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Abstract

For a graph G = (V, E), a set S ⊆ V (G) is a total dominating set if
it is dominating and both 〈S〉 has no isolated vertices. The cardinality
of a minimum total dominating set in G is the total domination num-
ber. A set S ⊆ V (G) is a total restrained dominating set if it is total
dominating and 〈V (G) − S〉 has no isolated vertices. The cardinality
of a minimum total restrained dominating set in G is the total re-
strained domination number. We characterize all trees for which total
domination and total restrained domination numbers are the same.
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1. Introduction

By a graph we mean a finite, undirected graph without loops or multiple
edges. Terms not defined here are used in the sense of Arumugam [1].

Let G = (V,E) be a simple graph of order n. The degree, neighborhood
and closed neighborhood of a vertex v in the graph G are denoted by dG(v),
NG(v) and NG[v] = NG(v)∪{v}, respectively. For a subset S of V , NG(S) =⋃

v∈S NG(v) and NG[S] = NG(S) ∪ S. The graph induced by S ⊆ V is
denoted by 〈S〉. The minimum degree and maximum degree of the graph
G are denoted by δ(G) and ∆(G), respectively. The diameter diam(G) of a
connected graph G is the maximum distance between two vertices of G, that
is diam(G) = maxu,v∈V (G) dG(u, v). Let Pn denote a path with n vertices.
Let K1,r denote the star with r+1 vertices. Define K1,r,4 as follows: for each
edge of K1,r, we subdivide by two vertices. The vertex of degree r is called
the central vertex of K1,r,4. Let η be a family of graphs and η = {K1,r,4|r ≥ 1
and r is an integer }.

A subset S of V is called a dominating set if every vertex in V − S
is adjacent to some vertex in S. The domination number γ(G) of G is
the minimum cardinality taken over all dominating sets of G. A set S ⊆
V (G) is a total dominating set if it is dominating and 〈S〉 has no isolated
vertices. The cardinality of a minimum total dominating set in G is the total
domination number and is denoted by γt(G). Cockayne et al. [6] studied
total dominating functions in trees: minimality and convexity.

The total restrained domination number of a graph was defined by D.
Ma et al. in [4]. A set S ⊆ V (G) is a total restrained dominating set if it is
total dominating and 〈V (G) − S〉 has no isolated vertices. The cardinality
of a minimum total restrained dominating set in G is the total restrained
domination number and is denoted by γ t

r(G).
A total dominating set S with cardinality γt(G) is called a γt-set. A

total restrained dominating set S with cardinality γ t
r is called a γt

r-set. Let
S ⊂ V (G) and x ∈ S, we say that x has a private neighbour (with respect
to S) if there is a vertex in V (G) − S whose only neighbour in S is x. Let
PN(x, S) denote the private neighbours set of x with respect to S.

A vertex of degree one is called a leaf. A vertex v of G is called a support
if it is adjacent to a leaf. If T is a tree, L(T ) and S(T ) denote the set of
leaves and supports, respectively. Any vertex of degree greater than one is
called an internal vertex.



Trees with Equal Total Domination and ... 61

For any graph theoretical parameters λ and µ, we define G to be (λ, µ)-graph
if λ(G) = µ(G). In this paper we provide a constructive characterization of
(γt, γ

t
r)-trees.

2. A Characterization of (γt, γ
t
r)-trees

As a consequence of the definition of total restrained domination number,
we have the following observations.

Observation 1. Let G be a graph without isolated vertices. Then

(i) every leaf belongs to every γt
r-set;

(ii) every support belongs to every γ t
r-set;

(iii) γt(G) ≤ γt
r(G).

Observation 2. Let T be a (γt, γ
t
r)-tree. Then each γt

r(T )-set is a γt(T )-set.

Let τ1 and τ2 be the following two operations defined on a tree T .

• Operation τ1. Assume x ∈ V (T ) is a leaf or support. Then add one or
more trees of η and the edges between x and each central vertex.

• Operation τ2. Assume x ∈ N(S(T )) − L(T ). Then add one or more
paths P3 and the edges between x and one leaf of each P3.

Let τ be the family of trees such that τ = {T : T is obtained from P6 by a
finite sequence of operations τ1 or τ2} ∪ {P2, P6}. We show first that each
tree in the family τ has equal total domination number and total restrained
domination number.

Lemma 1. If T belongs to the family τ , then T is a (γt, γ
t
r)-tree.

