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Abstract

A graph G = (V, E) is called a split graph if there exists a parti-
tion V' = I U K such that the subgraphs G[I] and G[K] of G induced
by I and K are empty and complete graphs, respectively. In 1980,
Burkard and Hammer gave a necessary condition for a split graph G
with |I| < |K| to be hamiltonian. We will call a split graph G with
|I| < |K]| satisfying this condition a Burkard-Hammer graph. Fur-
ther, a split graph G is called a maximal nonhamiltonian split graph
if G is nonhamiltonian but G + wv is hamiltonian for every uwv ¢ E
where v € I and v € K. Recently, Ngo Dac Tan and Le Xuan Hung
have classified maximal nonhamiltonian Burkard-Hammer graphs G
with minimum degree §(G) > |I| — 3. In this paper, we classify max-
imal nonhamiltonian Burkard-Hammer graphs G with || # 6,7 and
§(G) = |I| — 4.
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1. INTRODUCTION

All graphs considered in this paper are finite undirected graphs without
loops or multiple edges. If G is a graph, then V(G) and E(G) (or V and
E for short) will denote its vertex-set and its edge-set, respectively. For a
subset W C V(G), the set of all neighbours of W is denoted by Ng(W) or
N (W) for short. For a vertex v € V(G), the degree of v, denoted by deg(v),
is the number |N(v)|. The minimum degree of G, denoted by §(G), is the
number min{deg(v) | v € V(G)}. By Ng,w (v) or Ny (v) for short we denote
the set W N Ng(v). The subgraph of G induced by W is denoted by G[W].
Unless otherwise indicated, our graph-theoretic terminology will follow [1].

A graph G = (V,E) is called a split graph if there exists a partition
V = UK such that the subgraphs G[I] and G[K]| of G induced by I and K
are empty and complete graphs, respectively. We will denote such a graph
by S(I UK, E). Further, a split graph G = S(I UK, F) is called a complete
split graph if every uw € I is adjacent to every v € K. The notion of split
graphs was introduced in 1977 by Foldes and Hammer [4]. These graphs
are interesting because they are related to many problems in combinatorics
(see [3, 5, 10]) and in computer science (see [6, 7]).

In 1980, Burkard and Hammer gave a necessary condition for a split
graph G = S(I U K, F) with |I| < |K| to be hamiltonian [2] (see Section 2
for more detail). We will call this condition the Burkard-Hammer condition.
Also, we will call a split graph G = S(I U K, E) with |I| < |K|, which
satisfies the Burkard-Hammer condition, a Burkard-Hammer graph.

Thus, by [2] any hamiltonian split graph G = S(IUK, E) with || < |K|
is a Burkard-Hammer graph. In general, the converse is not true. The first
nonhamiltonian Burkard-Hammer graph has been indicated in [2]. Further
infinite families of nonhamiltonian Burkard-Hammer graphs have been con-
structed recently in [13].

A split graph G = S(I U K, E) is called a mazimal nonhamiltonian
split graph if G is nonhamiltonian but the graph G + wv is hamiltonian for
every uv ¢ E where v € I and v € K. It is known from a result in [12]
that any nonhamiltonian Burkard-Hammer graph is contained in a maxi-
mal nonhamiltonian Burkard-Hammer graph. So knowledge about maximal
nonhamiltonian Burkard-Hammer graphs provides us certain information
about nonhamiltonian Burkard-Hammer graphs.

It has been shown in [12] that there are no nonhamiltonian Burkard-
Hammer graphs and therefore no maximal nonhamiltonian Burkard-Hammer
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graphs G = S(IUK, E) with §(G) > |I|—2. In the same paper [12], Ngo Dac
Tan and Le Xuan Hung have classified maximal nonhamiltonian Burkard-
Hammer graphs G = S(I U K, E) with 6(G) = |I| — 3. Namely, they have
proved in [12] that for every integer n > 5 there exists up to isomorphisms ex-
actly one maximal nonhamiltonian Burkard-Hammer graph G = S(IUK, E)
with |K| = n and §(G) = |I| — 3 which is the graph H*" in their notation
there (see the definition of H*" in Section 2). Recently, Ngo Dac Tan
and Iamjaroen have constructed in [14] a family of maximal nonhamiltonian
Burkard-Hammer graphs G = S(I U K, E) with 6(G) = |I| — 4. In this pa-
per, we will show that if a maximal nonhamiltonian Burkard-Hammer graph
G = S(IUK, FE) with §(G) = |I| —4 has |I| # 6,7, then G must be a graph
in the family constructed by Ngo Dac Tan and Iamjaroen in [14]. Namely,
we will prove the following main result of the paper.

Theorem 1. Let G = S(I U K, E) be a split graph with |I| # 6,7 and
)G) = |I| —4. Then G is a mazimal nonhamiltonian Burkard-Hammer
graph if and only if G is isomorphic to the expansion H%![Gg,vi] where
t = |K|—|I|+5 and G2 = S(I2 U K, E3) is a complete split graph with
|Ka| —1=|L|=|I|-5>3.

The expansion graph H*![G2,v3] will be defined in Section 2.
Thus, we will get the classification of maximal nonhamiltonian Burkard-
Hammer graphs G = S(I UK, E) with 6(G) = |I| — 4 for the case |I| # 6, 7.
We would like to note that there is an interesting discussion about the
Burkard-Hammer condition in [9]. Concerning the hamiltonian problem for
split graphs, readers can see also [8] and [11].

2. PRELIMINARIES

Let G = S(I UK, FE) be a split graph and I’ C I, K’ C K. Denote by
Be(I' U K',E') the graph G[I' U K'] — E(G[K']). Tt is clear that G’ =
Ba(I' U K’ F') is a bipartite graph with the bipartition subsets I’ and K.
So we will call Bg(I'UK', E") the bipartite subgraph of G induced by I' and
K'. For a component G; = Bg(I; U K}, EY) of G' = Be(I' U K', E') we
define
!/ ! : ! /
k(G = k(I K1) = {'IJ‘ ol 1> I

0 otherwise.
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If G’ = Bg(I' U K', E’) has r components G| = Bg(I1 UKy, EY),...,G =
Bg(Il U K], E!) then we define

ka(G) = ka(I' K') =Y ka(G)).
Jj=1

A component G = Bg(I; U K, E}) of G' = Bg(I' U K',E') is called
a T-component (resp., H-component, L-component) if |I}| > |K]| (resp.,
|| = K|, 15| < |KG]). Let ha(G') = ha(I', K') denote the number of
H-components of G'.

In 1980, Burkard and Hammer proved the following necessary but not
sufficient condition for hamiltonian split graphs [2].

