hammer graphs G with |I | 6= 6, 7 and
δ(G) = |I | − 4.
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1. Introduction

All graphs considered in this paper are finite undirected graphs without
loops or multiple edges. If G is a graph, then V (G) and E(G) (or V and
E for short) will denote its vertex-set and its edge-set, respectively. For a
subset W ⊆ V (G), the set of all neighbours of W is denoted by NG(W ) or
N(W ) for short. For a vertex v ∈ V (G), the degree of v, denoted by deg(v),
is the number |N(v)|. The minimum degree of G, denoted by δ(G), is the
number min{deg(v) | v ∈ V (G)}. By NG,W (v) or NW (v) for short we denote
the set W ∩NG(v). The subgraph of G induced by W is denoted by G[W ].
Unless otherwise indicated, our graph-theoretic terminology will follow [1].

A graph G = (V,E) is called a split graph if there exists a partition
V = I ∪K such that the subgraphs G[I] and G[K] of G induced by I and K

are empty and complete graphs, respectively. We will denote such a graph
by S(I ∪K,E). Further, a split graph G = S(I ∪K,E) is called a complete

split graph if every u ∈ I is adjacent to every v ∈ K. The notion of split
graphs was introduced in 1977 by Földes and Hammer [4]. These graphs
are interesting because they are related to many problems in combinatorics
(see [3, 5, 10]) and in computer science (see [6, 7]).

In 1980, Burkard and Hammer gave a necessary condition for a split
graph G = S(I ∪K,E) with |I| < |K| to be hamiltonian [2] (see Section 2
for more detail). We will call this condition the Burkard-Hammer condition.
Also, we will call a split graph G = S(I ∪ K,E) with |I| < |K|, which
satisfies the Burkard-Hammer condition, a Burkard-Hammer graph.

Thus, by [2] any hamiltonian split graph G = S(I∪K,E) with |I| < |K|
is a Burkard-Hammer graph. In general, the converse is not true. The first
nonhamiltonian Burkard-Hammer graph has been indicated in [2]. Further
infinite families of nonhamiltonian Burkard-Hammer graphs have been con-
structed recently in [13].

A split graph G = S(I ∪ K,E) is called a maximal nonhamiltonian

split graph if G is nonhamiltonian but the graph G + uv is hamiltonian for
every uv 6∈ E where u ∈ I and v ∈ K. It is known from a result in [12]
that any nonhamiltonian Burkard-Hammer graph is contained in a maxi-
mal nonhamiltonian Burkard-Hammer graph. So knowledge about maximal
nonhamiltonian Burkard-Hammer graphs provides us certain information
about nonhamiltonian Burkard-Hammer graphs.

It has been shown in [12] that there are no nonhamiltonian Burkard-
Hammer graphs and therefore no maximal nonhamiltonian Burkard-Hammer
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graphs G = S(I∪K,E) with δ(G) ≥ |I|−2. In the same paper [12], Ngo Dac
Tan and Le Xuan Hung have classified maximal nonhamiltonian Burkard-
Hammer graphs G = S(I ∪K,E) with δ(G) = |I| − 3. Namely, they have
proved in [12] that for every integer n > 5 there exists up to isomorphisms ex-
actly one maximal nonhamiltonian Burkard-Hammer graph G = S(I∪K,E)
with |K| = n and δ(G) = |I| − 3 which is the graph H4,n in their notation
there (see the definition of H4,n in Section 2). Recently, Ngo Dac Tan
and Iamjaroen have constructed in [14] a family of maximal nonhamiltonian
Burkard-Hammer graphs G = S(I ∪K,E) with δ(G) = |I| − 4. In this pa-
per, we will show that if a maximal nonhamiltonian Burkard-Hammer graph
G = S(I ∪K,E) with δ(G) = |I| − 4 has |I| 6= 6, 7, then G must be a graph
in the family constructed by Ngo Dac Tan and Iamjaroen in [14]. Namely,
we will prove the following main result of the paper.

Theorem 1. Let G = S(I ∪ K,E) be a split graph with |I| 6= 6, 7 and

δ(G) = |I| − 4. Then G is a maximal nonhamiltonian Burkard-Hammer

graph if and only if G is isomorphic to the expansion H 4,t[G2, v
∗
2 ] where

t = |K| − |I| + 5 and G2 = S(I2 ∪ K2, E2) is a complete split graph with

|K2| − 1 = |I2| = |I| − 5 ≥ 3.

The expansion graph H4,t[G2, v
∗
2 ] will be defined in Section 2.

Thus, we will get the classification of maximal nonhamiltonian Burkard-
Hammer graphs G = S(I ∪K,E) with δ(G) = |I| − 4 for the case |I| 6= 6, 7.

We would like to note that there is an interesting discussion about the
Burkard-Hammer condition in [9]. Concerning the hamiltonian problem for
split graphs, readers can see also [8] and [11].

2. Preliminaries

Let G = S(I ∪ K,E) be a split graph and I ′ ⊆ I,K ′ ⊆ K. Denote by
BG(I ′ ∪ K ′, E′) the graph G[I ′ ∪ K ′] − E(G[K ′]). It is clear that G′ =
BG(I ′ ∪K ′, E′) is a bipartite graph with the bipartition subsets I ′ and K ′.
So we will call BG(I ′ ∪K ′, E′) the bipartite subgraph of G induced by I ′ and

K ′. For a component G′
j = BG(I ′j ∪ K ′

j , E
′
j) of G′ = BG(I ′ ∪ K ′, E′) we

define

kG(G′
j) = kG(I ′j ,K

′
j) =

{

|I ′j| − |K
′
j | if |I ′j | > |K

′
j |,

0 otherwise.
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If G′ = BG(I ′ ∪K ′, E′) has r components G′
1 = BG(I ′1 ∪K ′

1, E
′
1), . . . , G

′
r =

BG(I ′r ∪K ′
r, E

′
r) then we define

kG(G′) = kG(I ′,K ′) =

r
∑

j=1

kG(G′
j).

A component G′
j = BG(I ′j ∪ K ′

j, E
′
j) of G′ = BG(I ′ ∪ K ′, E′) is called

a T-component (resp., H-component, L-component) if |I ′
j| > |K ′

j | (resp.,
|I ′j | = |K ′

j |, |I
′
j | < |K ′

j |). Let hG(G′) = hG(I ′,K ′) denote the number of
H-components of G′.

In 1980, Burkard and Hammer proved the following necessary but not
sufficient condition for hamiltonian split graphs [2].

Theorem 2 [2]. Let G = S(I ∪K,E) be a split graph with |I| < |K|. If G

is hamiltonian, then

kG(I ′,K ′) + max

{

1,
hG(I ′,K ′)

2

}

≤ |NG(I ′)| − |K ′|

holds for all ∅ 6= I ′ ⊆ I,K ′ ⊆ NG(I ′) with (kG(I ′,K ′), hG(I ′,K ′)) 6= (0, 0).

We will shortly call the condition in Theorem 2 the Burkard-Hammer con-

dition. We also call a split graph G = S(I ∪K,E) with |I| < |K|, which
satisfies the Burkard-Hammer condition, a Burkard-Hammer graph. Thus,
by Theorem 2 any hamiltonian split graph G = S(I∪K,E) with |I| < |K| is
a Burkard-Hammer graph. For split graphs G = S(I ∪K,E) with |I| < |K|
and δ(G) ≥ |I| − 2 the converse is true [12]. But it is not true in gen-
eral. The first example of a nonhamiltonian Burkard-Hammer graph has
been indicated in [2]. Recently, Ngo Dac Tan and Le Xuan Hung have
classified nonhamiltonian Burkard-Hammer graphs G = S(I ∪ K,E) with
δ(G) = |I| − 3. Namely, they have proved the following result.

