TREES WITH EQUAL TOTAL DOMINATION AND TOTAL RESTRAINED DOMINATION NUMBERS

Xue-Gang Chen*
Department of Mathematics
North China Electric Power University
Beijing 102206, China
e-mail: gxc_xdm@163.com
Wai Chee Shiu
Department of Mathematics
Hong Kong Baptist University
224 Waterloo Road, Kowloon Tong, Hong Kong, China
AND
Hong-Yu Chen
The College of Information Science and Engineering
Shandong University of Science and Technology
Qingdao, Shandong Province 266510, China

Abstract

For a graph $G=(V, E)$, a set $S \subseteq V(G)$ is a total dominating set if it is dominating and both $\langle S\rangle$ has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number. A set $S \subseteq V(G)$ is a total restrained dominating set if it is total dominating and $\langle V(G)-S\rangle$ has no isolated vertices. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number. We characterize all trees for which total domination and total restrained domination numbers are the same. Keywords: total domination number, total restrained domination number, tree.

2000 Mathematics Subject Classification: 05C69.

[^0]
1. Introduction

By a graph we mean a finite, undirected graph without loops or multiple edges. Terms not defined here are used in the sense of Arumugam [1].

Let $G=(V, E)$ be a simple graph of order n. The degree, neighborhood and closed neighborhood of a vertex v in the graph G are denoted by $d_{G}(v)$, $N_{G}(v)$ and $N_{G}[v]=N_{G}(v) \cup\{v\}$, respectively. For a subset S of $V, N_{G}(S)=$ $\bigcup_{v \in S} N_{G}(v)$ and $N_{G}[S]=N_{G}(S) \cup S$. The graph induced by $S \subseteq V$ is denoted by $\langle S\rangle$. The minimum degree and maximum degree of the graph G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. The $\operatorname{diameter} \operatorname{diam}(G)$ of a connected graph G is the maximum distance between two vertices of G, that is $\operatorname{diam}(G)=\max _{u, v \in V(G)} d_{G}(u, v)$. Let P_{n} denote a path with n vertices. Let $K_{1, r}$ denote the star with $r+1$ vertices. Define $K_{1, r, 4}$ as follows: for each edge of $K_{1, r}$, we subdivide by two vertices. The vertex of degree r is called the central vertex of $K_{1, r, 4}$. Let η be a family of graphs and $\eta=\left\{K_{1, r, 4} \mid r \geq 1\right.$ and r is an integer $\}$.

A subset S of V is called a dominating set if every vertex in $V-S$ is adjacent to some vertex in S. The domination number $\gamma(G)$ of G is the minimum cardinality taken over all dominating sets of G. A set $S \subseteq$ $V(G)$ is a total dominating set if it is dominating and $\langle S\rangle$ has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number and is denoted by $\gamma_{t}(G)$. Cockayne et al. [6] studied total dominating functions in trees: minimality and convexity.

The total restrained domination number of a graph was defined by D. Ma et al. in [4]. A set $S \subseteq V(G)$ is a total restrained dominating set if it is total dominating and $\langle V(G)-S\rangle$ has no isolated vertices. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number and is denoted by $\gamma_{r}^{t}(G)$.

A total dominating set S with cardinality $\gamma_{t}(G)$ is called a γ_{t}-set. A total restrained dominating set S with cardinality γ_{r}^{t} is called a γ_{r}^{t}-set. Let $S \subset V(G)$ and $x \in S$, we say that x has a private neighbour (with respect to S) if there is a vertex in $V(G)-S$ whose only neighbour in S is x. Let $P N(x, S)$ denote the private neighbours set of x with respect to S.

A vertex of degree one is called a leaf. A vertex v of G is called a support if it is adjacent to a leaf. If T is a tree, $L(T)$ and $S(T)$ denote the set of leaves and supports, respectively. Any vertex of degree greater than one is called an internal vertex.

For any graph theoretical parameters λ and μ, we define G to be (λ, μ)-graph if $\lambda(G)=\mu(G)$. In this paper we provide a constructive characterization of $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-trees.

2. A Characterization of $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-trees

As a consequence of the definition of total restrained domination number, we have the following observations.

Observation 1. Let G be a graph without isolated vertices. Then
(i) every leaf belongs to every γ_{r}^{t}-set;
(ii) every support belongs to every γ_{r}^{t}-set;
(iii) $\gamma_{t}(G) \leq \gamma_{r}^{t}(G)$.