Theorem 2 [2]. Let G = S(IUK, E) be a split graph with |I| < |K|. If G
1s hamiltonian, then

< [Ne(I')| - | K|

! /
ka(I', K') —|—max{1, M}

holds for all ) # I' C I, K' C Ne(I') with (ka(I', K'), ha:(I', K')) # (0,0).

We will shortly call the condition in Theorem 2 the Burkard-Hammer con-
dition. We also call a split graph G = S(I U K, E) with |I| < |K|, which
satisfies the Burkard-Hammer condition, a Burkard-Hammer graph. Thus,
by Theorem 2 any hamiltonian split graph G = S(IUK, E) with |I| < |K| is
a Burkard-Hammer graph. For split graphs G = S(I U K, E) with |I| < | K|
and §(G) > |I| — 2 the converse is true [12]. But it is not true in gen-
eral. The first example of a nonhamiltonian Burkard-Hammer graph has
been indicated in [2]. Recently, Ngo Dac Tan and Le Xuan Hung have
classified nonhamiltonian Burkard-Hammer graphs G = S(I U K, E) with
d(G) = |I| — 3. Namely, they have proved the following result.

Theorem 3 [12]. Let G = S(I UK, E) be a split graph with |I| < |K| and
the minimum degree §(G) > |I| — 3. Then
(i) If |I| # 5, then G has a Hamilton cycle if and only if G satisfies the

Burkard-Hammer condition;

(ii) If |I| =5 and G satisfies the Burkard-Hammer condition, then G has
no Hamilton cycles if and only if G is isomorphic to one of the graphs
HY HZ2M O H3 or HY™ listed in Table 1.
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Table 1. The graphs H'", H?>" H>"™ and H*".

The graph | The vertex-set The edge-set

G V(G)=I"UK* E(G)=EfU...UE;UE}.
Hhn I* = {uy, ug, uz, uj, ug}, | Bf = {ujvf, ujvz},
(n>5) K* = {vf,v5,...,0 . | B3 = {ubvy, ubv}},

* * 0k * 0k * 0k
B3 = {u3v3, u3v3, uzvg },
X __ X, 0k kX 0k kX 0k
E} = {U4”17U4U47U4U6}7
* Kok ok ok
Bs = {uzvs, uzvg},

B ={vjvjli # jii,5 =1,...,n}.

A V(P = V(YY) | B = BT U {ujes)
HS V(R = V(YY) | B(HY) = B U {uges)
mAn VA = VES) | B = B U {uje;, uges}

Theorem 3 shows that there are up to isomorphisms only four nonhamil-
tonian Burkard-Hammer graphs G = S(I U K, E) with K = N(I) and
§(G) = |I| — 3, namely, the graphs H® H?6 H3% and H*®. In contrast
with this result, the number of nonhamiltonian Burkard-Hammer graphs
G =S UK,FE) with K = N(I) and §(G) = |I| — 4 is infinite. This is a
recent result of Ngo Dac Tan and Iamjaroen [13]. We remind now one of
the constructions in this work, which is needed here.

Let G1 = S(I1 U K1, Eq) and Go = S(I3 U Ko, E9) be split graphs with

V(Gl) N V(Gz) =0

and v be a vertex of K. We say that a graph G is an expansion of Gy by
G4 at v if G is the graph obtained from (G — v) U Gy by adding the set of
edges

Ey = {xﬂ}j ‘ T € V(Gl) \ {U},Uj € Ky and z;v € El}.

It is clear that such a graph G is a split graph S(I UK, E) with I = I; U I,
K = (K; \ {v}) U K3 and is uniquely determined by G1,G2 and v € Kj.
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Because of this, we will denote this graph G by G1[G2,v]. Further, a graph
G is called an ezxpansion of G1 by Gs if it is an expansion of G by G at
some vertex v € Kj.

As an example, we show in Figure 1 the expansion of the graph H*"
by the complete split graph Gy = S(I2 U Ko, F5) with Iy = {uj,us} and
Ky = {v1,v9,v3} at the vertex v} of H™.

P‘»Aé»ﬁ?/

K
"4’ 7 / n+2
PLEBAT AN L - N\ - _ |- _
r 17////\1{///\\1’ . o 1
| e
L w mom % g %%

Figure 1. The expansion H*"[Ga,v}].
The following results are needed later.

Lemma 4 [11]. Let G = S(I U K, E) be a split graph with |I| < |K].
Then G has a Hamilton cycle if and only if [N(I)| > |I| and the subgraph
G' = G[I UN(I)] has a Hamilton cycle.

Lemma 5 [12]. Let G = S(I U K, E) be a Burkard-Hammer graph. Then
for anyu € I and v € K with uwv € E, the graph G + uv also is a Burkard-
Hammer graph.

Lemma 6 [12]. Let G = S(I U K, E) be a Burkard-Hammer graph. Then
for any O # I' C I, we have [N(I')| > |I'|.

Theorem 7 [13]. Let Gy = S(I; U K1, E1) be a Burkard-Hammer graph
and Go = S(Iz U Ks, E3) be a complete split graph with |I3| < |Ks3|. Then
any expansion of G1 by Ga is a Burkard-Hammer graph.

Theorem 8 [13]. Let G; = S(I; U Ky, Eq) be an arbitrary split graph and
Go = S(I2UKs, Es) be a split graph with |Ko| = |Is|+1. Then an expansion
of G1 by Go is a hamiltonian graph if and only if both G1 and Gy are
hamiltonian graphs.
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Let G = S(I UK, E) be a split graph. Set
Bi(G) ={ve K| |Ng,(v)| =i}

If the graph G is clear from the context then we also write B; instead of
B;i(G).

Theorem 9 [14]. Let G = S(I U K,E) be a mazimal nonhamiltonian
Burkard-Hammer graph with |I| > 7 and §(G) = |I| —4. Then By = Bs =
'--:Bm_l:w buth#(Z).

Theorem 10 [14]. Any expansion of the graph H*™ by a complete split
graph Gy = S(Iy U Ky, Ey) with |Is] = |Ka| — 1 > 1 at the vertex vy of H*"
is a mazximal nonhamiltonian Burkard-Hammer graph G = S(IUK, E) with
I(G) = |I| —4.

Let C be a cycle in a graph G = (V, E). By C we denote the cycle C' with
a given orientation and by C the cycle C with the reverse orientation. If
wy,wg € V(C), then wy ng denotes the consecutive vertices of C' from w1
to ws in the direction specified by C. The same vertices in the reverse order
are given by wggwl. We will consider w16w2 and ’LU2<5U]1 both as paths
and as vertex sets. If w € V(C'), then w™ denotes the successor of w on 6’),
and w™ denotes its predecessor. The vertices (w™)" and (w™)~ are written
briefly by w™ and w™, respectively. Similar notation as described above
for a cycle is also used for a path.
We prove now the following lemma.