Theorem 3 [12]. Let G = S(I ∪K,E) be a split graph with |I| < |K| and

the minimum degree δ(G) ≥ |I| − 3. Then

(i) If |I| 6= 5, then G has a Hamilton cycle if and only if G satisfies the

Burkard-Hammer condition;

(ii) If |I| = 5 and G satisfies the Burkard-Hammer condition, then G has

no Hamilton cycles if and only if G is isomorphic to one of the graphs

H1,n, H2,n, H3,n or H4,n listed in Table 1.
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Table 1. The graphs H1,n, H2,n, H3,n and H4,n.

The graph The vertex-set The edge-set

G V (G) = I∗ ∪K∗ E(G) = E∗
1 ∪ . . . ∪E∗

5 ∪E∗
K∗

H1,n I∗ = {u∗
1, u

∗
2, u

∗
3, u

∗
4, u

∗
5}, E∗

1 = {u∗
1v

∗
1 , u

∗
1v

∗
2},

(n > 5) K∗ = {v∗1 , v
∗
2 , . . . , v

∗
n}. E∗

2 = {u∗
2v

∗
2 , u

∗
2v

∗
4},

E∗
3 = {u∗

3v
∗
2 , u

∗
3v

∗
3, u

∗
3v

∗
6},

E∗
4 = {u∗

4v
∗
1 , u

∗
4v

∗
4, u

∗
4v

∗
6},

E∗
5 = {u∗

5v
∗
5 , u

∗
5v

∗
6},

E∗
K∗ = {v∗i v

∗
j |i 6= j; i, j = 1, . . . , n}.

H2,n V (H2,n) = V (H1,n) E(H2,n) = E(H1,n) ∪ {u∗
4v

∗
2}

H3,n V (H3,n) = V (H1,n) E(H3,n) = E(H1,n) ∪ {u∗
5v

∗
2}

H4,n V (H4,n) = V (H1,n) E(H4,n) = E(H1,n) ∪ {u∗
4v

∗
2 , u

∗
5v

∗
2}

Theorem 3 shows that there are up to isomorphisms only four nonhamil-
tonian Burkard-Hammer graphs G = S(I ∪ K,E) with K = N(I) and
δ(G) = |I| − 3, namely, the graphs H1,6,H2,6,H3,6 and H4,6. In contrast
with this result, the number of nonhamiltonian Burkard-Hammer graphs
G = S(I ∪K,E) with K = N(I) and δ(G) = |I| − 4 is infinite. This is a
recent result of Ngo Dac Tan and Iamjaroen [13]. We remind now one of
the constructions in this work, which is needed here.

Let G1 = S(I1 ∪K1, E1) and G2 = S(I2 ∪K2, E2) be split graphs with

V (G1) ∩ V (G2) = ∅

and v be a vertex of K1. We say that a graph G is an expansion of G1 by

G2 at v if G is the graph obtained from (G1 − v) ∪G2 by adding the set of
edges

E0 = {xivj | xi ∈ V (G1) \ {v}, vj ∈ K2 and xiv ∈ E1}.

It is clear that such a graph G is a split graph S(I ∪K,E) with I = I1 ∪ I2,
K = (K1 \ {v}) ∪ K2 and is uniquely determined by G1, G2 and v ∈ K1.
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Because of this, we will denote this graph G by G1[G2, v]. Further, a graph
G is called an expansion of G1 by G2 if it is an expansion of G1 by G2 at
some vertex v ∈ K1.

As an example, we show in Figure 1 the expansion of the graph H 4,n

by the complete split graph G2 = S(I2 ∪ K2, E2) with I2 = {u1, u2} and
K2 = {v1, v2, v3} at the vertex v∗2 of H4,n.

u

v∗1

e e e

v1 v2 v3

u u u u u u

v∗3 v∗4 v∗5 v∗6 v∗7

. . .
v∗n

u
u∗

1 e e
u1 u2

u u u u
u∗

2 u∗
3 u∗

4 u∗
5

�
�

�
�

�
�

A
A
A
A
A
A

A
A
A
A
A
A

Kn+2

Figure 1. The expansion H4,n[G2, v
∗

2
].

The following results are needed later.

Lemma 4 [11]. Let G = S(I ∪ K,E) be a split graph with |I| < |K|.
Then G has a Hamilton cycle if and only if |N(I)| > |I| and the subgraph

G′ = G[I ∪N(I)] has a Hamilton cycle.

Lemma 5 [12]. Let G = S(I ∪K,E) be a Burkard-Hammer graph. Then

for any u ∈ I and v ∈ K with uv 6∈ E, the graph G + uv also is a Burkard-

Hammer graph.

Lemma 6 [12]. Let G = S(I ∪K,E) be a Burkard-Hammer graph. Then

for any ∅ 6= I ′ ⊆ I, we have |N(I ′)| > |I ′|.

Theorem 7 [13]. Let G1 = S(I1 ∪ K1, E1) be a Burkard-Hammer graph

and G2 = S(I2 ∪K2, E2) be a complete split graph with |I2| < |K2|. Then

any expansion of G1 by G2 is a Burkard-Hammer graph.

Theorem 8 [13]. Let G1 = S(I1 ∪K1, E1) be an arbitrary split graph and

G2 = S(I2∪K2, E2) be a split graph with |K2| = |I2|+1. Then an expansion

of G1 by G2 is a hamiltonian graph if and only if both G1 and G2 are

hamiltonian graphs.
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Let G = S(I ∪K,E) be a split graph. Set

Bi(G) = {v ∈ K | |NG,I(v)| = i}.

If the graph G is clear from the context then we also write Bi instead of
Bi(G).

Theorem 9 [14]. Let G = S(I ∪ K,E) be a maximal nonhamiltonian

Burkard-Hammer graph with |I| ≥ 7 and δ(G) = |I| − 4. Then B4 = B5 =
· · · = B|I|−1 = ∅ but B3 6= ∅.

Theorem 10 [14]. Any expansion of the graph H4,n by a complete split

graph G2 = S(I2 ∪K2, E2) with |I2| = |K2| − 1 ≥ 1 at the vertex v∗2 of H4,n

is a maximal nonhamiltonian Burkard-Hammer graph G = S(I ∪K,E) with

δ(G) = |I| − 4.

Let C be a cycle in a graph G = (V,E). By
−→
C we denote the cycle C with

a given orientation and by
←−
C the cycle C with the reverse orientation. If

w1, w2 ∈ V (C), then w1
−→
C w2 denotes the consecutive vertices of C from w1

to w2 in the direction specified by
−→
C . The same vertices in the reverse order

are given by w2
←−
C w1. We will consider w1

−→
C w2 and w2

←−
C w1 both as paths

and as vertex sets. If w ∈ V (C), then w+ denotes the successor of w on
−→
C ,

and w− denotes its predecessor. The vertices (w+)+ and (w−)− are written
briefly by w++ and w−−, respectively. Similar notation as described above
for a cycle is also used for a path.

We prove now the following lemma.

Lemma 11. Let G = S(I ∪K,E) be a Burkard-Hammer graph with |I| ≥ 7
and δ(G) = |I| − 4. Then G is a maximal nonhamiltonian split graph if and

only if G′ = G[I ∪NG(I)] is a maximal nonhamiltonian split graph.

Proof. Let G = S(I ∪K,E) be a Burkard-Hammer graph with |I| ≥ 7
and δ(G) = |I| − 4. Then by Lemma 6 |NG(I)| > |I|.

First suppose that G is a maximal nonhamiltonian split graph. Then
by Lemma 4 it is not difficult to see that G′ = G[I ∪ NG(I)] is a maximal
nonhamiltonian split graph.

Conversely, suppose that G′ = G[I ∪ NG(I)] = S(I ′ ∪ K ′, E′) where
I ′ = I and K ′ = NG(I) is a maximal nonhamiltonian split graph. By
Lemma 4, G is nonhamiltonian. So it remains to prove that for any u ∈ I
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and any v ∈ K with uv 6∈ E the graph H = G + uv is hamiltonian. We
consider separately two cases.

