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Abstract

Let G be a connected graph and let ¢ : V(G) — {1,2,...,k} be a
coloring of the vertices of G for some positive integer k (where adjacent
vertices may be colored the same). The color code of a vertex v of G
(with respect to c) is the ordered (k+1)-tuple code(v) = (ag, a1, ..., ax)
where ag is the color assigned to v and for 1 < ¢ < k, a; is the number of
vertices adjacent to v that are colored i. The coloring c is called recog-
nizable if distinct vertices have distinct color codes and the recognition
number rn(G) of G is the minimum positive integer k for which G has
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a recognizable k-coloring. Recognition numbers of complete multipar-
tite graphs are determined and characterizations of connected graphs
of order n having recognition numbers n or n — 1 are established. It is
shown that for each pair k,n of integers with 2 < k < n, there exists a
connected graph of order n having recognition number k. Recognition
numbers of cycles, paths, and trees are investigated.

Keywords: recognizable coloring, recognition number.
2000 Mathematics Subject Classification: 05C15, 05C70.

Seventy-five student leaders, 15 freshmen, 15 sophomores, 15 juniors, 15
seniors, and 15 graduate students, have been invited to a banquet. Is it
possible to seat all 75 students around a 75-seat circular table in such a
way that no two students belonging to the same class are seated next to
two students belonging to the same class or the same two classes? Thus
no two freshmen can both be seated next to two juniors, to two freshmen,
to a senior and a graduate student, or to a freshmen and a sophomore, for
example. This question has an affirmative answer, as is shown in Figure 1,

Figure 1. Seating 75 students around a table.
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where 1, 2, 3, 4, 5 represent a freshman, sophomore, junior, senior, graduate
student, respectively. Consequently, every student is uniquely determined
by the class to which he or she belongs and the classes of his or her two
neighbors at the banquet table.

The question asked above suggests a concept and some problems in graph
theory.

1. INTRODUCTION

A basic problem in graph theory concerns finding means to distinguish
the vertices of a connected graph. This has often been accomplished by
means of an edge coloring, which is then sometime referred to as a vertex-
distinguishing or irregular edge coloring.

One way to distinguish the vertices of a graph G was introduced by
Harary and Plantholt [11] where colors were assigned to the edges of G in
such a way that for every two vertices of GG, one of the vertices is incident with
an edge assigned one of these colors that the other vertex is not. Essentially
then each vertex is assigned the set of colors of its incident edges and no
two vertices of G are assigned the same set. Harary and Plantholt referred
to the minimum number of colors needed to accomplish this as the point-
distinguishing chromatic index of G.

Another way of distinguishing the vertices of a graph G is by assigning
each vertex of G a color code from a given edge coloring of G. Let ¢ : E(G) —
{1,2,...,k} be a coloring of the edges of G for some positive integer k. The
color code of a vertex v of G with respect to a k-edge coloring c of the edges
of G is the ordered k-tuple (a1, as,...,ar) where a; is the number of edges
incident with v that are colored i for 1 < ¢ < k. The edge-coloring c is vertex-
distinguishing (or irregular) if distinct vertices have distinct color codes.
The minimum positive integer k for which G has a vertex-distinguishing k-
coloring has been the primary topic of interest. These colorings have been
studied in [2, 3, 5, 6, 7].

Yet another vertex-distinguishing edge coloring of a graph G that has
been the object of study is that obtained from a coloring ¢ : E(G) —
{1,2,...,k}, where each vertex is assigned the sum of the colors of its inci-
dent edges. This concept was introduced in [8].

A related problem deals with neighbor-distinguishing edge colorings of a
graph. For example, Balister, Gy6ri, Lehel, and Schelp [4] investigated edge
colorings in which each vertex is assigned the set of colors of its incident



38 G. CHARTRAND, L. LESNIAK, D.W. VANDERJAGT AND P. ZHANG

edges and every two adjacent vertices are assigned distinct sets. Karonski,
Luczak, and Thomason [12] studied edge colorings in which each vertex
is assigned the color which is the sum of the colors of its incident edges
and adjacent vertices have different colors; while Addario-Berry, Aldred, K.
Dalal, and Reed [1] studied edge colorings in which each vertex is assigned
the resulting color code and adjacent vertices have different color codes.
The problem discussed in [1] as to whether a neighbor-distinguishing 3-edge
coloring exists for every graph was independently mentioned in [10] as well.

