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Abstract

By a result of McKenzie [4] finite directed graphs that satisfy cer-
tain connectivity and thinness conditions have the unique prime fac-
torization property with respect to the cardinal product. We show that
this property still holds under weaker connectivity and stronger thin-
ness conditions. Furthermore, for such graphs the factorization can be
determined in polynomial time.
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1. Introduction

Factorizations of graphs with respect to the cardinal product were first stud-
ied in the context of relational structures by McKenzie [4]. For finite directed
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and undirected graphs McKenzie’s results imply unique prime factorization
under certain connectivity and thinness conditions.

His results do not lead to factorization algorithms. For the strong prod-
uct, which is a special case of the cardinal product, this task was first solved
by Feigenbaum and Schäffer. In [1] they presented a polynomial algorithm
for the prime factorization of connected graphs with respect to the strong
product. Their procedure consists of three parts: First the problem of fac-
torizing a graph G is reduced to the factorization of a thin graph G/R. This
follows the ideas of McKenzie [4]. Then G/R is factored. This is the main
and most difficult part. It is effected by construction of the so-called Carte-
sian skeleton H and the prime factor decomposition of H with respect to
the Cartesian product. Finally the factorization of G/R is extended to the
original graph G.

A variant of this algorithm was proposed by Imrich [2] for the prime
factorization of undirected nonbipartite connected graphs with respect to
the cardinal product.

In the case of directed graphs the second part of the decomposition
procedure, the factorization of thin graphs, can easily be adapted to the
factorization of R+|R−-connected R+-thin graphs. This is the topic of the
present paper.

As in the case of the strong and the cardinal product of undirected
graphs, the proof of the correctness of the algorithm also shows that the
prime factorization is unique. This is important, because the class of R+|R−-
connected R+-thin graphs is not identical with the class of R+|R−- and
R−|R+-connected thin graphs, for which McKenzie showed unique prime
factorization. (McKenzie’s connectivity condition is stronger, but his thin-
ness condition weaker than ours.)

Thus, the present results also slightly extend the class of undirected
graphs that are known to have unique prime factorizations with respect to
the cardinal product. To our knowledge this is the only such extension since
1971.

The reduction to R-thin graphs, as introduced by McKenzie [4], has
different properties than the reduction to R+-thin graphs, which is the case
that is of relevance for us. A fortiori this also holds for the third part of
the factorization procedure, that is, the extension of the factorization to the
original graph. In this case the factorization may also become non-unique.
A comprehensive treatment of these parts is planned in a forthcoming paper.
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2. The Cardinal Product

In this section we define the cardinal product of directed graphs, and basic
connectivity conditions.

By a directed graph G = (V,A) we mean set V together with a set A
of ordered pairs 〈x, y〉 of vertices of G. We allow that both 〈x, y〉 and 〈y, x〉
are in A and do not require x, y to be distinct. Thus, A is a subset of the
Cartesian product V × V .

V is the vertex set of G and A the set of arcs of G. The vertex x
is the origin and y the terminus of 〈x, y〉. In the case when x = y we
speak of a loop. In analogy to the undirected case we call a graph G with
A(G) = V (G) × V (G) complete. If it has n vertices it will be denoted by
Kd

n to distinguish it from the ordinary complete graph Kn (where any two
distinct vertices are connected by an undirected edge.)

We say A(G) is reflexive if A contains all loops 〈x, x〉, where x ∈ V (G).
It is symmetric if 〈x, y〉 ∈ A(G) if and only if 〈y, x〉 ∈ A(G). By abuse of
language one also says that G is reflexive, respectively symmetric. Sym-
metric directed graphs correspond to undirected graphs by identification of
pairs of edges with opposite directions.

The out-neighborhood N+(x) of a vertex x, compare Figure 1, is defined
as the set

{y ∈ V | 〈x, y〉 ∈ A}.

Analogously one defines the in-neighborhood N−(x). Clearly a directed
graph is uniquely defined by its vertex set and the out-neighborhoods of
the vertices.
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Figure 1. N+(x)

The cardinal product G1 × G2 of two directed graphs G1, G2 is defined on
the Cartesian product V (G1)× V (G2) of the vertex sets of the factors, and
the out-neighborhood of a vertex x = (x1, x2) is the Cartesian product of
the out-neighborhoods of x1 in G1 and x2 in G2:

N+

G1×G2
(x1, x2) = N+

G1
(x1) × N+

G2
(x2).
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The cardinal product is commutative, associative, and the single vertex with
a loop, that is Kd

1 , is a unit. The cardinal product of reflexive symmetric
graphs corresponds to the strong product of undirected graphs.

A graph G is prime with respect to the cardinal product if G = G1×G2

implies that G1 or G2 are equal to Kd
1 .