Case 1. v ∈ NG(I).
Then u ∈ I ′, v ∈ K ′ and uv 6∈ E′. Therefore, H ′ = G′ + uv has a Hamilton
cycle because G′ is a maximal nonhamiltonian split graph. Since H ′ =
H[I ∪NH(I)], by Lemma 4 H also has a Hamilton cycle.

Case 2. v ∈ K \NG(I).
First assume that u is adjacent in G to all vertices of NG(I). Then we
consider the graph G− u which is a Burkard-Hammer graph S(Iu ∪K,Eu)
with Iu = I \ {u} and Eu = E \ {uw | w ∈ NG(I)}. Since |Iu| 6= 5 and
δ(G − u) ≥ |Iu| − 3, by Theorem 3, G − u has a Hamilton cycle Cu. We
fix an orientation for Cu. Since v ∈ K \ NG(I) both v− and v+ are in K.

By going from v along Cu in the direction specified by
−→
Cu we can find a

vertex w such that w ∈ NG(I) but w− ∈ K \ NG(I). Then w is adjacent

in G to u by our assumption. Therefore, C = vuw
−→
Cuv is a Hamilton cycle

of G + uv = H if w = v+ and C = vuw
−→
Cuv−w−←−Cuv is a Hamilton cycle of

G + uv = H if w 6= v+.
Now assume that there is a vertex v1 ∈ NG(I) such that u is not adjacent

in G to v1. By Case 1, G + uv1 has a Hamilton cycle C ′ that must contain
the edge uv1 because G is nonhamiltonian. We fix an orientation for C ′

so that u+ = v1. Since v ∈ K \ NG(I), we have v+ ∈ K. Therefore,

C = uv
←−
C ′v1v

+
−→
C ′u is a Hamilton cycle of G + uv = H.

The proof of the lemma is complete.

3. Classification for Case |I| 6= 6, 7

First of all, we prove the following Lemmas 12 and 13.

Lemma 12. Let G = S(I ∪K,E) be a maximal nonhamiltonian Burkard-

Hammer graph with m = |I| 6= 6, n = |K| and δ(G) = |I| − 4. Then |I| ≥ 7
and G possesses a Hamilton path P with the endvertices u1 and vn such that

u1 ∈ I, vn ∈ B3 and if
−→
P = u1 . . . vn is the path P with the orientation from

u1 to vn, then v−n ∈ I.

Proof. Let G = S(I ∪ K,E) be a maximal nonhamiltonian Burkard-
Hammer graph with m = |I| 6= 6, n = |K| and δ(G) = |I|− 4. By Lemma 6,
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for any vertex u ∈ I we have |N(u)| > |{u}| = 1. So, δ(G) = |I| − 4 ≥ 2
and therefore we must have |I| ≥ 6. This implies that |I| ≥ 7 because we
assume that |I| 6= 6. Now by Theorem 9, B4 = B5 = · · · = Bm−1 = ∅ but
B3 6= ∅. Choose a vertex vn ∈ B3. Since m = |I| ≥ 7 we can find a vertex
u1 ∈ I \NI(vn).

Since u1vn 6∈ E and G is a maximal nonhamiltonian split graph, G+u1vn

has a Hamilton cycle D which must contain the edge u1vn. So P = D−u1vn

is a Hamilton path in G with u1 and vn its endvertices.

Let
−→
P = u1 . . . vn be the path P with the orientation from u1 to vn. If

v−n ∈ I, then P already is a Hamilton path required in the lemma. So we

suppose that in
−→
P the vertex v−n is in K. Since |NI(vn)| = 3, there exists

u ∈ NI(vn). Then
−→
P ′ = u1

−→
P u−v−n

←−
P uvn is also a Hamilton path of G with

the endvertices u1 and vn. But in
−→
P ′ the predecessor of vn is u which is in

I. Thus, the path P ′ is a Hamilton path required in the lemma. The proof
of Lemma 12 is complete.

Let G = S(I ∪K,E) be a maximal nonhamiltonian Burkard-Hammer graph
with m = |I| 6= 6, n = |K| and δ(G) = |I| − 4 and let P , u1 and vn be
as in Lemma 12. Set NI(vn) = I \ NI(vn). Then we have |NI(vn)| =
|I| − |NI(vn)| = m− 3. Let

u1, u2, . . . , um−3

be the vertices of NI(vn) occurring on
−→
P in the order of their indices. Set

P1 = u1
−→
P u−

2 , P2 = u2
−→
P u−

3 , . . . , Pm−4 = um−4
−→
P u−

m−3, Pm−3 = um−3
−→
P vn.

Then these subpaths of P appear on
−→
P in the order of their indices. Because

of this we will call the subpath Pj , j = 1, . . . ,m− 3, the j-th subpath of P .

If v is a neighbour of u1 and v− is adjacent to vn, then C = u1
−→
P v−vn

←−
P vu1

is a Hamilton cycle of G, a contradiction. Thus, v− is not adjacent to vn,
i.e., v− ∈ NI(vn) = {u1, . . . , um−3}. Hence, v ∈ {u+

1 , . . . , u+
m−3}. We have

proved the following lemma.

Lemma 13. N(u1) ⊆ {u
+
1 , . . . , u+

m−3}.

The following Lemmas 14, 15 and 16 help us to know the structure of G in
more detail.



76 N.D. Tan and C. Iamjaroen

Lemma 14. (i) If v ∈ N(uj)∩V (Pi) with j ≤ i where i ∈ {1, 2, . . . ,m−3},
j ∈ {2, . . . ,m− 3} and u+

j ∈ N(u1), then v− 6∈ N(vn);
(ii) If v ∈ N(uj) ∩ V (Pi) with j > i where i ∈ {1, 2, . . . ,m − 3}, j ∈

{2, . . . ,m− 3} and u+
j ∈ N(u1), then v+ 6∈ N(vn).

Proof. First assume that v ∈ N(uj)∩V (Pi) with j ≤ i where i ∈ {1, 2, . . . ,
m−3}, j ∈ {2, . . . ,m−3} and u+

j ∈ N(u1). If v = u+
j then v− = uj 6∈ N(vn).

If v 6= u+
j and v− ∈ N(vn), then C = uj

←−
P u1u

+
j

−→
P v−vn

←−
P vuj is a Hamilton

cycle of G, a contradiction.
Now assume that v ∈ N(uj) ∩ V (Pi) with j > i where i ∈ {1, 2, . . . ,

m − 3}, j ∈ {2, . . . ,m − 3} and u+
j ∈ N(u1). If v+ ∈ N(vn), then

C = ujv
←−
P u1u

+
j

−→
P vnv+−→P uj is a Hamilton cycle of G, contradicting the

nonhamiltonicity of G again. This completes the proof of Lemma 14.

By Lemma 14, NI(vn) = {u1, u2, . . . , um−3} and δ(G) = |I| − 4, we have
immediately the following Lemma 15.

Lemma 15. If u+
j ∈ N(u1) for j ∈ {2, . . . ,m− 3}, then N(uj) ⊆ {u

−
2 , u−

3 ,

. . . , u−
j , u+

j , u+
j+1, . . . , u

+
m−3}.

Lemma 16. If integers a and b with 2 ≤ a < b ≤ m − 3 are such that

u+
a ∈ N(u1), u−

a is adjacent to ub and ua is adjacent to u+
b , then both

u+
a−1 = u−

a and u+
a = u−

a+1 hold.

Proof. Suppose, on the contrary, that u+
a−1 6= u−

a . Then u−−
a 6∈ NI(vn)

and therefore it is adjacent to vn. Further, since m ≥ 7, we have deg(uj) ≥
m − 4 ≥ 3 for every j ∈ {1, 2, . . . ,m − 3}. Therefore, since u1 is adjacent

to u+
a , C = u1u

+
a

−→
P ubu

−
a uau

+
b

−→
P vnu−−

a

←−
P u1 is a Hamilton cycle of G, a

contradiction. Similarly, if u+
a 6= u−

a+1, then u++
a is adjacent to vn. So, since

deg(uj) ≥ m−4 ≥ 3 for every j ∈ {1, 2, . . . ,m−3} and u1 is adjacent to u+
a ,

C = u1u
+
a uau

+
b

−→
P vnu++

a

−→
P ubu

−
a

←−
P u1 is a Hamilton cycle of G, contradicting

the nonhamiltonicity of G again. The proof of Lemma 16 is complete.