Lemma 11. Let G = S(IUK, E) be a Burkard-Hammer graph with |I| > 7
and §(G) = |I| —4. Then G is a maximal nonhamiltonian split graph if and
only if G' = G[I U Ng(I)] is a mazimal nonhamiltonian split graph.

Proof. Let G = S(IUK,FE) be a Burkard-Hammer graph with [I| > 7
and 6(G) = |I| — 4. Then by Lemma 6 |Ng(I)| > |I].

First suppose that G is a maximal nonhamiltonian split graph. Then
by Lemma 4 it is not difficult to see that G’ = G[I U Ng(I)] is a maximal
nonhamiltonian split graph.

Conversely, suppose that G' = G[I U Ng(I)] = S(I' U K', E") where
I' = I and K/ = Ng(I) is a maximal nonhamiltonian split graph. By
Lemma 4, G is nonhamiltonian. So it remains to prove that for any u € [
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and any v € K with uv € E the graph H = G + wv is hamiltonian. We
consider separately two cases.

Case 1. v € Ng(I).
Then v € I', v € K’ and uv € E’. Therefore, H = G’ + uv has a Hamilton
cycle because G’ is a maximal nonhamiltonian split graph. Since H' =
H[I'UNg(I)], by Lemma 4 H also has a Hamilton cycle.

Case 2. v e K\ Ng(I).

First assume that u is adjacent in G to all vertices of Ng(I). Then we
consider the graph G — u which is a Burkard-Hammer graph S(I, U K, E,,)
with I, = I'\ {u} and E, = E\ {uw | w € Ng(I)}. Since |I,| # 5 and
(G —u) > |I,| — 3, by Theorem 3, G — u has a Hamilton cycle C,,. We
fix an orientation for C,. Since v € K \ Ng(I) both v~ and v" are in K.
By going from v along C,, in the direction specified by C_>’u we can find a
vertex w such that w € Ng(I) but w™ € K \ Ng(I). Then w is adjacent
in G to u by our assumption. Therefore, C' = UuwC—;v is a Hamilton cycle
of G+w =Hifw=v"and C = vuwav_w_av is a Hamilton cycle of
G+uv=Hifw#v".

Now assume that there is a vertex v; € Ng(I) such that u is not adjacent
in G to v;. By Case 1, G + uv; has a Hamilton cycle C’ that must contain
the edge uv, because G is nonhamiltonian. We fix an orientation for C’
so that ut = v;. Since v € K \ Ng(I), we have v € K. Therefore,
C= uv<6_”010+5>”u is a Hamilton cycle of G +uv = H.

The proof of the lemma is complete. [

3. CLASSIFICATION FOR CASE |I| # 6,7
First of all, we prove the following Lemmas 12 and 13.

Lemma 12. Let G = S(I U K, E) be a mazimal nonhamiltonian Burkard-
Hammer graph with m = |I| # 6, n = |K| and 6(G) = |I| —4. Then |I| > 7
and G possesses a Hamilton path P with the endvertices ui and v, such that
uy € I,v, € Bg and z'fJ_D) = Uy ...V, 1S the path P with the orientation from
uy to vy, then v, € 1.

Proof. Let G = S(I U K, FE) be a maximal nonhamiltonian Burkard-
Hammer graph with m = |I| # 6,n = |K| and §(G) = |I| — 4. By Lemma 6,
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for any vertex w € I we have |N(u)| > [{u}| = 1. So, §(G) = |I| —4 > 2
and therefore we must have |I| > 6. This implies that |I| > 7 because we
assume that |I| # 6. Now by Theorem 9, By = B5 = --- = B;,—1 = ) but
Bs # (). Choose a vertex v, € Bs. Since m = |I| > 7 we can find a vertex
up € [\N[(’Un).

Since u1v, ¢ E and G is a maximal nonhamiltonian split graph, G+uv,
has a Hamilton cycle D which must contain the edge wiv,. So P = D —uqvy,
is a Hamilton path in G with u; and v, its endvertices.

Let 1_3) = uq ...V, be the path P with the orientation from uq to v,. If
v, € I, then P already is a Hamilton path required in the lemma. So we
suppose that in P the vertex v, is in K. Since |Ny(v,)| = 3, there exists
u € Ni(vy). Then ]3; = ulﬁu_v; ?uvn is also a Hamilton path of G with

.
the endvertices u; and v,. But in P’ the predecessor of v,, is u which is in
I. Thus, the path P’ is a Hamilton path required in the lemma. The proof
of Lemma 12 is complete. [ |

Let G = S(IUK, E) be a maximal nonhamiltonian Burkard-Hammer graph
with m = |I| # 6,n = |K| and 6(G) = |I| — 4 and let P, u; and v, be
as in Lemma 12. Set Njy(v,) = I\ Ni(v,). Then we have |Ni(v,)| =
|[I| — |N1(vy,)| = m — 3. Let

UL, U2y - -+, Um—3
R —
be the vertices of N(vy,) occurring on P in the order of their indices. Set

- - —
P1:u1Pu2,P2:u2Pu3,... Pm 4 = Um— 4Pu megzumfgpvn.

m—3’
Then these subpaths of P appear on ]_3> in the order of their indices. Because
of this we will call the subpath P;, j =1,...,m — 3, the j-th subpath ofP
If v is a neighbour of u; and v~ is adJacent to vy, then C' = uy Pv vanul
is a Hamilton cycle of GG, a contradiction. Thus, v~ is not adJacent to vy,

ie, v™ € Ny(vy) = {u1,...,um—3}. Hence, v € {uf,...,ul _5}. We have
proved the following lemma.
Lemma 13. N(u1) C {uf,...,u} 5} |

The following Lemmas 14, 15 and 16 help us to know the structure of G in
more detail.
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Lemma 14. (i) If v € N(uj)NV(P;) with j <1 wherei € {1,2,...,m—3},
j€e{2,...,m—3} and uj € N(uy), then v~ & N(vp);

(ii) If v € N(uj) NV (F;) with j > i where i € {1,2,...,m =3}, j €
{2,...,m =3} and u} € N(u), then v* & N(vy,).

Proof. First assume that v € N(u;)NV(P;) with j < ¢ wherei € {1,2,...,
m—3}, 7 €{2,...,m—3} and u;L € N(up). Ifv = u;r thenv™ = u; & N(vp).
If v # u;r and v~ € N(vy), then C = uj(ﬁuluj?v_vn(ﬁvuj is a Hamilton
cycle of G, a contradiction.

Now assume that v € N(u;) NV (F;) with j > i where i € {1,2,...,

m =3}, j € {2,...,m =3} and uf € N(w). If v* € N(uvy), then

< +—> = . . . .
C = ujv Puyu; Pu,vt Pu; is a Hamilton cycle of G, contradicting the
nonhamiltonicity of G again. This completes the proof of Lemma 14. [ |

By Lemma 14, Ny(v,) = {u1,us,...,um—3} and §(G) = |I| — 4, we have
immediately the following Lemma 15.