A graph G is R+|R−-connected if for all x, y ∈ V (G) an n ∈ N and a
sequence (xi)0≤i≤n can be found such that x0 = x, xn = y and

N+(xi) ∩ N+(xi+1) 6= ∅ for 0 ≤ i < n.

R−|R+-connectedness is defined analogously.
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Figure 2. An x − y sequence in an R+|R−-connected graph.

Lemma 2.1. Let G = G1 × G2 × · · · × Gk. If G is R+|R−-connected or

R−|R+-connected, then this property is inherited by all factors.

Proof. Clear.

The converse also holds, but as we do not need the result in the sequel, we
leave the proof to the reader.

3. Prime Factorizations

Clearly every finite graph must have at least one prime factor decomposition
with respect to the cardinal product. It need not be unique, for examples
cf. [3]. However, it is unique if certain connectivity conditions are met.

Theorem 3.1 (McKenzie [4]). Let G be an R+|R−- and R−|R+-connected

finite graph. Then G has a unique representation as a cardinal product of

prime graphs, up to isomorphisms and the order of the factors.

Feigenbaum and Schäffer [1] showed that this factorization of a graph G
can be found in polynomial time if A(G) is reflexive and symmetric. Imrich
[2] extended this result to graphs that are not reflexive. Of course the
connectivity conditions still have to be met. We formulate this as a theorem.
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Theorem 3.2 (Feigenbaum and Schäffer [1], Imrich [2]). Let G = (V,A)
be an R+|R−- and R−|R+-connected finite graph, where A is symmetric,

that is, where 〈x, y〉 ∈ A if and only if 〈y, x〉 ∈ A. Then the prime factor

decomposition of G with respect to the cardinal product can be found in

polynomial time.

In the proof of the above theorems the graphs under consideration where
reduced to so-called thin graphs first and then factored. Following McKenzie
we say two vertices of G are in the relation R (≈ in his terminology) if both
their out-neighborhoods and their in-neighborhoods are the same. A graph
G is then called thin if no two vertices of G are in the relation R.

R is an equivalence relation on the set of vertices of G. As usual we
define the quotient graph G/R as follows: the vertex set of G/R is the set
of all equivalence classes {x |x ∈ V (G)} of V (G) with respect to R, and
〈x, y〉 ∈ A(G/R) if there are vertices a ∈ x, b ∈ y with 〈a, b〉 ∈ A(G). The
following lemma holds:

Lemma 3.3 (McKenzie [4]). Let G be a directed graph. Then

(i) G/R is thin.

(ii) If G = G1×G2 is R+|R−- and R−|R+-connected, then G/R = G1/R×
G2/R.

Although McKenzie’s result does not require the graphs to be symmetric,
the algorithms in [1, 2] rely on it. In our case N+(x) can be different from
N−(x), and we could not directly adapt the algorithm to this case. However,
an analysis of the factorization algorithms in [1, 2] and the key lemmas on
which they are based shows that they remain valid if no two vertices of
G have the same out-neighborhood (or if no two vertices have the same
in-neighborhood). This motivates the following definitions:

Two vertices of G are in the relation R+ if their N+-neighborhoods
are the same. Clearly R+ is an equivalence relation. R− is defined analo-
gously. A graph is then called R+-thin, respectively R−-thin, if all equiva-
lence classes of the relation R+, respectively R−, consist of just one element.

The graph in Figure 3 illustrates some of these properties. It is neither
thin, nor R+- or R−-thin, but G/R is a single arrow and both R+- and
R−-thin.
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Figure 3. A graph that is not R+-thin.

Theorem 3.4. Let G = (V,A) be an R+|R−- and R−|R+-connected finite

graph. If G/R is R+-thin (or R−-thin), then the prime factor decomposition

of G with respect to the cardinal product can be found in polynomial time.

Outline of the proof. This theorem generalizes Lemma 8 of [2]. The con-
nectivity conditions are the same, symmetry is not required, but a stronger
thinness condition.

An inspection of the proof in [2] reveals, that the factorization of G/R
goes through if all neighborhoods are replaced by out-neighborhoods and if
no two different vertices have the same out-neighborhoods. (Or if all neigh-
borhoods are replaced by in-neighborhoods and if no two different vertices
have the same in-neighborhoods.)

The proof in [2] continues with the definition of a graph H on the vertex
set of G/R, which has the property that every decomposition G1 ×G2 of G
with respect to the direct product induces a decomposition H12H2 of H,
so that V (Hi) = V (Gi) (i ∈ {1, 2}). A graph with this property is called
Cartesian skeleton of G. The main part of the proof consists in showing that
it can be computed in polynomial time. It can be done with Algorithm 1 of
[2], which works for out-neighborhoods (our case) just as for neighborhoods
(the case treated in [2]). For its correctness in the case of directed graphs
one has to prove analoga of Lemma 2 and 3 of [2]. The details are not
difficult but time consuming and are presented in all technicalities in the
dissertation of the second author.