Now we prove the following two Lemmas 17 and 18 which are crucial for the
classification.

Lemma 17. Let G = S(I ∪K,E) be a maximal nonhamiltonian Burkard-

Hammer graph with |I| 6= 6, 7 and δ(G) = |I| − 4. Then |I| ≥ 8 and G

possesses a vertex v ∈ B3 such that some vertex u ∈ NI(v) = I \NI(v) has

deg(u) ≥ |I| − 3.
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Proof. Let G = S(I ∪ K,E) be a maximal nonhamiltonian Burkard-
Hammer graph with m = |I| 6∈ {6, 7}, n = |K| and δ(G) = |I| − 4. By
Lemma 12, m = |I| ≥ 8 and G possesses a Hamilton path P with the end-

vertices u1 and vn such that u1 ∈ I, vn ∈ B3 and if
−→
P = u1 . . . vn be the

path P with the orientation from u1 to vn then v−n ∈ I.

Suppose, on the contrary, that G does not satisfy the last conclusion
of the lemma. This means that for any vertex v ∈ B3 and for any vertex
u ∈ NI(v) = I \NI(v), we have deg(u) ≤ m− 4. But δ(G) = m− 4. So for
any vertex u ∈ NI(v), deg(u) = m− 4.

We already noticed before Lemma 13 that |NI(vn)| = m− 3. There we

also denoted the vertices of NI(vn) in the order of their appearing on
−→
P by

u1, u2, . . . , um−3 and defined the subpaths P1, P2, . . . , Pm−3 of P .

By Lemma 13, N(u1) ⊆ {u
+
1 , . . . , u+

m−3}.
From this and deg(u1) = m − 4 it follows that there exists r0 ∈ {2, 3, . . . ,
m−3} such that vertices u+

j with j ∈ {1, 2, . . . , m−3}\{r0} and only these
vertices are neighbours of u1.

By Lemma 15 we have

N(uj) ⊆ {u
−
2 , u−

3 , . . . , u−
j , u+

j , u+
j+1, . . . , u

+
m−3}

for any j ∈ {2, . . . ,m− 3} \ {r0}.

Claim 3.1. (i) If 3 ≤ r0 ≤ m − 4, then either some of u2, . . . , ur0−1 is
adjacent to u+

r0
or some of ur0+1, . . . , um−3 is adjacent to u−

r0
.

(ii) If r0 = 2, then some of u3, . . . , um−3 is adjacent to u−
2 .

(iii) If r0 = m− 3, then some of u2, . . . , um−4 is adjacent to u+
m−3.

Proof. First we prove the assertion (i). So we assume now that 3 ≤ r0 ≤
m − 4. Suppose, on the contrary, that u+

r0
6∈ N(uj) for every j ∈ {2, . . . ,

r0 − 1} and u−
r0
6∈ N(uj) for every j ∈ {r0 + 1, . . . ,m− 3}. Then by Lemma

13, Lemma 15 and deg(uj) = m− 4, we have

N(u1) = {u+
1 , . . . , u+

r0−1, u
+
r0+1, . . . , u

+
m−3},

N(uj) = {u−
2 , . . . , u−

j , u+
j , . . . , u+

r0−1, u
+
r0+1, . . . , u

+
m−3} for 2 ≤ j ≤ r0−1

and

N(uj) = {u−
2 , . . . , u−

r0−1, u
−
r0+1, . . . , u

−
j , u+

j , . . . , u+
m−3} for r0 + 1 ≤ j ≤

m− 3.
If all equalities u+

1 = u−
2 , . . . , u+

r0−2 = u−
r0−1, u

+
r0+1 = u−

r0+2, . . . , u
+
m−4 =

u−
m−3 hold, then all vertices u1, . . . , ur0−1, ur0+1, . . . , um−3 are adjacent to
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each of u+
1 , . . . , u+

r0−2, u+
r0+1, . . . , u

+
m−3. This implies that each of vertices

u+
1 , . . . , u+

r0−2, u
+
r0+1, . . . , u+

m−3 has at least 4 neighbours in I because m ≥ 8.
Therefore, by Theorem 9, each of these vertices is adjacent to all vertices in I.
In particular, they are adjacent to ur0

. But u−
r0

and u+
r0

are also neighbours
of ur0

. So deg(ur0
) ≥ m− 3, contradicting the assumption about G.

Thus, there exists the number j0 ∈ {1, . . . ,m − 4} \ {r0 − 1, r0} such
that u+

j0
6= u−

j0+1. So both u++
j0

and u−−
j0+1 are adjacent to vn. If j0 6= 1, then

C = uj0+1u
−
j0

←−
P u1u

+
j0

uj0u
+
j0+1

−→
P vnu++

j0

−→
P uj0+1 is a Hamilton cycle of G. If

j0 = 1, then C = u1u
+
2

−→
P um−3u

−
2 u2 u+

m−3

−→
P vnu−−

2

←−
P u1 is a Hamilton cycle

of G. We have got a contradiction in all possible situations. So the assertion
(i) of the claim must be true.

Assertions (ii) and (iii) can be proved by similar arguments. We leave
it to the reader to carry out the proofs of (ii) and (iii) in detail.

The proof of Claim 3.1 is complete.

Now if r0 = m − 3, then u+
m−3 must be adjacent to some vertex uj with

j ∈ {2, . . . ,m − 4} by Claim 3.1. Let P ′ = uj

←−
P u1u

+
j

−→
P vn. Then P ′ is a

Hamilton path of G with the endvertices uj and vn and all vertices of NI(vn)

are in uj

−→
P ′u+

m−3. Moreover, in P ′ the vertex uj is adjacent to u+
m−3. So

by considering uj instead of u1 and P ′ instead of P , if necessary, we may
assume that

2 ≤ r0 ≤ m− 4.

Claim 3.2. There exists j0 ∈ {1, 2, . . . ,m− 4} such that u+
j0
6= u−

j0+1.

Proof. Suppose, on the contrary, that u+
j = u−

j+1 for every j ∈ {1, 2, . . . ,

m − 4}. If N(ur0
) ∩ u++

m−3

−→
P vn = ∅, then by Lemmas 13 and 15 we have

N({u1, u2, . . . , um−3}) = {u+
1 , u+

2 , . . . , u+
m−3}. It follows that |N({u1, u2,

. . . , um−3})| = |{u+
1 , u+

2 , . . . , u+
m−3}| = |{u1, u2, . . . , um−3}|, contradicting

Lemma 6. Thus, N(ur0
) ∩ u++

m−3

−→
P vn 6= ∅. Let w be a vertex of N(ur0

) ∩

u++
m−3

−→
P vn. Then w− 6∈ NI(vn) and therefore w− is adjacent to vn.

By Claim 3.1, if 3 ≤ r0 ≤ m − 4 then either some of u2, . . . , ur0−1 is
adjacent to u+

r0
or some of ur0+1, . . . , um−3 is adjacent to u−

r0
and if r0 = 2

then some of u3, . . . , um−3 is adjacent to u−
2 . If some of u2, . . . , ur0−1 is

adjacent to u+
r0

, say ui0 , then C = u1
−→
P ui0u

+
r0

−→
P w−vn

←−
P wur0

←−
P u+

i0
u1 is a

Hamilton cycle of G, a contradiction. If some of ur0+1, . . . , um−3 is adjacent
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to u−
r0

, say uj0 , then C = u1
−→
P u−

r0
uj0

←−
P ur0

w
−→
P vnw−←−P u+

j0
u1 is a Hamilton

cycle of G, a contradiction again.
Thus, there must exist a subscript j0 ∈ {1, 2, . . . ,m − 4} such that

u+
j0
6= u−

j0+1.

Claim 3.3. u++
m−3 ∈ I.