We now introduce a new method of uniquely recognizing the vertices of
a graph that combines a number of the features of the methods mentioned
above. Let G be a graph and let ¢ : V(G) — {1,2,...,k} be a coloring of
the vertices of G for some positive integer k (where adjacent vertices may
be colored the same). The color code of a vertex v of G (with respect to ¢)
is the ordered (k + 1)-tuple

code.(v) = (ag,ay,...,ar) (or simply, code(v) = apajas - -ag),

where ag is the color assigned to v (that is, c¢(v) = ag) and for 1 < i < k, a; is
the number of vertices adjacent to v that are colored 7. Therefore, Y% | a; =
degq v. The coloring c is called recognizable if distinct vertices have distinct
color codes and the recognition number rn(G) of G is the minimum positive
integer k for which G has a recognizable k-coloring. Such a coloring is called
a minimum recognizable coloring. A graph G and its complement G have
the same recognition number.

Proposition 1.1. For every graph G, m(G) = m(G).

Proof. Suppose that rn(G) = k and rn(G) = k. Let ¢ be a recognizable
k-coloring of G. Define a k-coloring ¢ of G by ¢(v) = ¢(v) for each v €
V(G) = V(G). Suppose, in the coloring ¢ of G, there are n; vertices of G
colored ¢ for 1 < ¢ < k. Let z and y be two vertices of G that have same
color code with respect to €. We may assume that ¢(x) = ¢(y) = 1 and that

codez(z) = (1,a1,az,...,a;) = codes(y).
Consequently,

code.(z) = (1,m1 — a1 — 1,ng — ag, ..., nE — ag) = code.(y).
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Since c¢ is recognizable, x = y, which implies that ¢ is a recognizable k-
coloring of G. Since rn(G) = k, it follows that k& < k. By a similar argument,
k <k and so k = k. Thus rn(G) = rn(G). ]

In particular, rn(K,) = rn(k,) = n for every positive integer n. Since the
complement of every disconnected graph is connected, it follows by Proposi-
tion 1.1 that we may restrict our attention to connected graphs in our study
of recognizable colorings of graphs.

Since every coloring that assigns distinct colors to the vertices of a
connected graph is recognizable, the recognition number is always defined.
On the other hand, it is well-known that every nontrivial graph contains at
least two vertices having the same degree. Thus if all vertices of a nontrivial
graph are assigned the same color, then any two vertices of the same degree
will have the same color code. Therefore, if GG is a nontrivial connected
graph of order n, then

2 <r(G) < n.

There are some observations that will be useful to us.

Observation 1.2. Let ¢ be a coloring of the vertices of a graph G. If u and
v are two vertices of G with dega u # degg v, then code(u) # code(v).

In particular, to show that a coloring of a graph G is recognizable, it is
necessary and sufficient to show that every two vertices of the same degree
and same color have distinct codes.

The neighborhood of a vertex u in a graph G is N(u) = {v € V(G) :
wv € E(G)}. The closed neighborhood of w is N[u] = N(u) U {u}.

Observation 1.3. Let ¢ be a recognizable coloring of a graph G. If u and v
are distinct vertices of G with Nu] = N[v], then c(u) # c(v).

The following result, dealing with combinations with repetition, is well-
known in discrete mathematics.

Theorem A. Let A be a set containing k different kinds of elements, where
there are at least v elements of each kind. The number of different selections
of r elements from A is (TH;*l).

In terms of graphs, Theorem A can be stated as follows.
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Theorem 1.4. Let ¢ be a k-coloring of the vertices of a graph G. The
number of different possible color codes of the vertices of degree r in G is
("R,

T

The following result is a consequence of Theorem 1.4.

Corollary 1.5. If ¢ is a recognizable k-coloring of a nontrivial connected
graph G, then G contains at most k(”lj_l) vertices of degree r.

We now consider some examples of recognizable colorings of some cubic (3-
regular) graphs. The following is a consequence of Corollary 1.5 for cubic
graphs.

Corollary 1.6. If G is a connected cubic graph of order n having recognition
number k, then

k* + 3K + 2k?
=76

n

The Petersen graph P (shown in Figure 2) is a cubic graph of order 10.
By Corollary 1.6, rn(P) > 3. A 3-coloring of the Petersen graph is given
in Figure 1 along with the corresponding color codes of its vertices. Since
distinct vertices have distinct color codes, this coloring is recognizable. Thus
rn(P) < 3 and so rn(P) = 3.

Figure 2. A minimum recognizable coloring of the Petersen graph.

According to Corollary 1.6, if G is a connected cubic graph of order n having
recognition number 2, then n < 8. There is no connected cubic graph of
order 8 with recognition number 2, however.
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Proposition 1.7. There exists no connected cubic graph of order 8 having
recognition number 2.

Proof. Assume, to the contrary, that there exists a cubic graph G of
order 8 with rn(G) = 2. Therefore, there is a recognizable 2-coloring of G.
Thus we may assume that V(G) ={v1,ve,...,vs} and that the codes of the
vertices of GG are

code(v1) = 130, code(v2) = 103, code(vs) = 121, code(vy) = 112,
code(vy) = 230, code(vg) = 203, code(vy) = 221, code(vg) = 212.