Using the Cartesian skeleton one finds the vertex sets of all possible
divisors of G/R and subsequently its PFD as in Lemma 8 of [2]. The fac-
torization of G is then obtained as in [2].

For a comprehensive presentation of the algorithm in [2] we also refer to [3,
p. 167–177].

The class of graphs for which we can find the prime factor decomposition
with respect to the cardinal product in polynomial time by application of
this theorem is still smaller than the class of graphs that have the unique
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prime factorization property by McKenzie. In the next section we show that
the algorithm also can be used to show uniqueness of the decomposition in
some cases not covered by Theorem 3.1 and to find it in polynomial time.
These considerations also lead to graphs with tractable non-unique prime
factorizations.

4. Factoring R+|R−-connected R+-thin Graphs

Lemma 3.3 and the importance of R+|R−-connectedness and R+-thinness
in Theorem 3.4 suggest to repeat the previous investigations with R+, re-
spectively R−, in the role of R. In analogy to Lemma 3.3 we obtain:

Lemma 4.1. Let G be the cardinal product of two nontrivial directed graphs

G1 and G2. If all N+-neighborhoods of the vertices of G are nonempty, then

G/R+ = G1/R
+ × G2/R

+.

Proof. Two vertices x = (x1, x2) and y = (y1, y2) are in the relation R+

if and only if N+(x) = N+(y). This is equivalent to N+(x1) × N+(x2) =
N+(y1) × N+(y2). Since N+(x) and N+(y) are both nonempty this is pos-
sible if and only if N+(x1) = N+(y1) and N+(x2) = N+(y2), that is, if
x1R

+y1 and x2R
+y2.

Note that R+|R−-connectivity implies that the N+-neighborhoods are
nonempty.

Corollary 4.2. Let G be the cardinal product of two nontrivial directed

graphs G1 and G2. If all N+-neighborhoods of the vertices of G are non-

empty, then the following statements are equivalent:

(i) G is R+-thin.

(ii) G1 and G2 are R+-thin.

Clearly Lemma 4.1 and Corollary 4.2 remain valid if N+ is replaced by N−,
and R+ by R−.

The problem with the analogy is that G/R is always thin, but G/R+

need not be R+-thin, see Figure 4. It may thus be necessary to quotient by
R+ several times until one reaches an R+-thin graph. For R+|R−-connected
R+-thin graphs (or R−|R+-connected R−-thin graphs) we then have the
following theorem.
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Figure 4. Example of a graph G where G/R+ is not R+-thin.

Theorem 4.3. Let G = (V,A) be an R+|R−-connected R+-thin graph, or

an R−|R+-connected R−-thin graph. Then the prime factor decomposition

of G with respect to the cardinal product is unique and can be found in

polynomial time.

Again the proof is completely analogous to the one in [2]. However, the con-
ditions are quite different from those of McKenzie: Our thinness condition
is stronger, since R+- (or R−)-thin graphs are thin, but thin graphs need
not be R+- (or R−)-thin. On the other hand, our connectivity condition is
weaker, because we only need either R+|R−- or R−|R+-connectedness, and
not both.

This somewhat enlarges the class of known graphs with unique prime
factorization with respect to the cardinal product.

To complete the analogy between R+ and R, we then have to find fac-
torizations of R+|R−-connected graphs G from factorizations of G/R+; sim-
ilarly for R−|R+-connected graphs.

This problem is quite different from the extension of a factorization of
G/R to G. To see this, consider the subgraphs induced by the vertices in an
equivalence class with respect to R compared to those that are induced by
the vertices in an equivalence class of R+. In the first case the graphs will
have no arcs at all or the graph is a Kd

n. In the second case the graphs have
no arcs at all again, or they consist of a Kd

s together with vertices whose
out-neighborhoods are the vertices of Kd

s (and whose in-neighborhoods are
empty). We call such graphs R+

s,r, where r is their total number of vertices.

In the first case the prime factors of Kd
n are all Kd

n′ , where n′ is a prime
divisor of n, and the prime factorization is unique. In the second case the
prime factors are of the form R+

s′,r′
, with s′ ≤ r′ and s′|s, r′|r. The prime

factorization need not be unique either, for example

R+

2,2 × R+

1,3 and R+

2,3 × R+

1,2

are two different prime factorizations of R+
2,6.
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We plan to treat the prime factorizations of R+|R−- and R−|R+-connected
graphs in more detail in a forthcoming publication.
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