Proof. By Claim 3.2 there exists j0 ∈ {1, 2, . . . ,m − 4} such that u+
j0
6=

u−
j0+1. Then u−−

j0+1 is adjacent to vn. Therefore, if u++
m−3 ∈ K, then C =

u1u
+
m−3

←−
P u−

j0+1u
++
m−3

−→
P vnu−−

j0+1

←−
P u1 is a Hamilton cycle of G, a contradiction.

Claim 3.4. u+
m−3 is adjacent to all vertices of G.

Proof. Assume that u+
m−3 is not adjacent to uj for each j ∈ {2, 3, . . . ,

m− 4}. Then by Lemma 15 and deg(uj) = m− 4 we have

N(uj) = {u−
2 , u−

3 . . . , u−
j , u+

j , . . . , u+
m−4}

for every j ∈ {2, 3, . . . ,m− 4} \ {r0}.
If r0 = m − 4, then by applying Lemma 16 for a = 2, . . . ,m − 6 and

b = m − 5 we get u+
1 = u−

2 , . . . , u+
m−6 = u−

m−5. In particular, since m ≥ 8,
we always have u+

1 = u−
2 and u+

2 = u−
3 . Suppose that u+

m−5 6= u−
m−4.

Then u++
m−5 is adjacent to vn. Now if um−3 is adjacent to u−

2 = u+
1 , then

C = u1u
+
m−5

←−
P u−

2 um−3
←−
P u++

m−5vn

←−
P u+

m−3u1 is a Hamilton cycle of G, a con-
tradiction. Thus, um−3 is not adjacent to u−

2 . Together with Lemma 15 and
deg(um−3) = m− 4, this implies that um−3 is adjacent to u−

3 = u+
2 . There-

fore, C = u1u
+
1 u2u

+
m−5

←−
P u−

3 um−3
←−
P u++

m−5vn

←−
P u+

m−3u1 is a Hamilton cycle of
G, a contradiction again. Thus, we also have u+

m−5 = u−
m−4 if r0 = m− 4.

If r0 = m − 5, then by applying Lemma 16 for a = 2, . . . ,m − 6 and
b = m − 4 we get u+

1 = u−
2 , . . . , u+

m−6 = u−
m−5. In particular, we have

u+
1 = u−

2 . Since m ≥ 8, we have r0 = m − 5 ≥ 3. So u1 is adjacent
to u+

2 . Now if u+
m−5 6= u−

m−4, then u++
m−5 is adjacent to vn and therefore

C = u1u
+
2

−→
P u+

m−5u2u
−
2 um−4

←−
P u++

m−5vn

←−
P u+

m−4u1 is a Hamilton cycle of G, a
contradiction. Thus, we also have u+

m−5 = u−
m−4 if r0 = m− 5.

If r0 = 2, then by applying Lemma 16 for a = 3, . . . ,m−5 and b = m−4
we get u+

2 = u−
3 , . . . , u+

m−5 = u−
m−4. In particular, we have u+

3 = u−
4 . Since

m ≥ 8, we have m−4 ≥ 4. Hence, u4 is adjacent to u−
2 . Now if u+

1 6= u−
2 , then

u−−
2 is adjacent to vn and therefore C = u1u

+
3 u3u

+
2 u2u

−
2 u4
−→
P vnu−−

2

←−
P u1 is a

Hamilton cycle of G, a contradiction. Thus, we also have u+
1 = u−

2 if r0 = 2.
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If 2 < r0 < m − 5, then by applying Lemma 16 for a = 2, . . . , r0 − 1 and
b = m− 4 we get u+

1 = u−
2 , . . . , u+

r0−1 = u−
r0

and by applying Lemma 16 for

a = r0+1, . . . ,m−5 and b = m−4 we also get u+
r0

= u−
r0+1, . . . , u

+
m−5 = u−

m−4.

Thus, we always have u+
1 = u−

2 , . . . , u+
m−5 = u−

m−4 for any value of
r0. By Claim 3.2, we must have u+

m−4 6= u−
m−3. Hence, u++

m−4 is adja-
cent to vn. Since m ≥ 8, deg(um−3) = m − 4 ≥ 4. It follows that
there exists j0 ∈ {3, . . . ,m − 4} such that um−3 is adjacent to u−

j0
be-

cause by Lemma 15 N(um−3) ⊆ {u
−
2 , . . . , u−

m−3, u
+
m−3}. Therefore, C =

u1u
+
m−3

−→
P vnu++

m−4

−→
P um−3u

−
j0

−→
P u+

m−4uj0−1
←−
P u1 is a Hamilton cycle of G. This

final contradiction shows the assumption that u+
m−3 is not adjacent to uj for

each j ∈ {2, 3, . . . ,m− 4} is false.

So u+
m−3 must be adjacent to a vertex uj with j ∈ {2, 3, . . . ,m − 4}.

By Claim 3.3, u++
m−3 is in I. Hence, |NI(u

+
m−3)| ≥ 4 because u1, uj , um−3

and u++
m−3 are in NI(u

+
m−3). By Theorem 9, u+

m−3 must be adjacent to all
vertices of G.

The proof of Claim 3.4 is complete.

Claim 3.5. u+
m−4 = u−

m−3.

Proof. Suppose, on the contrary, that u+
m−4 6= u−

m−3. Then u++
m−4 6∈ NI(vn)

and therefore it is adjacent to vn. Further, since m ≥ 8, deg(um−3) =
m− 4 ≥ 4. Together with N(um−3) ⊆ {u

−
2 , . . . , u−

m−3, u
+
m−3}, it follows that

there exists s0 ∈ {2, . . . ,m−4} such that N(um−3) = {u−
2 , . . . , u−

m−3, u
+
m−3}\

{u−
s0
}. Now if r0 < m− 4, then by taking x ∈ {2, . . . ,m− 4} with x 6= s0 we

have C = u1u
+
m−4

←−
P uxu+

m−3

−→
P vnu++

m−4

−→
P um−3u

−
x

←−
P u1 is a Hamilton cycle of

G, a contradiction.

Thus, r0 = m− 4 must hold. Now we consider separately the following
cases.

Case 1. There exists a vertex ut ∈ {u2, . . . , um−5} adjacent to u+
m−4.

We have N(um−3) = {u−
2 , . . . , u−

m−3, u
+
m−3}\{u

−
s0
}. Since m ≥ 8 there exists

x ∈ {2, . . . ,m − 4} \ {t, s0}. Then u−
x is adjacent to um−3 because x 6= s0.

If 2 ≤ x ≤ t − 1, then C = utu
+
m−4

←−
P u+

t u1
−→
P u−

x um−3
←−
P u++

m−4vn

←−
P u+

m−3

ux

−→
P ut is a Hamilton cycle of G. If t + 1 ≤ x ≤ m − 4, then C =

utu
+
m−4

←−
P uxu+

m−3

−→
P vnu++

m−4

−→
P um−3u

−
x

←−
P u+

t u1
−→
P ut is a Hamilton cycle of G.

We have got a contradiction in all possible situations. Thus, this case cannot
occur.
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Case 2. No vertices uj ∈ {u2, . . . , um−5} are adjacent to u+
m−4.

In this case, for j ∈ {2, . . . ,m − 5}, since deg(uj) = m − 4 and N(uj) ⊆
{u−

2 , . . . , u−
j , u+

j , . . . , u+
m−3} by Lemma 15, we have

N(uj) = {u−
2 , . . . , u−

j , u+
j , . . . , u+

m−5, u
+
m−3}.

By applying Lemma 16 for a = 2, . . . ,m − 6 and b = m − 5 we get u+
1 =

u−
2 , . . . , u+

m−6 = u−
m−5.