Proof. We proceed by induction on the number of operations s(T ) required
to construct the tree T . If s(T ) = 0, then T ∈ {P2, P6} and clearly T is a
(γt, γ

t
r)-tree. Assume now that T is a tree with s(T ) = k for some positive

integer k and each tree T ′ ∈ τ with s(T ′) < k is a (γt, γ
t
r)-tree. Then T can

be obtained from a tree T ′ belonging to τ by operation τ1 or τ2. We now
consider two possibilities depending on whether T is obtained from T ′ by
operation τ1 or τ2.
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Case 1. T is obtained from T ′ by operation τ1. Without loss of
generality, we can assume that T is obtained from T ′ by adding k trees
K1,r1,4,K1,r2,4, . . . ,K1,rk,4 of η and the edges between x and each central
vertex, where r1 ≤ r2 ≤ · · · ≤ rk. It is obvious that γt(T ) ≤ γt(T

′) +
2
∑

1≤i≤k ri. Let D be a γt-set of T such that D ∩ L(T ) = ∅. Then
|D ∩ K1,ri,4| ≥ 2ri for each K1,ri,4. Let D′ = D ∩ V (T ′).

Case 1.1. x is a support of T ′. Then x ∈ D′. If NT ′(x) ∩ D′ 6= ∅, then
D′ is a total dominating set of T ′. So γt(T

′) ≤ |D′| ≤ γt(T )−2
∑

1≤i≤k ri. If
NT ′(x)∩D′ = ∅, then there exists a tree K1,ri,4 such that |D∩K1,ri,4| ≥ 2ri+1
and its central vertex belongs to D. Let y ∈ NT ′(x) and D′′ = D′ ∪ {y}.
Then D′′ is a total dominating set of T ′. So γt(T

′) ≤ |D′′| = |D′| + 1 ≤
γt(T ) − 2

∑
1≤i≤k ri.

Case 1.2. x is a leaf of T ′. Let y ∈ NT ′(x). If y ∈ D, then D′ is
a total dominating set of T ′. Suppose y /∈ D. Then there exists a tree
K1,ri,4 such that |D ∩ K1,ri,4| ≥ 2ri + 1 and its central vertex belongs to
D. Let D′′ = D′ ∪ {y}. Then D′′ is a total dominating set of T ′. So
γt(T

′) ≤ |D′′| = |D′| + 1 ≤ γt(T ) − 2
∑

1≤i≤k ri.

By Case 1.1 and 1.2, γt(T
′) ≤ γt(T ) − 2

∑
1≤i≤k ri. Hence, γt(T ) =

γt(T
′) + 2

∑
1≤i≤k ri. It is obvious that γt

r(T ) ≤ γt
r(T

′) + 2
∑

1≤i≤k ri. Since
γt

r(T
′)+2

∑
1≤i≤k ri = γt(T

′)+2
∑

1≤i≤k ri = γt(T ) ≤ γt
r(T ). Hence γt

r(T ) =
γt

r(T
′) + 2

∑
1≤i≤k ri. So γt(T ) = γt

r(T ).

Case 2. T is obtained from T ′ by operation τ2. Without loss of general-
ity, we can assume that T is obtained from T ′ by adding paths v1j , v2j , v3j

and the edges between x and v1j for j = 1, 2, · · · , k. It is obvious that
γt(T ) ≤ γt(T

′) + 2k. Let D be a γt-set of T such that D ∩ L(T ) = ∅.
Then v1j , v2j ∈ D. Let D′ = D ∩ V (T ′). Then D′ is a total domi-
nating set of T ′. So γt(T

′) ≤ γt(T ) − 2k. Hence γt(T ) = γt(T
′) + 2k.

Let D′′ be a γt
r-set of T ′. Since T ′ is a (γt, γ

t
r)-tree, it follows that x /∈

D′′. Otherwise, assume NT ′(x) ∩ S(T ′) = {y} and NT ′(y) ∩ L(T ′) =
{z}. Then D′′ − {z} is a total dominating set of T ′ with cardinality less
than |D′′|, which is a contradiction. So, γ t

r(T ) ≤ γt
r(T

′) + 2k. Since
γt

r(T
′) + 2k = γt(T

′) + 2k = γt(T ) ≤ γt
r(T ). Hence γt

r(T ) = γt
r(T

′) + 2k.
So γt(T ) = γt

r(T ).

We show next that every (γt, γ
t
r)-tree belongs to the family τ .
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Lemma 2. Let T be a (γt, γ
t
r)-tree. Then

(i) for each support v ∈ S(T ), |N(v) ∩ L(T )| = 1;

(ii) for any two supports u, v ∈ S(T ), d(u, v) ≥ 3.