Observation 2. Let T be $a\left(\gamma_{t}, \gamma_{r}^{t}\right)$-tree. Then each $\gamma_{r}^{t}(T)$-set is a $\gamma_{t}(T)$-set.
Let τ_{1} and τ_{2} be the following two operations defined on a tree T.

- Operation τ_{1}. Assume $x \in V(T)$ is a leaf or support. Then add one or more trees of η and the edges between x and each central vertex.
- Operation τ_{2}. Assume $x \in N(S(T))-L(T)$. Then add one or more paths P_{3} and the edges between x and one leaf of each P_{3}.

Let τ be the family of trees such that $\tau=\left\{T: T\right.$ is obtained from P_{6} by a finite sequence of operations τ_{1} or $\left.\tau_{2}\right\} \cup\left\{P_{2}, P_{6}\right\}$. We show first that each tree in the family τ has equal total domination number and total restrained domination number.

Lemma 1. If T belongs to the family τ, then T is a $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-tree.
Proof. We proceed by induction on the number of operations $s(T)$ required to construct the tree T. If $s(T)=0$, then $T \in\left\{P_{2}, P_{6}\right\}$ and clearly T is a $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-tree. Assume now that T is a tree with $s(T)=k$ for some positive integer k and each tree $T^{\prime} \in \tau$ with $s\left(T^{\prime}\right)<k$ is a $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-tree. Then T can be obtained from a tree T^{\prime} belonging to τ by operation τ_{1} or τ_{2}. We now consider two possibilities depending on whether T is obtained from T^{\prime} by operation τ_{1} or τ_{2}.

Case 1. T is obtained from T^{\prime} by operation τ_{1}. Without loss of generality, we can assume that T is obtained from T^{\prime} by adding k trees $K_{1, r_{1}, 4}, K_{1, r_{2}, 4}, \ldots, K_{1, r_{k}, 4}$ of η and the edges between x and each central vertex, where $r_{1} \leq r_{2} \leq \cdots \leq r_{k}$. It is obvious that $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+$ $2 \sum_{1 \leq i \leq k} r_{i}$. Let D be a γ_{t}-set of T such that $D \cap L(T)=\emptyset$. Then

Case 1.1. x is a support of T^{\prime}. Then $x \in D^{\prime}$. If $N_{T^{\prime}}(x) \cap D^{\prime} \neq \emptyset$, then D^{\prime} is a total dominating set of T^{\prime}. So $\gamma_{t}\left(T^{\prime}\right) \leq\left|D^{\prime}\right| \leq \gamma_{t}(T)-2 \sum_{1 \leq i \leq k} r_{i}$. If $N_{T^{\prime}}(x) \cap D^{\prime}=\emptyset$, then there exists a tree $K_{1, r_{i}, 4}$ such that $\left.\mid D \cap K_{1, r_{i}, 4}\right\rceil \geq 2 r_{i}+1$ and its central vertex belongs to D. Let $y \in N_{T^{\prime}}(x)$ and $D^{\prime \prime}=D^{\prime} \cup\{y\}$. Then $D^{\prime \prime}$ is a total dominating set of T^{\prime}. So $\gamma_{t}\left(T^{\prime}\right) \leq\left|D^{\prime \prime}\right|=\left|D^{\prime}\right|+1 \leq$ $\gamma_{t}(T)-2 \sum_{1 \leq i \leq k} r_{i}$.

Case 1.2. x is a leaf of T^{\prime}. Let $y \in N_{T^{\prime}}(x)$. If $y \in D$, then D^{\prime} is a total dominating set of T^{\prime}. Suppose $y \notin D$. Then there exists a tree $K_{1, r_{i}, 4}$ such that $\left|D \cap K_{1, r_{i}, 4}\right| \geq 2 r_{i}+1$ and its central vertex belongs to D. Let $D^{\prime \prime}=D^{\prime} \cup\{y\}$. Then $D^{\prime \prime}$ is a total dominating set of T^{\prime}. So $\gamma_{t}\left(T^{\prime}\right) \leq\left|D^{\prime \prime}\right|=\left|D^{\prime}\right|+1 \leq \gamma_{t}(T)-2 \sum_{1 \leq i \leq k} r_{i}$.