Since vy is colored 1 and is adjacent to three vertices colored 1, namely
v9,v3, and vy, it follows that each of vs, v3, and vy is adjacent to at least
one vertex colored 1. Since code(vz) = 103, the vertex vy is adjacent to no
vertex colored 1, producing a contradiction. [ |

A well-known cubic graph of order 8 is the 3-cube, often denoted by Qs,
which is shown in Figure 3. According to Proposition 1.7, rm(Qs) > 3. A
3-coloring of Q)3 is given in Figure 3 along with the corresponding codes of
its vertices. Since distinct vertices have distinct color codes, this coloring is
recognizable. Thus rn(Q3) < 3 and so rn(Q3) = 3.

1201 Q (O 1120

3210 O O 2102

Figure 3. A minimum recognizable coloring of the 3-cube.

Another well-known cubic graph is K3 x Ky, the Cartesian product of K3
and Ky. This graph is shown in Figure 4. If rn(K3 x K3) = 2, then there
exists a recognizable 2-coloring ¢ of K3 x Ko whose vertices have six of
the following eight color codes: 130, 103, 121, 112, 230, 203, 221, 212.
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Suppose first that three vertices of K3 x K5 are colored 1 and three vertices
of K3 x K5 are colored 2. Then no vertex has code 130 or 203. Hence some
vertex u of K3 X Ko has code 103 and so u is adjacent to three vertices z,
y, and z, all of which are colored 2. Also, one of x, y, and z has code 230,
say x has code 230. Thus x is adjacent only to vertices colored 1, namely
u and two other vertices, say v and w. Since neither v nor w is adjacent
to u, the vertices v and w are both adjacent to no or to exactly one vertex
colored 1, contradicting the fact that 121 and 112 are both codes of vertices
of K3 x Ky. Thus rn(K3 x K3) > 3. The 3-coloring of K3 x Ko shown in
Figure 4 is recognizable and so rn(K3 x K3) < 3. Thus rn(K3 x K3) = 3.

1300 1210

Figure 4. A minimum recognizable coloring of K3 x K.

We refer to the book [9] for graph-theoretic notation and terminology not
described in this paper.

2. RECOGNIZABLE COLORINGS OF CYCLES

It is straightforward to show that no 2-coloring of any cycle is recognizable.
Therefore, rn(C),) > 3 for every integer n > 3. There are many cycles having
recognition number 3, however. Recognizable 3-colorings of the cycles C,
3 <n <9, are shown in Figure 5.

By Corollary 1.5, the number of vertices of degree 2 in a graph having
recognition number k is at most (k® + £2)/2. In particular, if n(C,,) = 3,
then n < 18. Since the 3-coloring of Cig shown in Figure 6 is recognizable,
it follows that rn(Cig) = 3.
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Figure 5. Recognizable 3-colorings of cycles C,,, 3 < n < 9.

Figure 6. A minimum recognizable coloring of Cig.

0

Again, by Corollary 1.5, if rn(C,) = 4, then n < 40. There is no recog-
nizable 4-coloring of Cyg, however, for assume, to the contrary, that such
a 4-coloring ¢ of Cyg exists. Then there exists a vertex vy Cyg such that
c(vy) = 111. The vertices u; and wy adjacent to vy on Cyy have codes
11a and 11b, where a # b and a,b € {2,3,4}, say code(u;) = 112 and
code(w;) = 113. The two vertices following u; (and w;) about Cyp cannot
both be colored 1 since no two vertices of C'y9 have the same code. There
exists some vertex y; on Cyg with code(y;) = 114, however. Thus ¢(y;) = 1.
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Let z1 and z; be the neighbors of y;, where ¢(z1) = 1 and ¢(z1) = 4. How-
ever then, code(x;) € {111,112,113}, which is impossible. In general, in
any recognizable 3-coloring of Cyg, at most two elements in each of the sets

{112,113,114}, {221,223, 224}, {331,332,334}, {441,442, 443},

can be color codes. Therefore, if rn(C),) = 4, then n < 36. That rn(Csg) = 4
is shown in Figure 7.

Figure 7. A minimum recognizable 4-coloring of Csg.
In general, we have the following lower bound for rn(C,,).

Proposition 2.1. Let k > 3 be an integer. Then rn(Cy,) > k for all integers
n such that

(=14 (ho 120142 <y < KSR G ks odd,

—1)3 —1)2 3 2 . .
k +2k )"+2 gng’”’g—% if k is even.