Lemma 15. If u;L € N(u1) for j € {2,...,m — 3}, then N(uj) C {uy,u3,

— o ot +
..,uj,uj,ujﬂ,...,um_g}. [

Lemma 16. If integers a and b with 2 < a < b < m — 3 are such that
ul € N(uy), uy is adjacent to up and u, is adjacent to u;r, then both

a
uf y =ug and uf =ug,, hold.

a—1

Proof. Suppose, on the contrary, that u} | # u,. Then u;~ & Ny(v,)

and therefore it is adjacent to v,. Further, since m > 7, we have deg(u;) >

m —4 > 3 for every j € {1,2,...,m — 3}. Therefore, since u; is adjacent
— —

o
to uf, C = wiuf Pupug uquy” Pvyug, ~ Pup is a Hamilton cycle of G, a
contradiction. Similarly, if u} # U, 1, then ul T is adjacent to v,. So, since
deg(u;) > m—4 > 3 for every j € {1,2,...,m—3} and uy is adjacent to u],

+—> - = . . . .
C = wiuf uqu, Poyuf™ Puyu, Puy is a Hamilton cycle of G, contradicting
the nonhamiltonicity of G again. The proof of Lemma 16 is complete. [ |

Now we prove the following two Lemmas 17 and 18 which are crucial for the
classification.

Lemma 17. Let G = S(I U K, E) be a mazimal nonhamiltonian Burkard-
Hammer graph with |I| # 6,7 and §(G) = |I| —4. Then |I| > 8 and G
possesses a vertex v € Bz such that some vertex uw € Ni(v) = I\ Ni(v) has
deg(u) > |I] - 3.
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Proof. Let G = S(I U K, FE) be a maximal nonhamiltonian Burkard-
Hammer graph with m = |I| € {6,7},n = |K| and 6(G) = |I| — 4. By
Lemma 12, m = |I| > 8 and G possesses a Hamilton path P with the end-
vertices u1 and v, such that uqy € I,v, € B3 and if ? = uj...v, be the
path P with the orientation from u; to v, then v, € I.

Suppose, on the contrary, that G does not satisfy the last conclusion
of the lemma. This means that for any vertex v € B3 and for any vertex
u € Nr(v) =1\ Ni(v), we have deg(u) < m — 4. But 6(G) = m — 4. So for
any vertex u € Ny(v), deg(u) =m — 4.

We already noticed before Lemma 13 that |Nj(v,)| = m — 3. There we
also denoted the vertices of Nj(vy,) in the order of their appearing on P by
U1, U, . .., Um—_3 and defined the subpaths P, P, ..., P,_3 of P.

By Lemma 13, N(u1) C {uf,...,u} _5}.

From this and deg(u;) = m — 4 it follows that there exists ro € {2,3,...,
m— 3} such that vertices uj' with j € {1,2,..., m—3}\{ro} and only these
vertices are neighbours of u;.

By Lemma 15 we have

N(uj;) C {ug,u?)_,...,u;,u;',u;-:l,...,uaf?)}

forany j €{2,...,m —3}\{ro}.

Claim 3.1. (i) If 3 < 79 < m — 4, then either some of wug,...,up,—1 is
adjacent to u,JFO or some of uyy41,...,un—3 is adjacent to (T

(ii) If ro = 2, then some of ug, ..., u;,—3 is adjacent to u, .

(iii) If 79 = m — 3, then some of ug, ..., un,—4 is adjacent to u:;_g.

Proof. First we prove the assertion (i). So we assume now that 3 < ro <
m — 4. Suppose, on the contrary, that u} & N(u;) for every j € {2,...,
ro — 1} and u,, & N(u;) for every j € {ro+1,...,m —3}. Then by Lemma
13, Lemma 15 and deg(u;) = m — 4, we have

(T + + +
N(up) ={uj,..., um_l,umﬂ,...,um_?,},
— f,— -+ + + + ~
Nug) ={ug oty U Uy s Uy gy s Uy g} for 2 <j <rg—1
and
— - - - ot + :
N(uj) = {ug o Upg gy Upgyqse e s Uj s U ey Uy g} forrg+1 <5 <
m — 3.
PP + - v +
If all equalities uj” = u, ,. .. Upe g = Uy 15 Up 1] = Uy 195y Uy g =

u,,_5 hold, then all vertices u1,...,Ur,—1,Ury+1,---,Un—3 are adjacent to
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each of uf, . ,u;LOJ, u;rOJrl, e ,u;ﬁg}. This implies that each of vertices
uf, . ,u;roﬂ, u;rOH, cees u%f?) has at least 4 neighbours in I because m > 8.

Therefore, by Theorem 9, each of these vertices is adjacent to all vertices in 1.
In particular, they are adjacent to w,,. But u,, and ujo are also neighbours
of uy,. So deg(uy,) > m — 3, contradicting the assumption about G.

Thus, there exists the number jo € {1,...,m — 4} \ {ro — 1,79} such
that u;g # u;oil So both u++ and u}jrl are adjacent to v,. If jo # 1, then

C = Ujo 41U, Pu1u+u]0 ]o+1PU"u PUJOH is a Hamilton cycle of G. If
_>

jo =1, then C = u1u2 Pup_3uq us u Pvnu2 Pu1 is a Hamilton cycle
of G. We have got a contradiction in all p0s31ble situations. So the assertion
(i) of the claim must be true.

Assertions (ii) and (iii) can be proved by similar arguments. We leave
it to the reader to carry out the proofs of (ii) and (iii) in detail.

The proof of Claim 3.1 is complete. [ |

:;_3 must be adjacent to some vertex u; with

— —
j€{2,....,m —4} by Claim 3.1. Let P’ = uqulu;LPvn. Then P’ is a
Hamilton path of G with the endvertices u; and v, and all vertices of N (vy,)

are in u]P’ u, 5. Moreover, in P’ the vertex u; is adjacent to um 3. 50
by considering u; instead of u; and P’ instead of P, if necessary, we may
assume that

Now if rg = m — 3, then u

2<rg<m—4.

Claim 3.2. There exists jo € {1,2,...,m — 4} such that u 7 Ui

Proof. Suppose, on the contrary, that u;“ = for every j € {1,2,.

y+1
m — 4}, If N(up,) N u:;'tgl_ﬁvn = (), then by Lemmas 13 and 15 we have
N({ul,u2,...,um 3}) = {uf,u%,...,u%fzi}. It follows that |N({u,us,
s Um—3})| = HUT,U;—,---, m 3}‘ = [{u1,uz,...,um—3}|, contradicting

Lemma 6. Thus, N(u,) Nt Pvn # (. Let w be a vertex of N(uy,) N
m73Pvn. Then w™ & Nl(vn) and therefore w™ is adjacent to v,.