We show now that u+
m−5 = u−

m−4 also holds. We have N(um−3) =
{u−

2 , . . . , u−
m−3, u

+
m−3} \ {u

−
s0
}. If s0 6= m − 5, then by applying Lemma 16

for a = m − 5 and b = m − 3 we get u+
m−5 = u−

m−4. So we may assume
now that s0 = m − 5. With this assumption we have um−3 is adjacent to
u−

2 = u+
1 . Therefore, if u+

m−5 6= u−
m−4, then u++

m−5 is adjacent to vn and

therefore C = u1u
+
m−5

←−
P u−

2 um−3
←−
P u++

m−5vn

←−
P u+

m−3u1 is a Hamilton cycle of
G, a contradiction. So, u+

m−5 = u−
m−4 always holds.

Thus, N(uj) = {u−
2 , . . . , u−

j , u+
j , . . . , u+

m−5, u
+
m−3}={u

+
1 , . . . , u+

m−5, u
+
m−3}

for j ∈ {2, . . . ,m − 5}. Hence, each of the vertices u1, u2, . . . , um−5 is ad-
jacent to each of the vertices u+

1 , . . . , u+
m−5. Since N(um−3) = {u−

2 , . . . ,

u−
m−3, u

+
m−3} \ {u

−
s0
}, the vertex um−3 is adjacent to each of the vertices

u+
1 , . . . , u+

s0−2, u
+
s0

, . . . , u+
m−5. It follows that |NI(u

+
1 )| ≥ 4, . . . , |NI(u

+
s0−2)| ≥

4, |NI (u
+
s0

)| ≥ 4, . . . , |NI(u
+
m−5)| ≥ 4. By Theorem 9, u+

1 , . . . , u+
s0−2, u

+
s0

, . . . ,

u+
m−5 are adjacent to all vertices of G. In particular, they are adjacent to

um−4. Further, since m ≥ 8 and all u1, . . . , um−5 are adjacent to u+
s0−1, we

have |NI(u
+
s0−1)| ≥ 3. Now if |NI(u

+
s0−1)| > 3, then again by Theorem 9 the

vertex u+
s0−1 is adjacent to all vertices of G. In particular, it is adjacent to

um−4. So {u+
1 , . . . , u+

m−3} ⊆ N(um−4). (We recall that u+
m−3 is adjacent to

all vertices of G by Claim 3.4.) Therefore deg(um−4) ≥ m−3, contradicting
our assumption about G. Thus, |NI(u

+
s0−1)| = 3. Since {u1, . . . , um−5} ⊆

NI(u
+
s0−1), this can happen only if m = 8 and NI(u

+
s0−1) = {u1, u2, u3}.

Hence, u+
s0−1 ∈ B3. Let u ∈ NI(vn) be such that u 6= u++

m−3. Then

u ∈ NI(u
+
s0−1) and therefore deg(u) = m − 4 by our assumption about

G. On the other hand, since u+
1 = u−

2 , . . . , u+
m−5 = u−

m−4 as we have shown

above, u is either in u+
m−4

−→
P u−

m−3 or, if u+++
m−3 6= vn, in u+++

m−3

−→
P v−n . So, both

u− and u+ are different from u+
1 , . . . , u+

s0−2, u
+
s0

, . . . , u+
m−5 and u+

m−3. But

all the vertices u+
1 , . . . , u+

s0−2, u
+
s0

, . . . , u+
m−5, u

+
m−3, u

−and u+ are in N(u).

(Recall that u+
1 , . . . , u+

s0−2, u
+
s0

, . . . , u+
m−5 and u+

m−3 are adjacent to all ver-
tices of G.) Hence, deg(u) ≥ m− 3, contradicting deg(u) = m− 4 obtained
before.
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Thus, Case 2 also cannot occur. This means our assumption that u+
m−4 6=

u−
m−3 is false.

The proof of Claim 3.5 is complete.

Claim 3.6. u+
1 = u−

2 .

Proof. Let Q = um−3
←−
P u1u

+
m−3

−→
P vn. Then Q is a Hamilton path in

G with the endvertices um−3 and vn. In
−→
Q = um−3 . . . vn, the vertices

u1, . . . , um−3 of NI(vn) appear in the reverse order of their indices. So, if v+

and v− are still the successor and the predecessor of a vertex v, respectively,

with respect to
−→
P , then the first subpath Q1 of Q is um−3

←−
P u+

m−4, . . . , the

(m− 4)-th subpath Qm−4 of Q is u2
←−
P u+

1 and the (m− 3)-th subpath Qm−3

of Q is u1u
+
m−3

−→
P vn. Since um−3 is adjacent to u+

m−3, the path Q can play
the role of P in the discussion of Claim 3.5. Therefore, by exchanging the
roles of uj and u(m−3)−(j−1), u+

j and u−
(m−3)−(j−1), u++

j and u−−
(m−3)−(j−1),

r0 and s0, respectively, we can repeat arguments in Claim 3.5 to show that
u−

2 = u+
1 .

Now we complete the proof of Lemma 17. By Claims 3.5 and 3.6, u+
m−4 =

u−
m−3 and u+

1 = u−
2 . Therefore, by Claim 3.2 there is a subscript j0 such

that 2 ≤ j0 ≤ m−5 and u+
j0
6= u−

j0+1. Then both u++
j0

and u−−
j0+1 are adjacent

to vn.
Assume that u1 is adjacent to u+

m−4. If u−
j0+1 is adjacent to um−3,

then C = u1u
+
m−4

←−
P u−

j0+1um−3
−→
P vnu−−

j0+1

←−
P u1 is a Hamilton cycle of G, a

contradiction. Thus, u−
j0+1 cannot be adjacent to um−3. Therefore, since

deg(um−3) = m−4 and N(um−3) ⊆ {u
−
2 , . . . , u−

m−3, u
+
m−3}, the vertex um−3

must be adjacent to u−
j0

. Now Q = u1
−→
P u−

j0
um−3

←−
P uj0u

+
m−3

−→
P vn can play

the role of P in Claim 3.5. So we can get a contradiction as in the proof of
Claim 3.5. Hence, the assumption that u1 is adjacent to u+

m−4 is false.
Thus, u1 is not adjacent to u+

m−4, i.e., r0 = m − 4. This means
that u1 is adjacent to each of u+

1 , . . . , u+
m−5 and u+

m−3. By Claim 3.6,
u+

1 = u−
2 . Therefore, um−3 cannot be adjacent to u−

2 because otherwise C =

u1u
+
j0

←−
P u+

1 um−3
←−
P u++

j0
vn

←−
P u+

m−3u1 would be a Hamilton cycle of G, a contra-

diction. Thus, um−3 is adjacent to each of vertices u−
3 , . . . , u−

m−3 and u+
m−3.

Therefore, if j0 > 2, then C = u1
−→
P u−

j0
um−3

←−
P u++

j0
vn

←−
P u+

m−3uj0u
+
j0

u1 is a

Hamilton cycle of G, a contradiction; and if j0 = 2, then C = u1u
+
3

−→
P um−3

u−
3 u3u

+
m−3

−→
P vnu−−

3

←−
P u1 is a Hamilton cycle of G, a contradiction again.
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This final contradiction shows the assumption that G does not satisfy the
last conclusion of Lemma 17 is false.

The proof of Lemma 17 is complete.

Lemma 18. Let G = S(I ∪K,E) be a maximal nonhamiltonian Burkard-

Hammer graph with m = |I| ≥ 7, n = |K| and δ(G) = |I| − 4. Furthermore,

let G possess a vertex v ∈ B3 such that some vertex u ∈ NI(v) = I \NI(v)
has deg(u) ≥ |I| − 3. Then G is isomorphic to the expansion H 4,t[G2, v

∗
2 ]

where t = |K| − |I| + 5 and G2 = S(I2 ∪K2, E2) is a complete split graph

with |K2| − 1 = |I2| = |I| − 5.

Proof. By Lemma 11, without loss of generality, we may assume here that
K = N(I). Let P , u1 and vn be as in Lemma 12. Set um = v−n ∈ I and let
the vertices u1, u2, . . . , um−3 of I and the subpaths P1, P2, . . . , Pm−3 of P be
defined as before Lemma 13. By the assumption of our lemma, without loss
of generality, we may assume that u1 and vn are such that

deg(u1) ≥ m− 3.