We conjecture that the lower bound for rn(C,,) in Proposition 2.1 is, in fact,
an equality throughout.
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Conjecture 2.2. Let £ > 3 be an integer. Then rn(C,,) = k for all integers
n such that
(k—1)34+(k—1)2—-2(k—1)+2
2

3,2 e
§n§% if k£ is odd,

w<n<k3+gﬂ if k is even.

Our initial example concerning seating five groups of 15 students each satis-
fying certain conditions and illustrated in Figure 1 shows that rn(C75) = 5.
Therefore, Conjecture 2.2 is true for £k =5 and n = 75.

We describe how the recognizable 5-coloring of C7s in Figure 1 was
constructed. (The recognizable 4-coloring of C3g shown in Figure 7 was
constructed by a similar approach). Let S = {1,2,3,4,5}. With the aid of
a so-called deBruijn digraph, a cyclic sequence

s G1,0a2,...,0125,0126 = 41,0127 = A2

of length 125 can be constructed whose terms are the elements of S and
having the property that the 3-term subsequences a;, a;11,a;42 (1 < i < 125)
are all 125 3-permutations of the elements of S. This deBruijn digraph D
has order 25 and V(D) consists of the 2-permutations of the elements of
S. An arc e of D joins two vertices ab and cd, where a,b,c,d € S, and
is directed from ab to cd if and only if b = ¢, and e is labeled abd. For
example, 12 is joined to 23 (resulting in an arc labeled 123), but 23 is not
joined to 12; while 12 is joined to 21 (resulting in an arc labeled 121) and
21 is joined to 12 (resulting in an arc labeled 212). Also, 11 is joined to 11
by a directed loop labeled 111. The resulting digraph D is connected and
every vertex of D has outdegree 5 and indegree 5. This implies that D is
Fulerian and so contains an Eulerian circuit whose 125 arcs can therefore
be listed cyclically as ey, ea,...,e195, €126 = €1 so that the labels of these
arcs are the 3-permutations of the elements of S and such that if abc is the
label of e; (1 <1 < 125), then bed is the label of e;41 for some d € S.
In our case, we are interested in constructing a cyclic sequence

s bi,ba, ..., brs, brg = by, byr = by

of length 75 whose terms are the elements of S and having the property that
the 3-term subsequences b;, b;11,b;12 (1 < i < 75) are all 75 3-permutations
abc of the elements of S such that exactly one of a,b,c and ¢, b,a occurs
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among the 3-term subsequences of s’. In order to construct such a se-
quence s’, we seek a spanning Eulerian subdigraph D’ of D such that for
each 3-permutation abc of the elements of S, exactly one arc of D’ is labeled
abc or cba. For example, D' must contain (1) the directed loop labeled 111,
(2) both of the arcs labeled 121 and 212, (3) exactly one of the arcs labeled
112 and 211, and (4) exactly one of the arcs labeled 123 and 321. The recog-
nizable 5-coloring of C75 in Figure 1 was constructed by finding an Eulerian
subdigraph D’ of D and an Eulerian circuit C’ of D’. Therefore, Conjec-
ture 2.2 can be verified for given k and n satisfying one of the conditions
in this conjecture if an appropriate Eulerian digraph of order k? and size n
can be constructed.

3. RECOGNIZABLE COLORINGS OF TREES

First, we consider paths. As a result of Proposition 2.1 and the fact that it
is possible to have two additional color codes for vertices of degree 2 in P,
than for C,, when k is even, we have the following lower bound for rn(P,,).

Proposition 3.1. Let k > 3 be an integer. Then rn(P,) > k for all integers
n such that

_1)\3 _1)2_ _ 3 2 . .
(k—=1)>+(k 1% 2(k—1)+10 <n< % if k is odd,

(k=1)>+(k=1)°46 _ n < kKAk?-2k48
=M= 2

5 if k is even.

Indeed, we conjecture that the lower bound for rn(P,) in Proposition 3.1 is
an equality throughout.

Conjecture 3.2. Let k > 3 be an integer. Then rn(P,) = k for all integers
n such that

_1)3 _1)2_ _ 3 2 . .
(k—1)34(k 1; 2(k—1)+10 <n< % if k is odd,

B (k_1)2 3.2 e
Méngw if kis even.

2
It is known that m(P,) =2 if 2 <n < 8 and rn(P,) = 3 if 9 < n < 20.
For example, minimum recognizable colorings for Pg and Psg are shown in
Figure 8 along with the corresponding color codes of their vertices.
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1 1 1 2 1 2 2 2
PS : O O O O O O
110 120 111 220 102 211 202 201
2 3 2 2 2 1 1 1 3 1
O O O O O O
P 2001 3020 3011 2020 2110 1110 1200 1101 3200 1002
20 *

3 2 3 3 3 1 2 1 2 3

O 0 O o O

O —O
3010 2002 3011 3002 3101 1011 2200 1020 2101 3110

Figure 8. Minimum colorings for Py and Psg.