By Claim 3.1, if 3 < rg < m — 4 then either some of ug,...,ur,—1 is
adjacent to u;FO or some of U y1,...,Uy,—3 is adjacent to u, and if ro = 2
then some of us,...,u;,_3 is adjacent to Ug . If some of ug, ey Upg—1 1S

adjacent to uro, say u;,, then C = Pumu Pw vnPquOPu uy 1S a
Hamilton cycle of G, a contradiction. If some of Upg41s- - Um—3 18 adJacent
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- _ «— - _(— 4 . .
to u,,, say ujy, then C' = uy Pu, ujo Pur,w Pvyw Pujoul is a Hamilton
cycle of G, a contradiction again.
Thus, there must exist a subscript jo € {1,2,...,m — 4} such that

+ —
Yo a Ujo+1- u
Claim 3.3. u 3 €1

Proof. By Claim 3.2 there exists jo € {1,2,...,m — 4} such that u;g

;0 +1 Then u; — is adjacent to v,. Therefore, if u++3 € K, then C =

Uy Pu

Jo +
P u1 is a Hamilton cycle of G, a contradiction.
|

JOJFlum ?)PvnuyoJrl

Claim 3.4. @%73 is adjacent to all vertices of G.

Proof. Assume that u%f?) is not adjacent to u; for each j € {2,3,...,
m — 4}. Then by Lemma 15 and deg(u;) = m — 4 we have

N(uj;) = {u;,u;...,u;,uj,...,u%fél}

for every j € {2,3,...,m —4}\ {ro}.
If r¢ = m — 4, then by applying Lemma 16 for a = 2,...,m — 6 and

b=m —5 we get ui" = Uy,... 3“2—6 = u,,_s. In particular, since m > 8,
we always have uf = uy, and u; = ug;. Suppose that u;75 F U,y
Then um 5 is adjacent to v,. Now if u,,—3 is adjacent to u, = uf, then

C= ulu Pu2 Uy — 3Pum+5vnPum su1 is a Hamilton cycle of G, a con-

tradiction. Thus Um—3 is not adjacent to u, . Together with Lemma 15 and
deg(um—3) =m —4, thls implies that U3 it is adjacent to u; = u2 There-

fore, C' = ulufu2u Pu3 T 3Pu 5vnPu _guq is a Hamilton cycle of

+ _
G, a contradiction again. Thus, we also have v, - =u,,_, if ro =m —4.

If ro = m — 5, then by applying Lemma 16 for a = 2,...,m — 6 and

b=m—4 we get uf = u;,...,u%fba = u,,_ 5. In particular, we have
uf = Uy . Since m > 8, we have 1o = m —5 > 3. So wu; is adjacent
to u; NOW if um 5 7 Uy, ot then uﬁr 5 is adjacent to v, and therefore

C = u1u2 Pum 5 U U, Upy— 4Pu 5vnPum 4u1 is a Hamilton cycle of G, a
contradiction. Thus, we also have u$75 =u,,_,if ro =m—>5.

If ro = 2, then by applying Lemma 16 for a = 3, ... ,m—5 andb=m—4
we get u; = Ug,... ,u;ﬂ,) =u,,_4. In particular, we have u?{ = u, . Since
m > 8, we have m—4 > 4. Hence, uy4 is adjacent to u, . Now if uf # Uy , then
uy ~ is adjacent to v, and therefore C' = u1u§U3u§Lu2u27U4?vnu§Jﬁu1 isa

Hamilton cycle of G, a contradiction. Thus, we also have uf =uy if rg =2.
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If 2 < rg < m — 5, then by applying Lemma 16 for a« = 2,...,rg — 1 and

b=m —4 we get u{“ = Uy ,... ,u;fo_l = u,, and by applying Lemma 16 for
a:r0+1,...,m—5andb:m—4wealsogetuj0 = Uy 155 Upy ut s = Uy

Thus, we always have u] = Uy ,...,u+ 5 = u,,_, for any value of
ro. By Claim 3.2, we must have u% 4 F U3 Hence u++ is adja-
cent to v,. Since m > 8, deg(um-3) = m —4 > 4. Tt follows that
there exists jo € {3,...,m — 4} such that um,g is adjacent to uj be-
cause by Lemma 15 N (twpm— 3) C {uy,...,u,_s,ut _3}. Therefore, C =

UL ;; 3Pvn :; 4Pum 3u Pum AWjo— 1Pu1 is a Hamilton cycle of G. This
final contradiction shows the assumption that umf?) is not adjacent to u; for
each j € {2,3,...,m — 4} is false.

So w5 must be adjacent to a vertex u; with j € {2,3,...,m — 4}.
By Claim 3.3, u/ %, is in I. Hence, |[Ny(u) 5)| > 4 because ui,u;, U3
and u++3 are in NI( _3). By Theorem 9, u:;k?) must be adjacent to all
vertices of G.

The proof of Claim 3.4 is complete. [
Claim 3.5. u;_4 =u_

Proof. Suppose, on the contrary, that ;' , #u_ 5. Thenu'*t, ¢ N[('Un)
and therefore it is adjacent to v,. Further, since m > 8, deg(um,g) =
m —4 > 4. Together with N (up,—3) C {uy,...,u_s,ub o}, it follows that
there exists sg € {2,...,m—4} such that N (u;,—3) = {uy, ..., u st 2 }\
{ug, }- Now if 7“0 < m —4, then by taking x € {2 ,m—4} Wlth x 7& S we

have C = ulu Pum PvnuJr

G, a contradlctlon.

Pum U, Pu1 is a Hamilton cycle of

Thus, 7o = m — 4 must hold. Now we consider separately the following
cases.

Case 1. There exists a vertex us € {ug,...,un—5} adjacent to ul

m—4*
We have N (um—3) = {uy,...,u,,_3, u$73}\{uso}. Since m > 8 there exists
x €{2,....,m—4} \ {t,s0}. Then u, is adjacent t0 tm-3 1 because x 7é 50.

If2 <z <t-—1, then C = utu 4<]3ut ulPu Uy — 3Pu 4vnPum 3

uml_jut IS a Hamilton cycle of G. If t+ 1 <z < m—4, then C =
—

utu Pum + Pvnu++ Pum 3U, Pu:“ul Pu, is a Hamilton cycle of G.

We have got a contradictlon in all possible situations. Thus, this case cannot
oceur.
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Case 2. No vertices u; € {uz,...,un_5} are adjacent to u,, _,.
In this case, for j € {2,...,m — 5}, since deg(u;) = m —4 and N(u;) C
{uy,... ,uj_,u;', . 7“2—3} by Lemma 15, we have

N(uj;) = {u;,...,u;,uj,...,u;%),umf?, .
By applying Lemma 16 for ¢ = 2,...,m — 6 and b = m — 5 we get uf =
— + —

U yene s Upy 6 = U .