Together with Lemma 13, this implies the following Claim.

Claim 3.7. N(u1) = {u+
1 , u+

2 , . . . , u+
m−3}.

By Lemma 14 and Claim 3.7, for any j ∈ {1, 2, . . . ,m−3} we have deg(uj) ≤
m − 3. But deg(uj) ≥ δ(G) = m − 4. It follows that deg(uj) = m − 4 or
m− 3 for any j ∈ {1, 2, . . . ,m− 3}. By Lemma 15,

N(uj) ⊆ {u
−
2 , u−

3 , . . . , u−
j , u+

j , u+
j+1, . . . , u

+
m−3}

for j = 2, 3, . . . ,m− 3.

Claim 3.8. There exists a number j0 ∈ {1, 2, . . . ,m − 4} such that u+
j0
6=

u−
j0+1 but u+

j0+1 = u−
j0+2, . . . , u

+
m−4 = u−

m−3.

Proof. Suppose that u+
j = u−

j+1 for each j ∈ {1, 2, . . . ,m − 4}. Then for

I ′ = {u1, u2, . . . , um−3}, by Claim 3.7 and N(uj) ⊆ {u
−
2 , u−

3 , . . . , u−
j , u+

j ,

u+
j+1, . . . , u+

m−3} for each j = 2, 3, . . . ,m − 3 just proved above, we have

N(I ′) = {u+
1 , u+

2 , . . . , u+
m−3}. So |N(I ′)| = |I ′|, contradicting Lemma 6.

This means that Claim 3.8 must hold.
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We have u++
j0

, u−−
j0+1 6∈ NI(vn) = {u1, . . . , um−3}. Therefore, both u++

j0
and

u−−
j0+1 are adjacent to vn. The reader should remember this because later we

frequently use it, without mentioning it, to construct a Hamilton cycle in a
graph G.

Claim 3.9. At least one of vertices u2 or um−4 is adjacent to u+
m−3.

Proof. Suppose, on the contrary, that neither u2 nor um−4 is adjacent to
u+

m−3. Then since deg(uj) ≥ m− 4 and N(uj) ⊆ {u
−
2 , u−

3 , . . . , u−
j , u+

j , u+
j+1,

. . . , u+
m−3} for j = 2, 3, . . . ,m− 3, we have

N(u2) = {u−
2 , u+

2 , u+
3 , . . . , u+

m−4},

N(um−4) = {u−
2 , u−

3 , . . . , u−
m−4, u

+
m−4}.

By applying Lemma 16 with a = 2 and b = m−4 we get u+
1 = u−

2 , u+
2 = u−

3 .
If there exists x ∈ {3, . . . ,m − 5} such that u+

x 6= u−
x+1, then u++

x is adja-
cent to vn. So since deg(uj) ≥ m − 4 ≥ 3 for every j ∈ {1, 2, . . . ,m − 3},

C = u1u
+
x

←−
P u2u

+
m−4

−→
P vnu++

x

−→
P um−4u

−
2 u1 is a Hamilton cycle of G, con-

tradicting the nonhamiltonicity of G. Thus, we also have u+
3 = u−

4 , u+
4 =

u−
5 , . . . , u+

m−5 = u−
m−4. It follows that j0 = m − 4 and therefore u++

m−4 is
adjacent to vn.

If um−3 is adjacent to u−
2 , then since u+

1 = u−
2 , C = um−3u

−
2

−→
P u+

m−4u1

u+
m−3

−→
P vnu++

m−4

−→
P um−3 is a Hamilton cycle of G, a contradiction. So um−3

is not adjacent to u−
2 . It follows that N(um−3) = {u−

3 , u−
4 , . . . , u−

m−3, u
+
m−3}

because deg(um−3) ≥ m − 4 and N(um−3) ⊆ {u
−
2 , u−

3 , . . . , u−
m−3, u

+
m−3}.

Since m ≥ 7 and u+
1 = u−

2 , . . . , u+
m−5 = u−

m−4, we always have u+
1 = u−

2 and

u+
2 = u−

3 . Therefore, C = um−3u
−
3

−→
P u+

m−4u2u
+
1 u1u

+
m−3

−→
P vnu++

m−4

−→
P um−3

is a Hamilton cycle of G, a contradiction again. The proof of Claim 3.9 is
complete.

We continue the proof of Lemma 18. If u++
m−3 ∈ K, then C = u1u

+
m−3

←−
P

u−
j0+1u

++
m−3

−→
P vnu−−

j0+1

←−
P u1 is a Hamilton cycle of G, contradicting the non-

hamiltonicity of G. So u++
m−3 ∈ I. It follows that |NI(u

+
m−3)| ≥ 4 because

u1, um−3, u
++
m−3 and at least one of vertices u2 or um−4 by Claim 3.9 are

in NI(u
+
m−3). By Theorem 9, NI(u

+
m−3) = I, i.e., u+

m−3 is adjacent to all
vertices of G.

If um−3 is adjacent to u−
2 then by applying Lemma 16 with a = 2

and b = m − 3 we get u+
1 = u−

2 , u+
2 = u−

3 . Therefore, j0 ≥ 3 and C =
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u1u
+
j0

←−
P u−

2 um−3
←−
P u++

j0
vn

←−
P u+

m−3u1 is a Hamilton cycle of G, a contradiction.

Thus, um−3 is not adjacent to u−
2 . Hence N(um−3) = {u−

3 , u−
4 , . . . , u−

m−3,

u+
m−3} because deg(um−3) ≥ m− 4 and N(um−3) ⊆ {u

−
2 , u−

3 , u−
4 , . . . , u−

m−3,

u+
m−3}. By applying now Lemma 16 with a = 3, . . . , m− 4 and b = m − 3

we get u+
2 = u−

3 , u+
3 = u−

4 , . . . , u+
m−4 = u−

m−3.

Thus, j0 = 1. If u−
2 is adjacent to some uj with j ∈ {3, 4, . . . ,m−3} then

C = uju
−
2

−→
P u+

j−1u1
−→
P u−−

2 vn

←−
P uj is a Hamilton cycle of G, a contradiction.

So u−
2 is not adjacent to any vertices u3, u4, . . . , um−3. It follows that for

j = 3, 4, . . . ,m− 3,

N(uj) = {u+
2 , u+

3 , . . . , u+
m−3}

because deg(uj) ≥ m− 4 and N(uj) ⊆ {u
−
2 , u−

3 , . . . , u−
j , u+

j , . . . , u+
m−3}.

We have proved before that u++
m−3 ∈ I. If u++

m−3 = um = v−n and um has

no neighbours in P1 = u1
−→
P u−

2 , then BG(I ′ ∪K ′, E′) with I ′ = {u1, u2, . . . ,

um−3, um} and K ′ = N(I ′) \ {u+
2 , u+

3 , . . . , u+
m−3} has three H-components,

namely BG({u1}∪{u
+
1 }, {u1u

+
1 }), BG({u2}∪{u

−
2 }, {u2u

−
2 }) and BG({um}∪

{vn}, {umvn}) and m − 5 T -components, each of which consists of a single

vertex from {u3, . . . , um−3}. Therefore, k(I ′,K ′) + max
{

1, h(I′,K′)
2

}

= m−

5 + 3
2 . But |N(I ′)| − |K ′| = |{u+

2 , u+
3 , . . . , u+

m−3}| = m− 4. This contradicts
the fact that G is a Burkard-Hammer graph. Thus, if u++

m−3 = um then
um has to have a neighbour v in P1. If v 6= u+

1 then v− is adjacent to vn

and therefore C = umv
−→
P u+

m−3u1
−→
P v−vnum is a Hamilton cycle of G. If

v = u+
1 then v+ is adjacent to vn and therefore C = umvu1u

+
m−3

←−
P v+vnum

is a Hamilton cycle of G. We have got a contradiction in any situations.

