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Abstract

This paper deals with weighted set systems (V, E , q), where V is a
set of indices, E ⊂ 2V and the weight q is a nonnegative integer function
on E . The basic idea of the paper is to apply weighted set systems
to formulate restrictions on intersections. It is of interest to know
whether a weighted set system can be represented by set intersections.
An intersection representation of (V, E , q) is defined to be an indexed
family R = (Rv)v∈V of subsets of a set S such that

∣∣∣
⋂

v∈E

Rv

∣∣∣ = q(E) for each E ∈ E .

A necessary condition for the existence of such representation is the
monotonicity of q on E i.e., if F ⊂ E then q(F ) ≥ q(E). Some sufficient
conditions for weighted set systems representable by set intersections
are given. Appropriate existence theorems are proved by construction
of the solutions.
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The notion of intersection multigraphs to intersection multi-
hypergraphs — hypergraphs with multiple edges, is generalized. Some
conditions for intersection multi-hypergraphs are formulated.

Keywords: intersection graph, intersection hypergraph.
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1. Introduction and Preliminaries

We use the standard notation of set theory. For a set X, the cardinality
of X and the family of all subsets of X will be denoted by |X| and 2X ,
respectively.

A family of sets E ⊂ 2X is called antichain if for each two distinct
elements F, E ∈ E neither F ⊂ E nor E ⊂ F. Denote by

MinE = {E ∈ E : if F ∈ E and F ⊂ E then F = E }

the subfamily of all minimal sets (lower base) of E and denote by

MaxE = {E ∈ E : if F ∈ E and E ⊂ F then F = E }

the subfamily of all maximal sets (upper base) of E . A family E is an an-
tichain if and only if MinE = E = MaxE . Furthermore, we denote the lower
closure and upper closure of the family E by

E− = {F ∈ 2X : there is E ∈ E such that F ⊂ E }

and
E+ = {F ∈ 2X : there is E ∈ E such that E ⊂ F },

respectively.
A triple (V, E , q) is called weighted set system if V is a set, E ⊂ 2V and

q is a nonnegative integer function on E .

Consider an indexed family R = (Rv)v∈V of subsets (not necessarily
distinct or nonempty) of a set S (the ”universe” of the family). The in-
tersection of several members of R is determined by the set of its indices
E ⊂ V. The cardinality of such intersection is called intersection size and
is denoted by qR(E). For example, information with respect to a triple in-
tersection Rv1 ∩ Rv2 ∩ Rv3 is given by the set E and its size qR(E), where
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E = {v1, v2, v3} and qR(E) = |Rv1 ∩Rv2 ∩Rv3 |. A collection of such infor-
mation (called also restrictions) leads to a weighted set system (V, E , qR),
where E ⊂ 2V . Especially, in this way we obtain (V, 2V , qR),

qR(E) =
∣∣∣

⋂

v∈E

Rv

∣∣∣ for each E ∈ 2V and E 6= ∅

and qR(∅) = |S|,

which is called complete intersection set system of the family R. We say also
that the weight qR prescribes intersection sizes of elements ofR. This system
contains complete information (restrictions) on cardinality of the universe S,
on cardinalities of members of R and sizes of their all possible intersections.

Some structures with non complete information on R are well known in
the literature. We recall the following notions:

• Intersection graph (or k-graph) (V, E), where E is a set of pairs (or exactly
k) subsets of V which have nonempty intersection i.e., E ∈ E if and only
if qR(E) ≥ 1. Some authors assume ”at least k” instead of ”exactly k”.
We refer to Marczewski [7], Harary [5], Erdös, Goodman and Posa [4]
and McKee and McMorris [9] for more details.

Intersection multigraph (V, E , qR), where the pair (V, E) is the intersection
graph of R and the multiplicity of edges determines qR on E . We refer to
Bermond and Meyer [2], Marczyk [8] and Prisner [9].