We show now that w, . = wu, _, also holds. We have N(uy_3) =
{ug .o yuy, gl 3\ {uso}. If s 7é m — 5, then by applying Lemma 16

fora =m —5 and b = m — 3 we get 10L _5 = U, _4. SO We may assume
now that so = m — 5. With this assumption we have u,,_3 is adjacent to

Uy = uf Therefore, 1f um 5 75 U then u%‘% is adjacent to v, and

m—4>
therefore C' = ulu Pu2 Uy — 3Pu++5vnPu _sup is a Hamilton cycle of
+

G, a contradiction. So Up—5 = = u,,_, always holds.

Thus, N(uj) = {uy, ..., u; ;L, coout st Sy={ul ot o ut )
for j € {2,...,m — 5}. Hence, each of the vertices uy,us,...,Uy_5 is ad-
jacent to each of the vertices uf,...,u} .. Since N(um_3) = {uy,...,
U g ut o\ {ug,}, the vertex up,_s is adjacent to each of the Vertices
uy ,...,u8072,uj0,...,u;75. It follows that |[Ny(uf)| > 4,...,|Ni(ul )| >
4,|Np(uf)l > 4,...,|Ni(u},_5)| > 4. By Theorem 9, uj, ... ,u;roﬂ, jo, e
u$75 are adjacent to all vertices of G. In particular, they are adjacent to
Um—4. Further, since m > 8 and all ul, ..., Um—5 are adjacent to u;ro_l, we
have [N (uf _,)| > 3. Now if [Nj(u], ;)| > 3, then again by Theorem 9 the

Jr
vertex u S0

_, is adjacent to all vertices of GG. In particular, it is adjacent to
Um—s. So {uf, ... ul 2} C N(up—y). (We recall that w5 is adjacent to
all vertices of G by Claim 3.4.) Therefore deg(u.,—4) > m — 3, contradicting
our assumption about G. Thus, |Ny(u] + _1)] = 3. Since {uy,...,um-5} C
Ny(uf ug 1), this can happen only if m = 8 and Np(uf ug q) = {ul,u2,U3}.

Hence, “:071 € B3. Let u € Ny(v,) be such that u # u Then
u € N[(ujofl) and therefore deg(u) = m — 4 by our assumption about

m3

G. On the other hand, since uf =Uy,... ,u+ 5 = u,,_, as we have shown
above, u 1s either in um 4Pum 5 or, if u+++ % Uy, In u+++ Puv, . So, both
u™ and uT are different from uf, . 7“:072’ jo, e ,u$75 and “;—3- But
all the vertices uj, ... ,u;':)ﬂ,u;t), . ,u275,u;73,u_and ut are in N(u).
(Recall that ui", . ,u;':)ﬂ,u;t), . ,u$75 and “;—3 are adjacent to all ver-

tices of G.) Hence, deg(u) > m — 3, contradicting deg(u) = m — 4 obtained
before.
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Thus, Case 2 also cannot occur. This means our assumption that u;74 #+
u,,_s is false.
The proof of Claim 3.5 is complete. [ |

Claim 3.6. uf = U, .

Proof. Let Q = tup— 3Pu1u ?vn. Then @ is a Hamilton path in
G with the endvertices u,,—3 and v,. In 6 = Um_3...Uy, the vertices
U1, ..., Un_3 of Ny(v,) appear in the reverse order of their indices. So, if v
and v~ are still the successor and the predecessor of a Vertex v, respectively,
with respect to P then the first subpath Q1 of Q is up— 3Pum 4 -+ -, the
(m —4)-th subpath Qr—a of Q is us Pu1 and the (m — 3)-th subpath Q;,—3
—
of Q) is ulu _s Pv,. Since u,,_3 is adjacent to u _g, the path @ can play
the role of P in the discussion of Claim 3.5. Therefore by exchanging the

m—3

+
roles of u; and u(y,—3)—(j—1), U; * and u(m 3)-(j-1)7 Y and w, 3)—(j—1)
ro and sg, respectively, we can repeat arguments in Clalm 3.5 to show that
+
Uy = Uy . [ |

Now we complete the proof of Lemma 17. By Claims 3.5 and 3.6, um 4=
u,,_5 and ul = Uy . Therefore by Claim 3.2 there is a subscrlpt Jo such
that 2 < jo < m—>5and u]O #+ (R Then both u++ and u; ~ ; are adjacent
to vy,.

Assume that u1 is adjacent to zﬂL 4 If Ujoyq 18 adjacent to uy,_s,

]0+

then C = ulu Pu] L 1Um— 3Pvnu] +1Pu1 is a Hamilton cycle of G, a
contradiction. Thus U4y cannot be adjacent to u,,—3. Therefore, since
deg(um—3) = m—4 and N(upm—3) C {uy,...,u,,

= m_?(,,_u:;_g}, the_)vertex Uyp—3
must be adjacent to uj . Now Q=u Puj um—3 Pujou;k?) Pu, can play
the role of P in Claim 3.5. So we can get a contradiction as in the proof of
Claim 3.5. Hence, the assumption that u1 is adjacent to u%i 4 1s false.
Thus, u; is not adjacent to um 4 L€, T = m — 4. This means
that u; is adjacent to each of u] ,...,u"’ 5 and um 3. By Claim 3.6,
uf = u; Therefore u;,—3 cannot be adjacent to u; because otherwise C' =

=+

«—
ulrfL Pu1 U —3 Pu Un, Pu;ﬁg}ul would be a Hamilton cycle of G, a contra-

dlctron. Thus, um_g is adjacent to each of vertices us,...,u,,_5 and um 3
Therefore, if jo > 2, then C' = uy Pu; w3 Pul to, Pub_ujoul
erefore, if jo > 2, then C' = w1 Puj tum—3Puj v um73ujouj0i1 is a
Hamilton cycle of G, a contradiction; and if jo = 2, then C' = ulu;Pum,g,
Ug ugu 3Pvnu3 Pu1 is a Hamilton cycle of GG, a contradiction again.
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This final contradiction shows the assumption that G does not satisfy the
last conclusion of Lemma 17 is false.
The proof of Lemma 17 is complete. [ |

Lemma 18. Let G = S(I U K, E) be a mazimal nonhamiltonian Burkard-
Hammer graph with m = |I| > 7,n = |K| and §(G) = |I| — 4. Furthermore,
let G possess a vertex v € Bs such that some vertex w € Ni(v) = I\ Ny(v)
has deg(u) > |I| — 3. Then G is isomorphic to the expansion H*'[Ga,v}]
where t = |K| — |I| + 5 and G2 = S(I2 U Ka, E3) is a complete split graph
with |Ks| — 1 = |Is] = |I| = 5.