The largest integer n for which rn(P,) = 4 is n = 40. A recognizable 4-
coloring of Py is shown in Figure 9 and so rn(Pyo) = 4. The largest possible
integer n for which rn(P,) = 5 is n = 77. It can be shown that rn(P7;) = 5.

2 2 3 1 1 1 2 1 4 1
o O O o} O
2 1 2 4 3 1 4 2 3 4
S U Ay U O ' U
O e} O O O
2 2 4 2 4 4 4 3 4 3
O . 'e) 0O ) .
3 3 2 3 2 1 3 1 3 3

Figure 9. A minimum recognizable 4-coloring of Pjyq.

Now we consider trees more generally. Let T be a tree of order n having
n; vertices of degree i for ¢ > 1. For each integer n > 2, let D(n) be
the maximum recognition number among all trees of order n and d(n) the
minimum recognition number among all trees of order n. That is, if 7,, is
the set of all trees of order n, then

D(n) = max {rn(T): T € T,},
d(n) = min {rn(7) : T € 7,,}.
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Therefore, 2 < d(n) < D(n) < n — 1. It is clear that d(2) = D(2) = 2. As
we will see, the star Ki,_1 of order n > 3 has recognition number n — 1
and no tree of order n > 3 has recognition number n. Thus we have the
following.

Observation 3.3. For each integer n >3, D(n) =n — 1.

It is known that if T" is a tree of order n having n; vertices of degree i for
i > 1, then

(1) n1:2+n3+2n4+3n5+4n6+...

(see [9, p. 59|, for example). By Corollary 1.5, if ¢ is a recognizable k-
coloring of a connected graph G of order at least 3, then GG contains at most
k? end-vertices and at most kS;kz vertices of degree 2. It then follows by
(1) that if T is a tree of order n with rn(7") = k, then

k3 + k2

k% +5k%2 —4

< k?
n < + 5

+ (k2 —2) =

For example, if T' is a tree of order n with rn(7") = 2, then n < 12. The
tree T' shown in Figure 10 has order 12 with rn(7") = 2. Observe that T has
22 = 4 end-vertices, 23;22 = 6 vertices of degree 2, and 22 — 2 = 2 vertices

of degree 3. In fact, if 2 < n < 12, then d(n) = 2.

o C

Figure 10. A tree of order 12 with (7)) = 2.

If T is a tree of order n with rn(T) = 3, then n < 34. The tree T of
Figure 11 has order 34 and rn(T") = 3. This tree T contains 9 vertices
of degree 1, 18 vertices of degree 2, and 7 vertices of degree 3. Therefore,

d(34) = 3.
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2 3 3 2 1
1/-2 2 3 3 1 3 2 1
1 b 1 2 2 3 3 1 3 3
1 y 2 2 3 3 1

» 1 2 2

Figure 11. A tree T of order 34 with rn(T) = 3.

Also, if T is a tree of order n with rn(T") = 4, then n < 70. The tree T of
Figure 12 has order 70 and rn(T) = 4. This tree T contains 16 vertices of

degree 1, 40 vertices of degree 2, and 14 vertices of degree 3. This shows
that d(70) = 4.

L2 s 434122 240 1o
1 P3 ¢1 ¢4 ¢2 ¢1 ¢3 92 P2¢92 ¢4 ¢4 14 ¢1 ¢3%3
1 $1 41 o1 93 ¢4 o1 94 ¢1 92 ¢2 ¢2 ¢4 ¢3 ¢4 &3
b3 ¢4 ¢4 94 o2 3826342 44 6192 43
» 3 1 3 44
.2 » 2 2 44
» 1 b 1
3

Figure 12. A tree T of order 70 with rn(T) = 4.
In general, we have the following conjecture.

Conjecture 3.4. For each integer n > 3, the minimum recognition number
among all trees of order n is the unique integer k£ such that
(k—1)3+5(k—-1)2-2 k® +5k? — 4

<n<
2 - 2

It is easy to see, however, that the minimum recognition number among
all trees of order n is bounded below by the integer k described in Conjec-
ture 3.4.
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4. RECOGNIZABLE COLORINGS OF COMPLETE MULTIPARTITE GRAPHS

In this section we determine the recognition numbers of all complete mul-
tipartite graphs. Let G be a complete k-partite graph for some positive
integer k. If every partite set of G has a vertices for some positive integer
a, then we write G = K1), where then K1) = K,.

Theorem 4.1. Let k and a be positive integers. Then the recognition num-
ber of the complete k-partite graph K, ts the unique positive integer £ for

which (1) <k < (%).