By Case 1.1 and 1.2, $\gamma_{t}\left(T^{\prime}\right) \leq \gamma_{t}(\bar{T})-2 \sum_{1 \leq i \leq k} r_{i}$. Hence, $\gamma_{t}(T)=$ $\gamma_{t}\left(T^{\prime}\right)+2 \sum_{1 \leq i \leq k} r_{i}$. It is obvious that $\gamma_{r}^{t}(T) \leq \gamma_{r}^{t}\left(T^{\prime}\right)+2 \sum_{1 \leq i \leq k} r_{i}$. Since $\gamma_{r}^{t}\left(T^{\prime}\right)+2 \sum_{1 \leq i \leq k} r_{i}=\gamma_{t}\left(T^{\prime}\right)+2 \sum_{1 \leq i \leq k} r_{i}=\gamma_{t}(T) \leq \gamma_{r}^{t}(T)$. Hence $\gamma_{r}^{t}(T)=$ $\gamma_{r}^{t}\left(T^{\prime}\right)+2 \sum_{1 \leq i \leq k}^{-i \leq k} r_{i}$. So $\gamma_{t}(T)=\gamma_{r}^{t}(\bar{T})$.

Case 2. T is obtained from T^{\prime} by operation τ_{2}. Without loss of generality, we can assume that T is obtained from T^{\prime} by adding paths $v_{1 j}, v_{2 j}, v_{3 j}$ and the edges between x and $v_{1 j}$ for $j=1,2, \cdots, k$. It is obvious that $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+2 k$. Let D be a γ_{t}-set of T such that $D \cap L(T)=\emptyset$. Then $v_{1 j}, v_{2 j} \in D$. Let $D^{\prime}=D \cap V\left(T^{\prime}\right)$. Then D^{\prime} is a total dominating set of T^{\prime}. So $\gamma_{t}\left(T^{\prime}\right) \leq \gamma_{t}(T)-2 k$. Hence $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+2 k$. Let $D^{\prime \prime}$ be a γ_{r}^{t}-set of T^{\prime}. Since T^{\prime} is a $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-tree, it follows that $x \notin$ $D^{\prime \prime}$. Otherwise, assume $N_{T^{\prime}}(x) \cap S\left(T^{\prime}\right)=\{y\}$ and $N_{T^{\prime}}(y) \cap L\left(T^{\prime}\right)=$ $\{z\}$. Then $D^{\prime \prime}-\{z\}$ is a total dominating set of T^{\prime} with cardinality less than $\left|D^{\prime \prime}\right|$, which is a contradiction. So, $\gamma_{r}^{t}(T) \leq \gamma_{r}^{t}\left(T^{\prime}\right)+2 k$. Since $\gamma_{r}^{t}\left(T^{\prime}\right)+2 k=\gamma_{t}\left(T^{\prime}\right)+2 k=\gamma_{t}(T) \leq \gamma_{r}^{t}(T)$. Hence $\gamma_{r}^{t}(T)=\gamma_{r}^{t}\left(T^{\prime}\right)+2 k$. So $\gamma_{t}(T)=\gamma_{r}^{t}(T)$.

We show next that every $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-tree belongs to the family τ.

Lemma 2. Let T be $a\left(\gamma_{t}, \gamma_{r}^{t}\right)$-tree. Then
(i) for each support $v \in S(T),|N(v) \cap L(T)|=1$;
(ii) for any two supports $u, v \in S(T), d(u, v) \geq 3$.

Proof. (i) Suppose that there exists a support v such that $|N(v) \cap L(T)|$ ≥ 2. Let $N(v) \cap L(T)=\left\{v_{1}, \ldots, v_{k}\right\}$ where $k \geq 2$. Let D be a γ_{r}^{t}-set of T. Then, by Observation 1 , it follows that $D-\left\{v_{2}, \ldots, v_{k}\right\}$ is a total dominating set of T with cardinality less than $\gamma_{t}(T)$, which is a contradiction. Hence, $|N(v) \cap L(T)|=1$ for each support $v \in S(T)$.
(ii) Suppose that there exist two supports u and v such that $d(u, v) \leq 2$. Let $u_{1} \in N(u) \cap L(T)$ and $v_{1} \in N(v) \cap L(T)$. Let D be a γ_{r}^{t}-set of T. If u is adjacent to v, then, by Observation 1, it follows that $D-\left\{u_{1}\right\}$ is a total dominating set of T with cardinality less than $\gamma_{t}(T)$, which is a contradiction. Suppose $d(u, v)=2$. Assume $w \in N(u) \cap N(v)$. Then by Observation 1, it follows that $\left(D-\left\{u_{1}, v_{1}\right\}\right) \cup\{w\}$ is a total dominating set of T with cardinality less than $\gamma_{t}(T)$, which is a contradiction. Hence, $d(u, v) \geq 3$ for any two supports $u, v \in S(T)$.