Proof. By Lemma 11, without loss of generality, we may assume here that
K = N(I). Let P, u; and v, be as in Lemma 12. Set u,, = v,, € I and let
the vertices uq,uo, ..., uy_3 of I and the subpaths Py, Py, ..., P,,_3 of P be
defined as before Lemma 13. By the assumption of our lemma, without loss
of generality, we may assume that u; and v,, are such that

deg(uy) > m — 3.
Together with Lemma 13, this implies the following Claim.

Claim 3.7. N(u1) = {uf,ud, ..., ul 1.

m—3

By Lemma 14 and Claim 3.7, for any j € {1,2,...,m—3} we have deg(u;) <
m — 3. But deg(u;) > §(G) = m — 4. It follows that deg(u;) = m —4 or
m — 3 for any j € {1,2,...,m — 3}. By Lemma 15,

N(uj;) C{uy,ug,... ,u;,uj,u;rﬂ, coout gb

forj=2,3,...,m—3.

Claim 3.8. There exists a number jy € {1,2,...,m — 4} such that u;; #

(O but Ujosq = Ujy oy Upy_g = Uy 3.

Proof. Suppose that u;r = ujy, for each j € {1,2,...,m — 4}. Then for

I' = {uy,u2,... ,Up—3}, by Claim 3.7 and N(u;) C {u;,ug,...,uj_,u;,
u;LH,..., u$73} for each j = 2,3,...,m — 3 just proved above, we have

NI = {uf,ug,...,ul _3}. So [N(I')| = |I|, contradicting Lemma 6.
This means that Claim 3.8 must hold. [ ]
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We have U;:)+’uj?)11 & Ni(v,) = {u1,...,um—3}. Therefore, both u;g‘L and
U are adjacent to v,. The reader should remember this because later we
frequently use it, without mentioning it, to construct a Hamilton cycle in a
graph G.

Claim 3.9. At least one of vertices us or u,, 4 is adjacent to u;;_?,.

Proof. Suppose, on the contrary, that neither us nor w,,_4 is adjacent to

u 5. Then since deg(u;) > m — 4 and N(u;) C {uy ,uz, ... U u;L,u;r_H,
Lut gy for j=2,3,...,m— 3, we have
N(ug) = {uy,ug,ug,...,uf .3},
N(um—a) = {ug,uz,...,u, _4ut .}

By applying Lemma 16 with a = 2 and b = m — 4 we get uf = Uy, u; = U .

If there exists € {3,...,m — 5} such that u} # u_ , then u}f* is adja-

cent to vy,. So since deg(u;) > m —4 > 3 for every j € {1,2,...,m — 3},
—

+Pusut  Po.utt —a i -
C = wu; Puogu, _, Pv,ul™ Pupy_quyup is a Hamilton cycle of G, con-

tradicting the nonhamiltonicity of G. Thus, we also have u; = uZ,uI =
Ug ... ,u;75 = u,,_,. It follows that jo = m — 4 and therefore uﬁ;l is

adjacent to vy,.
. . _ . + _ - o+
If up,—3 is adjacent to u, , then since u] = uy, C' = Up—3uy Pu,, _,u1

ul ?v ul T ]_3>u i Hamilt le of G tradicti S
3 Pun m—3 is a Hamilton cycle of GG, a contradiction. So u.,_3

m—4

is not adjacent to uy . It follows that N(upm—3) = {uz,uy,...,u, 5,u’ 5}
because deg(um—3) > m — 4 and N(upm—3) C {uy,uz,...,u s,ut 5}
Since m > 7 and uf =Uy,... ,U$75 =u,, 4, we always have uf = u, and
uf = uz. Therefore, C = u CPut fuput P P

2 3 ’ m—3Ug L7 Up, g U2y ULy 587 Unlp g £7Um—3
is a Hamilton cycle of G, a contradiction again. The proof of Claim 3.9 is
complete. -

We continue the proof of Lemma 18. If u:;tg € K, then C = ulu;;_?,(]?
U +1uﬁ£3?vnu;0;1<]3u1 is a Hamilton cycle of GG, contradicting the non-
hamiltonicity of G. So u,}' T, € I. It follows that |Ny(u' _5)| > 4 because
ul,um,g,u;t:3 and at least one of vertices us or u,,_4 by Claim 3.9 are
in Ny(u}_3). By Theorem 9, Ny(u) ) =1, ie., ul 5 is adjacent to all
vertices of G.

If u,,—3 is adjacent to u, then by applying Lemma 16 with a = 2
and b = m — 3 we get u = uy,uj = ug. Therefore, jo > 3 and C =
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ulu Pu2 U —3 PuJﬁLv,ﬁl3 u$73u1 is a Hamilton cycle of G, a contradiction.
Thus, Um—3 18 NOt adJacent to u, . Hence N(up—3) = {us,uy,...,u,, s,
ut 5} because deg(um,—3) > m —4 and N(up—3) C {uy,uz,uy,...,u, 3,
u;_?,}. By applying now Lemma 16 with a =3,..., m—4and b=m — 3
we get u; = ug,ug,f = UA:7---7“7J7F1—4 = Uy, _3-

Thus, jo =1.If u; is adjacent to some u; with j € {3,4,...,m—3} then
C = ujuy Pu _qu1 Pu2 vnPuj is a Hamilton cycle of G, a contradlctlon

So u, is not adJacent to any vertices us,uq,...,Um—3. It follows that for
j=3,4,...,m—3,

N(uy) = {ug,uj,...,uf 5}
because deg(u;) > m — 4 and N(uj) C{uy,ug,... uj, ;r, coout ok
We have proved before that u g€l If u++3 =Up =0, and Uy, has
no neighbours in P; = ulPu2 , then Bg(I’ U K',FE') with I' = {uy,us, ...,
Um—3,Um } and K' = N(I')\ {u2 ,ua,...,ul 5} has three H-components,

namely B ({u }U{ut b, {urui }), Bo({uz Uy b, {uzuz }) and Be({um}U

{vn}, {umvy,}) and m — 5 T-components, each of which consists of a single
vertex from {us, ..., un,—3}. Therefore, k(I', K') + max {1, W} =m—
5+ 3. But [IN(I")| - |K'| = [{u ,u],...,u} _3}| =m—4. This contradicts
the fact that G is a Burkard-Hammer graph. Thus, if uﬁi:a = Uy, then
Uy, has to have a neighbour v in P. If v # u{“ then v~ is adjacent to v,

— —
and therefore C' = umqu+ aUu1 Pv~vpuy, is a Hamilton cycle of G. If

v = ui" then vt is adjacent to v,, and therefore C' = umvulu PU UnUm

is a Hamilton cycle of G. We have got a contradlctlon in any 31tuat10ns
R1 = u1 Pu2 and R2 = Up— 2P
UpUy—9. Then R1 has at least two vertices and R2 is a cycle of length at
least 4.