Proof. Suppose that G = K, has partite sets Uy, U, ..., U, where
|U;j| = afor 1 < i < k. We first show that rn(G) > ¢. Assume, to the
contrary, that rn(G) < ¢ — 1. Then there exists a recognizable coloring ¢ of
G using ¢ — 1 or fewer colors. Let S = {1,2,...,¢ — 1}. For each integer i
with 1 < ¢ <k, let

Ci={c(z): zeU;}

be the set of the colors of the vertices of U;. Then C; is an a-element subset
of S for 1 < i < k. Since S has exactly (Zgl) distinct a-element subsets
and k > (Zgl), it follows that there exist two partite sets Ug and U;, where
1 < s #t <k, such that C; = C;, that is,

{c(z) : x € Us} ={c(y) : y € U}

Thus, there exist z € Ug and y € U; such that ¢(z) = c¢(y). However then,
code(z) = code(y), which contracts the fact that ¢ is a recognizable coloring
of G. Therefore, rn(G) > /.

Next, we show that rn(G) < . Let £ = {1,2,...,¢} and let

L1,Lo, ... ,L‘(ﬁ)
be the (ﬁ) distinct a-element subsets of L. Since k < (ﬁ), we can define a
coloring ¢’ of G that assigns the a distinct colors of £; to the vertices of U;
for 1 <14 < k. Since k > (Zgl), there must be at least one vertex of G that is
assigned color j for each color j with 1 < 7 < £. Thus ¢’ is an ¢-coloring of
G. Tt remains to show that ¢’ is a recognizable coloring. Let u and v be two
vertices of G such that ¢/(u) = ¢/(v). Since the a vertices in each partite set
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U; are colored differently by ¢’ for 1 <i < k, it follows that u and v belong
two different partite sets of G. We may assume, without loss of generality,
that v € Uy and v € Us. Suppose that

C{ = {C,(x) X e U1} = {51,82,. .. ,Sa},
Cy ={d(y) 1y €U} = {t1,ta,... . ta}.

Since C] # C), either there is an element in C] that is not in C; or an
element in C5 that is not in Cf, say the former. We may assume, without
loss of generality, that s; ¢ C5. Let w be the vertex colored s1 in Uy. (Note
that it is possible that w = ). Observe that

(1) u and v are both adjacent to every vertex in V(G) — (U; UUs), and so u
and v are both adjacent to every vertex colored s1 in V(G) — (Uy UUs),

(2) v is adjacent to every vertex in Uy but u is adjacent no vertex in Uq,
and so v is adjacent to the only vertex colored s; in U; U Us, namely
the vertex w, while u is not adjacent to w.

Thus v is adjacent to every vertex colored s; in G, while u is adjacent to every
vertex colored s1 in GG except w. Therefore, v is adjacent to exactly one more
vertex colored s; in G than w is, and so the (s; 4 1)st-coordinate in code(v)
does not equal the (s1+1)st-coordinate in code(u). Thus code(u) # code(v).
Hence ¢ is a recognizable (-coloring of G and so rn(G) < ¢. Therefore,

m(G) = /. |

In particular, if @ = 2, then, by solving ¢2 — ¢ — 2t = 0 for ¢, we obtain
¢ = LEV/It8t 21+8t and so

1+\/1+8ﬂ

m(Kz(t)) = [ 9

If a complete multipartite graph G contains t; partite sets of cardinality n;
for every integer ¢ with 1 < ¢ < k, then we write G = Ky, (1,) ny(t2),....n (tx)-

Corollary 4.2. Let G = Ky (1)) my(t2),...nu (1), Where ny,na, ... ny are k
distinct positive integers. Then

m(G) = max{rn(K,,y,)): 1 <i<k}
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Proof. Let {; = m(K,,,) for 1 < i < k. Assume, without loss of
generality, that
61 = max{rn(K,,,) : 1 <i <k}

We first show that rn(G) < ¢1. For each integer ¢ with 1 < i < k, let ¢; be
a recognizable ¢;-coloring of the subgraph K, ) in G. We can now define
a recognizable ¢1-coloring ¢ of G by defining

c(r) =ci(z) if z € V(K 4,) for 1 <i < k.