Lemma 3. If T is a $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-tree, then T belongs to the family τ.
$\boldsymbol{P r o o f}$. Let T be a $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-tree. If $\operatorname{diam}(T) \leq 5$, then T is P_{2} or P_{6}. It is clear that the statement is true. For this reason, we only consider only trees T with $\operatorname{diam}(T) \geq 6$.

Let T be a $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-tree and assume that the result holds for all trees on $n(T)-1$ and fewer vertices. We proceed by induction on the number of vertices of a $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-tree. Let $P=\left(v_{0}, v_{1}, \ldots, v_{l}\right), l \geq 6$, be a longest path in T and let D be a $\gamma_{r}^{t}(T)$-set. Then $v_{0}, v_{1} \in D$. By Lemma 2, it follows that $d\left(v_{1}\right)=d\left(v_{2}\right)=2$. It is obvious that $v_{2}, v_{3} \notin D$. Otherwise $D-\left\{v_{0}\right\}$ is a total dominating set with cardinality less than $|D|$, which is a contradiction.

Now we have the following claim.
Claim 1. $\left|N_{T}\left(v_{3}\right) \cap D\right|=1$.
Proof. Without loss of generality, we can assume $\left|N_{T}\left(v_{3}\right) \cap D\right|=t$ and $t>1$. Then $N_{T}\left(v_{3}\right) \cap D \subseteq S(T) \cup\left\{v_{4}\right\}$. By Lemma $2,\left|N_{T}\left(v_{3}\right) \cap D \cap S(T)\right|=1$. So, $t=2$. We can assume $N_{T}\left(v_{3}\right) \cap D=\left\{v_{31}, v_{4}\right\}$, where $v_{31} \in S(T)$. By Lemma 2, it is easy to prove that $v_{5} \in D$. Let $A_{1}=N_{T}\left(v_{5}\right)-\left\{v_{4}\right\}$.

Then for any $v \in A_{1}, v \notin D$. Otherwise, let T_{1} denote the component of $T-\left\{v_{5}\right\}$ containing v_{4}. Then $\left(D-\left(L\left(T_{1}\right) \cup\left\{v_{4}\right\}\right)\right) \cup\left(N_{T_{1}}\left[S\left(T_{1}\right)\right]-L\left(T_{1}\right)\right)$ is a total dominating set of T with cardinality less than $|D|$, which is a contradiction. Let $B_{1}=N_{T}\left(A_{1}\right) \cap(V(T)-D), A_{2}=N_{T}\left(B_{1}\right) \cap D$ and $B_{2}=N_{T}\left(A_{2}\right) \cap D$. For $i \geq 1$, let $A_{2 i+1}=N_{T}\left(B_{2 i}\right) \cap(V(T)-D), B_{2 i+1}=$ $N_{T}\left(A_{2 i+1}\right) \cap(V(T)-D), A_{2 i+2}=N_{T}\left(B_{2 i+1}\right) \cap D$ and $B_{2 i+2}=N_{T}\left(A_{2 i+2}\right) \cap D$. It is obvious that $\left|B_{2 i+1}\right| \leq\left|A_{2 i+2}\right| \leq\left|B_{2 i+2}\right|$ for $i \geq 0$.

Now we prove that if $N_{T}\left(B_{2 i+2}\right) \cap D-A_{2 i+2} \neq \emptyset$, then $\left|N_{T}(v) \cap D\right| \geq 2$ for any $v \in N_{T}\left(B_{2 i+2}\right) \cap D-A_{2 i+2}$. Otherwise, we can assume t is the maximum i satisfying $N_{T}\left(B_{2 i+2}\right) \cap D-A_{2 i+2} \neq \emptyset$ and there exists a vertex $v \in N_{T}\left(B_{2 i+2}\right) \cap D-A_{2 i+2}$ such that $\left|N_{T}(v) \cap D\right|=1$. Without loss of generality, we can assume that $u \in B_{2 t+2}$ and $u v \in E(T)$.