• Set system with prescribed intersection sizes (V, 2V , qr), where qr(E) =
qR(E) mod r for an positive integer r, Grolmusz [6].

• Intersection hypergraph (V, E), where E ⊂ 2V and qR(F ) 6= 0 if and only
if F ⊂ E for some E ∈ E .

Intersection multi-hypergraph (V, E , qR), where (V, E) is the intersection
hypergraph of R and the multiplicity of edges determines qR on E .

Set systems with restricted intersection sizes play an important role in sev-
eral fields of combinatorics and in computer science. For more information
and for detailed literature review, we refer to Grolmusz [6] and MacKee and
McMorris [9].

Problem 1. For a weighted set system H = (V, E , q) one may ask if we can
assign subsets of a given set S to vertices of H, i.e., for each v ∈ V assign a
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set Rv ⊂ S, so that

(1)
∣∣∣

⋂

v∈E

Rv

∣∣∣ = q(E) for each E ∈ E .

If the answer is YES then we say that H is representable by set intersections
(r.s.i. for short) and that the assigned indexed family of sets R = (Rv)v∈V

is its representation. We say also that such representation is of the size |S|,
the cardinality of the universe of R. Additionally, if ∅ 6∈ E , one can look for
a representation of minimal size.

The Problem 1 for E = 2V is exactly the same as Problem 2 in Grolmusz
[6]. Ibidem the answer is always yes, if we consider the modular version:
q(E) = qR(E) holds only modulo r for some positive integer r. For non-
modular version, Grolmusz’s algorithm for constructing a family with pre-
scribed intersection sizes works only in the case described below in Sec-
tion 3.2. In this paper, we investigate non modular case which seems to be
more difficult.

Definition 1.1. A weighted set system (V, E , q) is an intersection set system
(i.s.s. for short) if there exists a family R = (Rv)v∈V such that (1) holds
and the hypergraph (V, Ẽ) is an intersection hypergraph of R, where

(2) Ẽ = {E ∈ E : q(E) > 0}.
It is easy to see, that (V, E , q) is an intersection set system of a family R if
and only if (1) and

(3) qR(E) = 0 for each E ∈ (2V \ Ẽ−) \ E .

So we can see in (3) that restrictions applies also to some sets outside if E .
For deference between i.s.s. and r.s.i in Problem 1, see also Example 2.2
given below.

Problem 2. Is a weighted set system H = (V, E , q) an intersection set
system? Determine if there exists a representation R = (Rv)v∈V such that
(1) and (3). Additionally, if ∅ 6∈ E , one can look for a representation as i.s.s.
of minimal size.

The notion of weighted set system is closely connected with the notion of
a multi-hypergraph. If there is no confusion each set from E we call an
edge even if its size is zero. Several authors (for example Harary [5]) a
representation means as a family of distinct sets. We omit this assumption.
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2. Weighted Set Systems Representable by Set
Intersections

Given a weighted set system H = (V, E , q), we ask about a representation
R on a universe S such that (1) is fulfilled. If the empty set is an edge of H
the size of every representation ought to be |S| = q(∅). Otherwise, one can
ask about r.s.i. (or a representation as i.s.s.) of minimal size. The minimum
size of a representation is called weak intersection number (or intersection
number) of H and will be denoted by ω(H) (or by ω̄(H)). Of course, we
have

ω̄(H) ≥ ω(H)

if an adequate representation exists.

Observation 1. If a weighted set system H = (V, E , q) is r.s.i., then q is
non-increasing on E i.e., for every two edges such that F ⊂ E we have
q(F ) ≥ q(E).

As the following examples show, some weighted set systems are not repre-
sentable by set intersection or are not i.s.s., even if multiplicity function is
non-increasing.