Thus rn(G) < ¢5. Next, we show that rn(G) > ¢;. Assume, to the contrary,
that rn(G) = ¢ < ¢1 — 1. Let ¢’ be a recognizable ¢-coloring of G. Then ¢
induces a coloring ¢} of the subgraph K, () in G such that ¢} (z) = c(z) for
all z € V(K 4,))- Since ¢} uses at most £ colors and rn(K,, ¢,)) = ¢1 > ¢, it
follows that ¢} is not a recognizable coloring of K n1(t1)» and so there exist two
vertices w and v in K, ;) such that u and v have the same code with respect
to ¢j. Since u and v are both adjacent to every vertex in V(G) =V (K, ),
it follows that u and v have the same code in G with respect to ¢/, which is
a contradiction. [
In particular, if 1 = to = --- = ¢ = 1, then K,,,;,) = K,,1) = K,, for

1 <4 < k. Since rn(K,,) = n; for 1 <i <k, it follows that

(K, g, ) = max{n; : 1< <k},

where ny,n9,...,ng are k distinct positive integers.
In the special case of complete bipartite graphs, we have the following.

Corollary 4.3. For integers s and t with 1 < s <t,

)t if s < t,
rn(KS,t){ t+1 ifs=t.

5. REALIZATION RESULTS ON RECOGNITION NUMBERS

In this section we first characterize those connected graphs of order n having
recognition number n or n — 1. We have already noted that the complete
graph K, of order n has recognition number n. In fact, it is the only
connected graph of order n with this property.
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Proposition 5.1. If G is a nontrivial connected graph of order n, then
m(G) = n if and only if G = K,,.

Proof. As a consequence of Observation 1.3, rn(K,,) = n for each integer
n > 2. Next, we show that K, is the only connected graph of order n
with recognition number n. Suppose that G is a connected graph of order n
that is not complete. Thus GG contains three vertices x, y, and z such that
zy ¢ E(G) and yz € E(G). Define a coloring ¢ that assigns color 1 to z
and z, color 2 to y, and distinct colors from the set {3,4,...,n — 1} to the
remaining n — 3 vertices of G. Since c¢ is a recognizable (n — 1)-coloring of
G, it follows that rm(G) <n — 1. |

We now characterize those connected graphs of order n > 4 with recognition
number n — 1.

Theorem 5.2. Let G be a connected graph of order n > 4. Then
m(G) =n—1if and only if G = Ky 1 or G = Cy.

Proof. By Corollary 4.3, tn(K;,—1) = n — 1 and rn(C4) = 3. For the
converse, let G be a connected graph of order n > 3 such that G # K1 1
but rn(G) = n—1. Thus G # K,, by Proposition 5.1. Hence n > 4. Suppose
first that n = 4. By Observation 5.3, G contains at least three vertices of
the same degree. Since G # K3, it follows that G = C4. We may now
assume that n > 5. Since G contains at least n — 1 vertices of the same
degree, GG contains exactly n — 1 vertices of the same degree or G is regular.

Case 1. The graph G contains exactly n — 1 vertices of the same degree.
Let V(G) = {vg,v1,...,vp-1}, where vi,ve,...,v,_1 have the same degree.
Since G # K n—1, the degree of each of the vertices vy, va, ..., v,—1 is at least
2. Furthermore, since G # K, it follows that G contains two nonadjacent
vertices x and y.

Subcase 1.1. z,y € V(G) — {vg}. Since degy > 2, there exists z # vg
such that zy € E(G). Since Nz| # N|z|, we can define a coloring c that
assigns color 1 to vy, x, z, color 2 to y, and assigns distinct colors of the set
{3,4,...,n — 2} to the remaining n — 4 vertices of G. Since degvy # degx
and degvg # deg z, it follows by Observation 1.2 that code(vg) # code(x)
and code(vg) # code(z). Furthermore, the third coordinate in code(x)
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is 0, while the third coordinate in code(z) is 1. Thus code(x) # code(y).
Therefore, ¢ is a recognizable (n — 2)-coloring of G and so rn(G) < n — 2,
which is a contradiction.

Subcase 1.2. One of x and y is vy, say x = vy. Since G is connected,
there exists a vertex w such that wvg € E(G). Thus N[w] # Nly]. We
can define a recognizable (n — 2)-coloring that assigns color 1 to vg, w, v,
and assigns distinct colors of the set {3,4,...,n — 2} to the remaining n — 4
vertices of G. Thus rn(G) < n — 2, a contradiction.

Case 2. The graph G is regular. Since rn(Cp) < n —2 for n > 5, it
follows that G is r-regular for some integer r > 3. Since G # K, there exists
two nonadjacent vertices u and v in G. Let x and y be distinct vertices such
that uz,vy € E(G). If uy ¢ E(G) or vx ¢ E(G), then N[u] # Nv] and
N[z] # N[y|. Hence we can define a recognizable (n—2)-coloring that assigns
color 1 to v and v, color 2 to z and y, and assigns the n — 4 colors of the set
{3,4,...,n — 2} to the remaining n — 4 vertices of G. Thus rn(G) < n — 2.
Therefore, we may assume that uy € F(G) and vz € E(G). This implies
that if w € V(G) — {u, v}, then either w is adjacent to both u and v or w is
adjacent to neither of u and v.