Proof. (i) Suppose that there exists a support v such that |N(v) ∩ L(T )|
≥ 2. Let N(v) ∩ L(T ) = {v1, . . . , vk} where k ≥ 2. Let D be a γt

r-set of T .
Then, by Observation 1, it follows that D−{v2, . . . , vk} is a total dominating
set of T with cardinality less than γt(T ), which is a contradiction. Hence,
|N(v) ∩ L(T )| = 1 for each support v ∈ S(T ).

(ii) Suppose that there exist two supports u and v such that d(u, v) ≤ 2.
Let u1 ∈ N(u) ∩ L(T ) and v1 ∈ N(v) ∩ L(T ). Let D be a γt

r-set of T . If
u is adjacent to v, then, by Observation 1, it follows that D − {u1} is
a total dominating set of T with cardinality less than γt(T ), which is a
contradiction. Suppose d(u, v) = 2. Assume w ∈ N(u) ∩ N(v). Then by
Observation 1, it follows that (D − {u1, v1}) ∪ {w} is a total dominating
set of T with cardinality less than γt(T ), which is a contradiction. Hence,
d(u, v) ≥ 3 for any two supports u, v ∈ S(T ).

Lemma 3. If T is a (γt, γ
t
r)-tree, then T belongs to the family τ .

Proof. Let T be a (γt, γ
t
r)-tree. If diam(T ) ≤ 5, then T is P2 or P6. It is

clear that the statement is true. For this reason, we only consider only trees
T with diam(T ) ≥ 6.

Let T be a (γt, γ
t
r)-tree and assume that the result holds for all trees

on n(T ) − 1 and fewer vertices. We proceed by induction on the number of
vertices of a (γt, γ

t
r)-tree. Let P = (v0, v1, . . . , vl), l ≥ 6, be a longest path in

T and let D be a γt
r(T )-set. Then v0, v1 ∈ D. By Lemma 2, it follows that

d(v1) = d(v2) = 2. It is obvious that v2, v3 /∈ D. Otherwise D − {v0} is a
total dominating set with cardinality less than |D|, which is a contradiction.

Now we have the following claim.

Claim 1. |NT (v3) ∩ D| = 1.

Proof. Without loss of generality, we can assume |NT (v3) ∩ D| = t and
t > 1. Then NT (v3)∩D ⊆ S(T )∪{v4}. By Lemma 2, |NT (v3)∩D∩S(T )| = 1.
So, t = 2. We can assume NT (v3) ∩ D = {v31, v4}, where v31 ∈ S(T ). By
Lemma 2, it is easy to prove that v5 ∈ D. Let A1 = NT (v5) − {v4}.
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Then for any v ∈ A1, v /∈ D. Otherwise, let T1 denote the component of
T − {v5} containing v4. Then (D − (L(T1) ∪ {v4})) ∪ (NT1

[S(T1)] − L(T1))
is a total dominating set of T with cardinality less than |D|, which is a
contradiction. Let B1 = NT (A1) ∩ (V (T ) − D), A2 = NT (B1) ∩ D and
B2 = NT (A2) ∩ D. For i ≥ 1, let A2i+1 = NT (B2i) ∩ (V (T ) − D), B2i+1 =
NT (A2i+1)∩(V (T )−D), A2i+2 = NT (B2i+1)∩D and B2i+2 = NT (A2i+2)∩D.
It is obvious that |B2i+1| ≤ |A2i+2| ≤ |B2i+2| for i ≥ 0.

Now we prove that if NT (B2i+2)∩D−A2i+2 6= ∅, then |NT (v)∩D| ≥ 2
for any v ∈ NT (B2i+2) ∩ D − A2i+2. Otherwise, we can assume t is the
maximum i satisfying NT (B2i+2) ∩D −A2i+2 6= ∅ and there exists a vertex
v ∈ NT (B2i+2) ∩ D − A2i+2 such that |NT (v) ∩ D| = 1. Without loss of
generality, we can assume that u ∈ B2t+2 and uv ∈ E(T ).

Define C1 = NT (v) \ {u}. Then for any w ∈ C1, w /∈ D. Let D1 =
NT (C1) ∩ (V (T ) − D). Let C2 = NT (D1) ∩ D and D2 = NT (C2) ∩ D. For
i ≥ 1, let C2i+1 = NT (D2i)∩ (V (T )−D), D2i+1 = NT (C2i+1)∩ (V (T )−D),
C2i+2 = NT (D2i+1) ∩ D and D2i+2 = NT (C2i+2) ∩ D. It is obvious that
|D2i+1| ≤ |C2i+2| ≤ |D2i+2| for i ≥ 0. Let D′ = (D − {v} −

⋃
0≤i≤t D2i+2) ∪⋃

0≤i≤t D2i+1. It is obvious that D′ is a total dominating set of T with
cardinality less than |D|, which is a contradiction.