Define $C_{1}=N_{T}(v) \backslash\{u\}$. Then for any $w \in C_{1}, w \notin D$. Let $D_{1}=$ $N_{T}\left(C_{1}\right) \cap(V(T)-D)$. Let $C_{2}=N_{T}\left(D_{1}\right) \cap D$ and $D_{2}=N_{T}\left(C_{2}\right) \cap D$. For $i \geq 1$, let $C_{2 i+1}=N_{T}\left(D_{2 i}\right) \cap(V(T)-D), D_{2 i+1}=N_{T}\left(C_{2 i+1}\right) \cap(V(T)-D)$, $C_{2 i+2}=N_{T}\left(D_{2 i+1}\right) \cap D$ and $D_{2 i+2}=N_{T}\left(C_{2 i+2}\right) \cap D$. It is obvious that $\left|D_{2 i+1}\right| \leq\left|C_{2 i+2}\right| \leq\left|D_{2 i+2}\right|$ for $i \geq 0$. Let $D^{\prime}=\left(D-\{v\}-\bigcup_{0 \leq i \leq t} D_{2 i+2}\right) \cup$ $\bigcup_{0 \leq i \leq t} D_{2 i+1}$. It is obvious that D^{\prime} is a total dominating set of T with cardinality less than $|D|$, which is a contradiction.

Let $w \in A_{1}$. Let $\bar{D}=\left(D-\left(L\left(T_{1}\right) \cup\left\{v_{4}, v_{5}\right\}\right)-\bigcup_{0 \leq i \leq t} B_{2 i+2}\right) \cup$ $\left.\bigcup_{0 \leq i \leq t} B_{2 i+1} \cup\{w\} \cup\left(N_{T_{1}}\left[S\left(T_{1}\right)\right)\right]-L\left(T_{1}\right)\right)$. It is obvious that \bar{D} is a total dominating set of T with cardinality less than $|D|$, which is a contradiction. Hence, $\left|N_{T}\left(v_{3}\right) \cap D\right|=1$.

By the above claim, we consider the following three cases. Assume $d_{T}\left(v_{4}\right)=j$.

Case 1. $v_{4} \in D$ and $v_{4} \in S(T)$. Let T_{1} denote the component of $T-\left\{v_{4}\right\}$ containing v_{5}. Let $N_{T}\left(v_{4}\right) \cap L(T)=\{l\}$ and $N_{T}\left(v_{4}\right)-\left\{v_{5}, l\right\}=$ $\left\{v_{41}, \cdots, v_{4(j-2)}\right\}$. Denote $T^{\prime}=\left\langle V\left(T_{1}\right) \cup\left\{v_{4}, l\right\}\right\rangle$. Then it is easy to prove that $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+2 \sum_{1 \leq i \leq(j-2)}\left(d_{T}\left(v_{4 i}\right)-1\right)$. It is obvious that $\gamma_{r}^{t}\left(T^{\prime}\right) \leq \gamma_{r}^{t}(T)-2 \sum_{1 \leq i \leq(j-2)}\left(d_{T}\left(v_{4 i}\right)-1\right)$. Since T is a $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-tree, it follows that $\gamma_{r}^{t}(T)=\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+2 \sum_{1 \leq i \leq(j-2)}\left(d_{T}\left(v_{4 i}\right)-1\right) \leq \gamma_{r}^{t}\left(T^{\prime}\right)+$ $2 \sum_{1 \leq i \leq(j-2)}\left(d_{T}\left(v_{4 i}\right)-1\right)$. Hence $\gamma_{r}^{t}(T)=\gamma_{r}^{t}\left(T^{\prime}\right)+2 \sum_{1 \leq i \leq(j-2)}\left(d_{T}\left(v_{4 i}\right)-1\right)$. So $\gamma_{t}\left(T^{\prime}\right)=\gamma_{r}^{t}\left(T^{\prime}\right)$. Consequently, T^{\prime} is a $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-tree and by induction hypothesis, $T^{\prime} \in \tau$. As v_{4} is a support in T^{\prime}, we deduce that T may be obtained from T^{\prime} by operation τ_{1}.