Example 2.1. Let H = (V, E , q), where V = {a, b, c} and the set of edges
E={{a}, {a, b}, {a, c}, {b, c}} with multiplicity q({a}) = q({a, b}) = q({a, c})
= 2 and q({b, c}) = 1. If R = (Ra, Rb, Rc) is a representation, then it satis-
fies: Ra ⊂ Rb and Ra ⊂ Rc. So it is not possible to be |Rb∩Rc| = 1, because
|Ra| = 2. Therefore, H is not r.s.i..

Example 2.2. Let H = (V, E , q), where V = {a, b, c} and the set of edges
E={{a}, {a, b}, {a, c}} with multiplicity q({a}) = 3 and q({a, b}) = q({a, c})
= 2. The family (Ra = {1, 2, 3}, Rb = {1, 2}, Rc = {2, 3}) is a representation
of H by set intersection. It is easy to check that H is not i.s.s. because
there is no family R such that H be its intersection set system. Therefore,
Problem 1 has a solution but Problem 2 has no solution.

Example 2.3. Let H = (V, E , q), where V = {a, b, c, d} and the set of
edges E = {{a}, {c}, {a, b}, {b, c}, {c, d}, {a, d}} with multiplicity q({a}) =
q({c}) = 3 and q({a, b}) = q({b, c}) = q({c, d}) = q({a, d}) = 1. It is easy
to check that H is an i.s.s. The families R (Ra = {1, 2, 3}, Rb = {1}, Rc =
{1, 2, 3}, Rd = {1}) and P (Pa = {1, 3, 5}, Pb = {1, 2}, Pc = {2, 4, 6}, Pd =
{3, 4}) are its representations. We have ω(H) = 3 and ω̄(H) = 6.
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The next statement shows that Problem 2 as well as problem of charac-
terizing intersection multi-hypergraphs is equivalent to a special case of
Problem 1.

Observation 2. Let H = (V, E , q) be a weighted set system. Let H̄ =
(V, E ∪ (2V \ Ẽ−), q̄), where q̄ is an extension of q such that

q̄(E) =

{
q(E) for E ∈ E ,

0 for E ∈ (2V \ Ẽ−) \ E .

Then H is i.s.s. if and only if H̄ is r.s.i..

Proof. If a family R = (Rv)v∈V is a representation of H̄ by set intersec-
tions then the weighted set system (V, Ẽ) is an intersection hypergraph of R
because (1) and (3) are satisfied.

The problem of characterizing intersection graphs was first posed by Mar-
czewski [7]. He shows that any graph is an intersection graph. The same
statement for multigraphs was given by McKee and McMorris [9]. Let us
notice that it is not true that any multigraph with loops is an intersection
multi-hypergraph (see Example 1).

3. Cliques and Clique Covers of Edges

Let H = (V, E , q) be a weighted set system.
A set K ⊂ V is said to be clique of H if for each edge E ∈ E and E ⊂ K

we have q(E) > 0.
A sequence (indexed family) K = (K1, . . . , Kn) of cliques of H such

that each edge E is a subset of at least q(E) cliques is called clique cover (of
edges) of H. We say that it is a clique partition of edges of H if, additionally,

| { i : E ⊂ Ki } | = q(E) for each E ∈ E .

Notice that a cover and a partition of a weighted set system generalize the
analogous notions in graphs and hypergraphs (see Berge [1]).

Definition 3.1. By inverse of a family R of subsets of a set S, denoted by
Inv(R), we mean the family C = (Cs)s∈S of subsets of the set V indexed by
S such that

Cs = { v ∈ V : s ∈ Rv }.



The Representation of Multi-Hypergraphs ... 571

The notion Inv(R) is best understood as the matrix transposition on the
appropriate edges-vertices incidence matrix of R.

Observation 3. If R = (Rv)v∈V with the universe S is a representation
of a weighted set system H by set intersection then the family Inv(R) is a
clique partition of edges of H and R = Inv(Inv(R)).

3.1. Clique reduction of weighted set systems

Let K be a clique of H = (V, E , q). For each E ∈ E

(4) qK(E) =

{
q(E)− 1 for E ⊂ K,

q(E) otherwise.