Thus, u++
m−3 6= um. Set um−2 = u++

m−3,
−→
R1 = u+

1

−→
P u−

2 and
−→
R2 = um−2

−→
P

vnum−2. Then
−→
R1 has at least two vertices and

−→
R2 is a cycle of length at

least 4.

Claim 3.10. If there exist a vertex y of the path
−→
R1 and a vertex z of the

cycle
−→
R2 such that either both yz and y+z+ are edges of G or both yz+ and

y+z are edges of G, where y+ and z+ are the successor of y and the successor

of z with respect to
−→
R1 and

−→
R2, respectively, then G has a Hamilton cycle.

Proof. Suppose that both yz and y+z+ are edges of G. If z 6= vn, then

C = y
←−
P u1u

+
m−3

←−
P y+z+−→P vnum−2

−→
P zy is a Hamilton cycle of G. If z = vn,
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then z+ = um−2. Therefore, C = y
←−
P u1u

+
m−3

←−
P y+um−2

−→
P vny is a Hamilton

cycle of G.
If both yz+ and y+z are edges of G, then Claim 3.10 can be proved

similarly. The proof of Claim 3.10 is complete.

Let um−1 be the remaining vertex of I. Then either um−1 ∈
−→
R1 or um−1 ∈

−→
R2.

If um−1 ∈
−→
R2 then all vertices of

−→
R1 are in K. Therefore, by using

Claim 3.10, it is not difficult to see that u+
m−2 = u−

m−1, u
+
m−1 = u−

m and

um−2, um−1, um have no neighbours in
−→
R1. Take I ′ = I,K ′ = N(I ′) \

{u+
2 , u+

3 , . . . , u+
m−3}. Then it is not difficult to see as before that k(I ′,K ′) =

m − 5 and h(I ′,K ′) = 3. Therefore, k(I ′,K ′) + max
{

1, h(I′,K′)
2

}

= m −

5 + 3
2 , |N(I ′)| − |K ′| = |{u+

2 , u+
3 , . . . , u+

m−3}| = m − 4. It follows that

k(I ′,K ′) + max
{

1, h(I′,K′)
2

}

> |N(I ′)| − |K ′|, contradicting the fact that

G is a Burkard-Hammer graph. Thus, um−1 cannot be a vertex of
−→
R2 and

therefore um−1 ∈
−→
R1.

Suppose that u+
m−2 = u−

m. Since vn is adjacent to every vertex of
−→
R1,

again by using Claim 3.10, we see that um−2 and um are not adjacent to any

vertices of
−→
R1. Take I ′ = {u1, u2, . . . , um−3, um−2, um} and K ′ = N(I ′) \

{u+
2 , u+

3 , . . . , u+
m−3}. Then as before it is not difficult to check that G does

not satisfy the Burkard-Hammer condition with respect to these I ′ and K ′,
a contradiction. Thus, u+

m−2 6= u−
m and therefore again by Claim 3.10 we

must have u+
1 = u−

m−1, u
+
m−1 = u−

2 and um−1 is not adjacent to any vertices

in u+
m−2

−→
P u−

m. Further, if um−2 is adjacent to a vertex v ∈ u++
m−2

−→
P u−

m then
since v− ∈ K,

C = u1u
+
m−3

←−
P um−1vn

←−
P vum−2

−→
P v−u+

1 u1

is a Hamilton cycle of G. Similarly, if um is adjacent to a vertex v ∈

u+
m−2

−→
P u−−

m then since v+ ∈ K,

C = u1u
+
m−3

←−
P um−1vnum−2

−→
P vum

←−
P v+u+

1 u1

is a Hamilton cycle of G. We have got a contradiction in both situations.

Thus, in
−→
R2 the vertex um−2 is adjacent to only u+

m−2 and vn and the vertex

um is adjacent to only u−
m and vn. It follows that if u+

m−2

−→
P u−

m has more
than two vertices, then since K = N(I) (by our assumption), N(u1) =
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{u+
1 , . . . , u+

m−3} (by Claim 3.7) and N(uj) ⊆ {u
−
2 , . . . , u−

j , u+
j , . . . , u+

m−3}
for j = 2, 3, . . . ,m − 3 (by Claim 3.7 and Lemma 15) are true, the vertex
u++

m−2 must be adjacent to um−1. By Claim 3.10, G has a Hamilton cycle,
contradicting the nonhamiltonicity of G. Thus, u++

m−2 = u−
m. It follows that

n = |K| = |N(I)| = m + 1 and

I = {u1, u2, . . . , um},

K = {u+
1 , u+

2 , . . . , u+
m−3, u

+
m−2, u

+
m−1, u

−
m, vm+1}.

Let H = S(I ∪K,E(H)) be a split graph with

NH(u1) = {u+
1 , u+

2 , . . . , u+
m−3},

NH(u2) = {u+
2 , u+

3 , . . . , u+
m−3, u

+
m−1},

NH(u3) = NH(u4) = · · · = NH(um−3) = {u+
2 , u+

3 , . . . , u+
m−3},

NH(um−2) = {u+
2 , u+

3 , . . . , u+
m−3, u

+
m−2, vm+1},

NH(um−1) = {u+
1 , u+

2 , . . . , u+
m−3, u

+
m−1, vm+1},

NH(um) = {u+
2 , u+

3 , . . . , u+
m−3, u

−
m, vm+1}.

Set I2 = {u3, u4, . . . , um−3}, K2 = {u+
2 , u+

3 , . . . , u+
m−3} and G2 = H[I2∪K2].

Then G2 is a complete split graph S(I2 ∪ K2, E2) with |K2| − 1 = |I2| =
|I|−5. Further, let H4,6 = S(I∗∪K∗, E(H4,6)) with I∗ = {u∗

1, u
∗
2, u

∗
3, u

∗
4, u

∗
5}

and K∗ = {v∗1 , v
∗
2 , v

∗
3 , v

∗
4 , v

∗
5 , v∗6} be a split graph defined in Table 1 and

H ′ = H4,6[G2, v
∗
2 ]. Then H ′ is a split graph S(I ′ ∪ K ′, E′) with I ′ =

{u∗
1, u

∗
2, u

∗
3, u

∗
4, u

∗
5, u3, u4, . . . , um−3} and K ′ = {v∗1 , v

∗
3 , v

∗
4 , v

∗
5 , v

∗
6 , u

+
2 , u+

3 , . . . ,

u+
m−3}. Consider the following mapping ϕ : V (H)→ V (H ′) with

ϕ(u1) = u∗
1, ϕ(u2) = u∗

2, ϕ(uj) = uj for j = 3, 4, . . . ,m− 3,

ϕ(um−2) = u∗
3, ϕ(um−1) = u∗

4, ϕ(um) = u∗
5,

ϕ(u+
1 ) = v∗1 , ϕ(u+

j ) = u+
j for j = 2, 3, . . . ,m− 3,

ϕ(u+
m−2) = v∗3 , ϕ(u+

m−1) = v∗4 , ϕ(u−
m) = v∗5 , ϕ(vm+1) = v∗6 .

It is not difficult to see that ϕ is an isomorphism between the graphs H and
H ′. By Theorem 10, H ′ is a maximal nonhamiltonian Burkard-Hammer
graph. So, by H ∼= H ′, H = S(I ∪K,E(H)) also is a maximal nonhamilto-
nian Burkard-Hammer graph.
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By considerations before we see that NG(ui) ⊆ NH(ui) for every i =
1, 2, . . . ,m, i.e., G = S(I ∪K,E) is a spanning subgraph of H = S(I ∪K,

E(H)). But G is a maximal nonhamiltonian Burkard-Hammer graph by our
assumption. So G must coincide with H and therefore G is isomorphic to
H ′ = H4,6[G2, v

∗
2 ].

The proof of Lemma 18 is complete.

From Theorem 10 and Lemmas 17 and 18 we can obtain immediately The-
orem 1 formulated in the introduction, which gives us the classification of
maximal nonhamiltonian Burkard-Hammer graphs G = S(I ∪ K,E) with
|I| 6= 6, 7 and δ(G) = |I| − 4.
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