Case 2. $v_{4} \in D$ and $v_{4} \notin S(T)$. Let T_{1} denote the component of $T-\left\{v_{4}\right\}$ containing v_{5}. Then $v_{5} \in D$. Let $N_{T}\left(v_{4}\right)-\left\{v_{5}\right\}=\left\{v_{41}, \cdots, v_{4(j-1))}\right\}$. Denote $T^{\prime}=\left\langle V\left(T_{1}\right) \cup\left\{v_{4}\right\}\right\rangle$. Then it is obvious that $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+$ $2 \sum_{1 \leq i \leq(j-1)}\left(d\left(v_{4 i}\right)-1\right)$. It is obvious that $\gamma_{r}^{t}\left(T^{\prime}\right) \leq \gamma_{r}^{t}(T)-2 \sum_{1 \leq i \leq(j-1)}$ $\left(d\left(v_{4 i}\right)-1\right)$. Since T is a $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-tree, it follows that $\gamma_{r}^{t}(T)=\gamma_{t}(T)=$ $\gamma_{t}\left(T^{\prime}\right)+2 \sum_{1 \leq i \leq(j-1)}\left(d\left(v_{4 i}\right)-1\right) \leq \gamma_{r}^{t}\left(T^{\prime}\right)+2 \sum_{1 \leq i \leq(j-1)}\left(d\left(v_{4 i}\right)-1\right)$. Hence $\gamma_{r}^{t}(T)=\gamma_{r}^{t}\left(T^{\prime}\right)+2 \sum_{1 \leq i \leq(j-1)}\left(d\left(v_{4 i}\right)-1\right)$. So $\gamma_{t}\left(T^{\prime}\right)=\gamma_{r}^{t}\left(T^{\prime}\right)$. Consequently, T^{\prime} is a $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-tree and by induction hypothesis, $T^{\prime} \in \tau$. As v_{4} is a leaf in T^{\prime}, we deduce that T may be obtained from T^{\prime} by operation τ_{1}.

Case 3. $v_{4} \notin D$. Then there exists exactly one vertex $x \in N_{T}\left(v_{3}\right) \cap D$ and x is a support. Assume $N_{T}(x) \cap L(T)=\{l\}$. Let T_{1} denote the component of $T-\left\{v_{3}\right\}$ containing v_{4}. Denote $T^{\prime}=\left\langle V\left(T_{1}\right) \cup\left\{v_{3}, x, l\right\}\right\rangle$. It is obvious that $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+2\left(d_{T}\left(v_{3}\right)-2\right)$. It is obvious that $x, l \in D$. Hence $\gamma_{r}^{t}\left(T^{\prime}\right) \leq \gamma_{r}^{t}(T)-2\left(d_{T}\left(v_{3}\right)-2\right)$. Since T is a $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-tree, it follows that $\gamma_{r}^{t}(T)=\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+2\left(d_{T}\left(v_{3}\right)-2\right) \leq \gamma_{r}^{t}\left(T^{\prime}\right)+2\left(d_{T}\left(v_{3}\right)-2\right)$. Hence $\gamma_{r}^{t}(T)=\gamma_{r}^{t}\left(T^{\prime}\right)+2\left(d_{T}\left(v_{3}\right)-2\right)$. So $\gamma_{t}\left(T^{\prime}\right)=\gamma_{r}^{t}\left(T^{\prime}\right)$. Consequently, T^{\prime} is a $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-tree and by induction hypothesis, $T^{\prime} \in \tau$. As v_{3} is a vertex adjacent to a support in T^{\prime}, we deduce that T may be obtained from T^{\prime} by operation τ_{2}.
As an immediate consequence of Lemmas 2 and 3 we have the following characterization of $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-trees.

Theorem 3. A tree T is a $\left(\gamma_{t}, \gamma_{r}^{t}\right)$-tree if and only if T belongs to the family τ.

References

[1] S. Arumugam and J. Paulraj Joseph, On graphs with equal domination and connected domination numbers, Discrete Math. 206 (1999) 45-49.
[2] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar and L.R. Marcus, Restrained domination in graphs, Discrete Math. 203 (1999) 61-69.
[3] F. Harary and M. Livingston, Characterization of tree with equal domination and independent domination numbers, Congr. Numer. 55 (1986) 121-150.
[4] D. Ma, X. Chen and L. Sun, On total restrained domination in graphs, Czechoslovak Math. J. 55 (2005) 165-173.
[5] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi and L.R. Markus, Restrained domination in trees, Discrete Math. 211 (2000) 1-9.
[6] E.J. Cockayne, C.M. Mynhardt and B. Yu, Total dominating functions in trees: minimality and convexity, J. Graph Theory 19 (1995) 83-92.

Received 22 September 2006
Revised 24 January 2007
Accepted 24 January 2007

[^0]: *Partially Supported by CERG Research Grant Council of Hong Kong and Faculty Research Grant of Hong Kong Baptist University. Supported by Doctoral Research Grant of North China Electric Power University (200722026).