Subcase 2.1. Every vertex in V(G) — {u,v} is adjacent to both u and v.
Then G is (n — 2)-regular, where n — 2 > 3. This implies that n is even and
G is the graph obtained from K, by removing a 1-factor F. Let s;t; be an
edge in F for i = 1,2,3 (and so s;t; ¢ E(G) i = 1,2,3). We can define a
coloring ¢ that assigns color 1 to t1, s9, t3, color 2 to sy, color 3 to to, color 4
to s3, and assigns distinct colors of the set {5,6,...,n —2} to the remaining
n — 6 vertices of G. Observe that code(t;) = 12011 - - -, code(sg) = 12101 - - -,
and code(t3) = 12110 --. Thus c is a recognizable (n — 2)-coloring of G and
so rn(G) < n — 2, which is a contradiction.

Subcase 2.2. There exists w € V(G) — {u,v} such that w is adjacent to
neither u nor v. Let s and t be distinct vertices that are adjacent to w in
G. Then N[u] # N|s] and N[v] # N][t]. Hence we can define a coloring ¢
that assigns color 1 to u and s, color 2 to v and ¢, color 3 to w, and assigns
the distinct n — 5 colors from the set {4,5,...,n—2} to the remaining n —5
vertices of G. Observe (1) that the fourth coordinate in code(u) is 0, (2)
the fourth coordinate in code(s) is 1, (3) the fourth coordinate in code(v)
is 0, and (4) the fourth coordinate in code(t) is 1. Thus code(u) # code(s)
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and code(v) # code(t). Thus c is a recognizable (n — 2)-coloring of G' and
so rn(G) < n — 2, which is a contradiction. |

We have seen that if G is a nontrivial connected graph of order n have
recognition number k, then 2 < k < n. Next we show that every pair k,n of
integers with 2 < k < n is realizable as the recognition number and order of
some connected graph. The following observation will be useful in the proof
of Theorem 5.4.

Observation 5.3. If G is a nontrivial connected graph such that the mazi-
mum number of vertices of the same degree is k, then rn(G) < k.

Theorem 5.4. For each pair k,n of integers with 2 < k < n, there exists a
connected graph of order n having recognition number k.

Proof. For k = 2, let G be the unique connected graph of order n contain-
ing exactly two vertices with equal degree. It then follows by Observation 5.3
that rn(G) = 2. For k = n, let G = K, and rn(K,,) = n by Proposition 5.1.
If k> n —k, then let G = K, and (K, ) = k by Proposition 4.3.
Thus, we may assume that 3 < k < n—k. We consider two cases, according
to whether k > 4 or k = 3.

Case 1. k> 4. Then3 <k <n—-—-k<n-4. Thenn—k > 4.
Let F' be the unique connected graph of order n — k containing exactly
two vertices with equal degree. Then the degrees of the vertices of F' are
1,2,..., VT_kJ , VT_ICJ ,n—k—1. Let V(F) = {uj,ug,...,uy_}, where
degru; = 1 and degpu,—x = n —k — 1. Since n — k > 4, it follows that
2 < VT%J <n—k—1and so F has a unique end-vertex, namely u;. The
graph G is now constructed from F' by adding k new vertices vy, vo, ..., Vg
and joining each vertex v; (1 <14 < k) to u,—_k. Then the order of G is n. It
remains to show that rn(G) = k. Since the k vertices vy, vs,. .., v have the
same closed neighborhood, it follows by Observation 1.3 that rn(G) > k. On
the other hand, the maximum number of vertices of the same degree is k.
It then follows by Observation 5.3 that rn(G) < k. Therefore, deg(G) = k.

Case 2. k = 3. Since 3 = k < n—k = n — 3, it follows that
n > 6. Let F' be the unique connected graph of order n — 2 containing
exactly two vertices with equal degree. Then the degrees of the vertices of

Farel,?2,..., VT_QJ , VT_QJ ,n—3. Let V(F) = {uy,ua,...,u,—2}, where
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degru; = 1 and degpu,—2 = n — 3. Since n — 2 > 4, it follows that

n—2
2
adjacent to uy in F. Now the graph G is obtained from F' by adding two

new vertices v1 and vy and joining each of v1 and vy to v. Then the order
of G is n. It remains to show that rn(G) = 3. Since the three end-vertices
u1,v1, v have the same neighborhood, rn(G) > 3. On the other hand, the
maximum number of vertices of the same degree is 3. It then follows by
Observation 5.3 that rn(G) < 3. Therefore, deg(G) = 3. |

> 2 and so uj is the unique end-vertex in F. Let v be the vertex
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