Let w ∈ A1. Let D = (D − (L(T1) ∪ {v4, v5}) −
⋃

0≤i≤t B2i+2) ∪
⋃

0≤i≤t B2i+1 ∪ {w} ∪ (NT1
[S(T1))] − L(T1)). It is obvious that D is a total

dominating set of T with cardinality less than |D|, which is a contradiction.
Hence, |NT (v3) ∩ D| = 1.

By the above claim, we consider the following three cases. Assume
dT (v4) = j.

Case 1. v4 ∈ D and v4 ∈ S(T ). Let T1 denote the component of
T − {v4} containing v5. Let NT (v4) ∩ L(T ) = {l} and NT (v4) − {v5, l} =
{v41, · · · , v4(j−2)}. Denote T ′ = 〈V (T1) ∪ {v4, l}〉. Then it is easy to
prove that γt(T ) = γt(T

′) + 2
∑

1≤i≤(j−2)(dT (v4i) − 1). It is obvious that

γt
r(T

′) ≤ γt
r(T ) − 2

∑
1≤i≤(j−2)(dT (v4i) − 1). Since T is a (γt, γ

t
r)-tree, it

follows that γt
r(T ) = γt(T ) = γt(T

′) + 2
∑

1≤i≤(j−2)(dT (v4i) − 1) ≤ γt
r(T

′) +

2
∑

1≤i≤(j−2)(dT (v4i)−1). Hence γt
r(T ) = γt

r(T
′)+2

∑
1≤i≤(j−2)(dT (v4i)−1).

So γt(T
′) = γt

r(T
′). Consequently, T ′ is a (γt, γ

t
r)-tree and by induction hy-

pothesis, T ′ ∈ τ . As v4 is a support in T ′, we deduce that T may be obtained
from T ′ by operation τ1.



Trees with Equal Total Domination and ... 65

Case 2. v4 ∈ D and v4 /∈ S(T ). Let T1 denote the component of T−{v4}
containing v5. Then v5 ∈ D. Let NT (v4) − {v5} = {v41, · · · , v4(j−1))}.
Denote T ′ = 〈V (T1) ∪ {v4}〉. Then it is obvious that γt(T ) = γt(T

′) +
2
∑

1≤i≤(j−1)(d(v4i) − 1). It is obvious that γt
r(T

′) ≤ γt
r(T ) − 2

∑
1≤i≤(j−1)

(d(v4i) − 1). Since T is a (γt, γ
t
r)-tree, it follows that γt

r(T ) = γt(T ) =
γt(T

′)+2
∑

1≤i≤(j−1)(d(v4i)−1) ≤ γt
r(T

′)+2
∑

1≤i≤(j−1)(d(v4i)−1). Hence

γt
r(T ) = γt

r(T
′)+2

∑
1≤i≤(j−1)(d(v4i)−1). So γt(T

′) = γt
r(T

′). Consequently,

T ′ is a (γt, γ
t
r)-tree and by induction hypothesis, T ′ ∈ τ . As v4 is a leaf in

T ′, we deduce that T may be obtained from T ′ by operation τ1.

Case 3. v4 /∈ D. Then there exists exactly one vertex x ∈ NT (v3)∩D and
x is a support. Assume NT (x) ∩ L(T ) = {l}. Let T1 denote the component
of T − {v3} containing v4. Denote T ′ = 〈V (T1) ∪ {v3, x, l}〉. It is obvious
that γt(T ) = γt(T

′) + 2(dT (v3) − 2). It is obvious that x, l ∈ D. Hence
γt

r(T
′) ≤ γt

r(T ) − 2(dT (v3) − 2). Since T is a (γt, γ
t
r)-tree, it follows that

γt
r(T ) = γt(T ) = γt(T

′) + 2(dT (v3) − 2) ≤ γt
r(T

′) + 2(dT (v3) − 2). Hence
γt

r(T ) = γt
r(T

′) + 2(dT (v3) − 2). So γt(T
′) = γt

r(T
′). Consequently, T ′

is a (γt, γ
t
r)-tree and by induction hypothesis, T ′ ∈ τ . As v3 is a vertex

adjacent to a support in T ′, we deduce that T may be obtained from T ′ by
operation τ2.

As an immediate consequence of Lemmas 2 and 3 we have the following
characterization of (γt, γ

t
r)-trees.

Theorem 3. A tree T is a (γt, γ
t
r)-tree if and only if T belongs to the

family τ .
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