Thus, u 75 Uy St Upp—9 = um 3

Claim 3.10. If there exist a vertex y of the path }?1) and a vertex z of the
cycle 1?2) such that either both yz and y* 2" are edges of G or both yz* and
y+z are edges of G, where y™ and 2™ are the successor of y and the successor
of z with respect to 1?1) and I?; , respectively, then G has a Hamilton cycle.

Proof Suppose that both Yz and y*2T are edges of G. If z # v, then
C = yPulu Py z*Pvnum ngy is a Hamilton cycle of G. If z = v,,
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then z* = u,,_o. Therefore, C' = y?uluxf?)(ﬁy‘kum,g?vny is a Hamilton
cycle of G.

If both yz' and y Tz are edges of G, then Claim 3.10 can be proved
similarly. The proof of Claim 3.10 is complete. [

Let u,,—1 be the remaining vertex of I. Then either u,,_1 € ]?{ or Upm—1 €
—
Rs.

— —

If w1 € Ry then all vertices of Ry are in K. Therefore, by using
Claim 3.10, it is not difficult to see that_)u:;_Q = U, 1,U,_; = U, and
Up—2, Um—1, Uy have no neighbours in Ry. Take I' = I,K' = N(I') \
{ug,uf,...,u} _5}. Then it is not difficult to see as before that k(I’, K') =

m —5 and h(I',K’') = 3. Therefore, k(I', K') +max{1,—h(p2’K/)} =m—
5+ %7 IN(I')| — |K'| = ‘{U;U;,r,...,u;_g}] = m — 4. It follows that

k(I'K') + max{l, w} > |[N(I')| — |K'|, contradicting the fact that

G is a Burkard-Hammer graph. Thus, u,,—1 cannot be a vertex of ]?; and
therefore u,,—1 € 1?1) .

Suppose that u:kz = u,,. Since v, is adjacent to every vertex of I?{ ,
again by using Claim 3.10, we see that u,,_s and u,, are not adjacent to any
vertices of ]?{ Take I' = {uy,ug,..., Um—3, Um—2,Un} and K' = N(I')\
{ug,us,...,ul _3}. Then as before it is not difficult to check that G does
not satisfy the Burkard-Hammer condition with respect to these I’ and K’,
a contradiction. Thus, u%d # u, and therefore again by Claim 3.10 we
must have uj =wu,_ _;,ul | =wu; and uy,_; is not adjacent to any vertices
in u%d
since v~ € K,

— . C ++ B
Pu,,. Further, if u,,_o is adjacent to a vertex v € u, "5 Pu,, then

4 <— <— - _ 4
C =uu,, 5 Pupm_10, Pouym—o Pv~ul ug

is a Hamilton cycle of G. Similarly, if w,, is adjacent to a vertex v €

ut  Pu=" then since v+ € K
m—2 m )

+ P Doy Patot
C = uiu,, 5 PUpm_1VpUm—2 Py, Pv"u]u

is a Hamilton cycle of G. We have got a contradiction in both situations.
—
Thus, in Ry the vertex u,,_o is adjacent to only “;—2 and v, and the vertex

U, is adjacent to only u,, and v,. It follows that if u%dﬁu; has more
than two vertices, then since K = N(I) (by our assumption), N(ui) =



A CLASSIFICATION FOR MAXIMAL NONHAMILTONIAN ... 87

{uf,‘. ~ut s} (by Claim 3.7? and N(uj) C {uy,... ,u;,u;r, VAR
for j = 2,3,...,m — 3 (by Claim 3.7 and Lemma 15) are true, the vertex
u%‘b must be adjacent to u,;,—1. By Claim 3.10, G has a Hamilton cycle,

contradicting the nonhamiltonicity of G. Thus, u*, = u_,. It follows that

m—2
n=|K|=|N(I)|=m+1and

I = {uy,ug,..., um},

B A T
K = {uf,uy,...,;u} 5,0 o, 1, Uy, Uy}

Let H = S(I UK, E(H)) be a split graph with

Ng(ur) = {uf,ug,...,ut 3},

Nu(uz) = {ug,ug, ..ty 3,1},

Np(uz) = Npg(ug) = -+ = Ny (um-3) = {ug ,uz, ..., up,_3},
Ny (um—2) = {u;,ug, ... ,u;73,u$72,vm+1},
N (um—1) = {uy ,ug,. .. g, Uy, 1, U},

Ny (upy) = {ug,uf,...,ub s u,, Omi1}

Set Iy = {ug, uq, ..., Um-3}, Ko = {u;,u:}f, . ,u:;_g} and Go = H[I[;UKs).
Then Go is a complete split graph S(Ia U Ky, Eo) with |Ks| — 1 = |I2] =
|I|—5. Further, let H*% = S(I*UK*, E(H*®)) with I* = {u}, u}, u}, u}, ui}
and K* = {v],v5,vs, v, v, v} be a split graph defined in Table 1 and
H' = H*[Gy,v3]. Then H’ is a split graph S(I' U K', E') with I' =
{uf, uy, ul, uf, ub, ug, ug, - . um—-3} and K’ = {v},v3, v}, v¢, 05, ud,ud, ...
u_5}. Consider the following mapping ¢ : V(H) — V(H') with

)

o(ur) = uy, p(uz) = uy, p(uj) = u; for j =3,4,...,m—3,
P(um—2) = u3, p(um—1) = ug, p(um) = us,

o(uf) = vf,gp(uj) :uj for j=2,3,...,m—3,
SO(“;;—Q) = U§7 (,O(U;;_l) = Uzv (,O(U;l) = 7%7 @(Um-i-l) = Ug'

It is not difficult to see that ¢ is an isomorphism between the graphs H and
H'. By Theorem 10, H’ is a maximal nonhamiltonian Burkard-Hammer
graph. So, by H = H', H=S(I UK, E(H)) also is a maximal nonhamilto-
nian Burkard-Hammer graph.
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By considerations before we see that Ng(u;) C Npg(u;) for every i =
1,2,...,m, ie, G =S(IUK,FE) is a spanning subgraph of H = S(I U K,
E(H)). But G is a maximal nonhamiltonian Burkard-Hammer graph by our
assumption. So GG must coincide with H and therefore GG is isomorphic to
H' = H*5[Gq,v3].

The proof of Lemma 18 is complete. [ |

From Theorem 10 and Lemmas 17 and 18 we can obtain immediately The-
orem 1 formulated in the introduction, which gives us the classification of
maximal nonhamiltonian Burkard-Hammer graphs G = S(I U K, FE) with
|I| # 6,7 and 0(G) = |I| — 4.
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