If qK is nonnegative on E then a reduction by K is feasible. We say that
K reduces H to the weighted set system HK = (V, E , qK). Of course, if K1

reduces H and K2 reduces HK1 , then K1 reduces HK2 and HK1K2 = HK2K1 .
Let us remark that:

Observation 4. If R = (Rv)v∈V with the universe S is a representation of
HK , then R̃ = (R̃v)v∈V such that for some s 6∈ S

(5) R̃v =

{
Rv ∪ {s} if v ∈ K,

Rv otherwise

is a representation of H (with the universe S ∪ {s}).

Observation 5. If K is a clique of a weighted set system H = (V, E , q)
and HK is r.s.i., then H is r.s.i.. On the other hand, if H is r.s.i. weighted
set system and q 6≡ 0, then there is a clique K such that HK is r.s.i. and
qK 6≡ q.

The last implication is true because for a given representation R = (Rv)v∈V

with the universe S, as a possible clique we can take

K =
⋃ {

E ∈ E : s ∈
⋂

v∈E

Rv

}
for some s ∈ S.

Namely, the family R̃ = (R̃v)v∈V , where R̃v = Rv \ {s} is such a represen-
tation of HK .
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Definition 3.2. A sequence K = (K1, . . . ,Kn) of cliques of H forms a
completely reducing sequence of H if the obtained system HK1...Kn has the
weight qK1...Kn ≡ 0.

Example 3.1. Let H = (V, E , q), where V = {a, b, c, d, e, f}, E = {{a, b, c},
{a, d, f}, {a, e, f}, {b, c}, {e, f}, {c, d}, {a, d}, {d}, {e}} and the weight of
edges q is described in the Table 1.

Each successive reduction by the following cliques: K1 = {a, d, e, f},
K2 = {a, d, f}, K3 = {b, c} and K4 = {b, c, e, f} is feasible — see Table 1.

Table 1

E {abc} {adf} {aef} {bc} {ef} {cd} {ad} {d} {e}
q(E) 0 2 1 2 2 0 2 2 2

qK1(E) 0 1 0 2 1 0 1 1 1
qK1K2(E) 0 0 0 2 1 0 0 0 1
qK1...K3(E) 0 0 0 1 1 0 0 0 1
qK1...K4(E) 0 0 0 0 0 0 0 0 0

Therefore, K = (K1,K2,K3,K4) is a partition of edges of H that forms a
completely reducing sequence. It leads to the representation given in Table 2.

Table 2

V a b c d e f

Rv {1, 2} {3, 4} {3, 4} {1, 2} {1, 4} {1, 2, 4}

Theorem 3.2. A weighted set system H is r.s.i. if and only if there exists a
completely reducing sequence of H. If K = (K1, . . . ,Kn) completely reduces
H, then Inv(K) with the universe S = {1, . . . , n} is a representation of H.

Proof. The family R0 with R0
v = ∅ for each v ∈ V represents the weighted

set system HK1...Kn by set intersection because this weighted set system has
the weight of edges equal to zero. By (4) and Observation 5, Ri = (Ri

v)v∈V

with the universe Si = {n− i + 1, . . . n} such that

(6) Ri
v =

{
Ri−1

v ∪ {n− i + 1} if v ∈ Kn−i+1,

Ri−1
v otherwise
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represents the weighted set system HK1...Kn−i by set intersection for i = 1
and so on successively for i = 2, . . . , n−1. Additionally,Rn (equal to Inv(K))
with the universe Sn = {1, . . . , n} is a representation of H.

3.2. Intersection numbers of weighted set systems

According to Observation 5, we have the following corollary of Theorem 3.2.

Corollary 3.3. An indexed family of cliques K is a clique partition of edges
of a weighted set system H if and only if H is completely reduced by K.
Additionally, ω(H) ≤ |K|.

Theorem 3.4. If a weighted set system H = (V, E , q) is r.s.i., then

(7) max
E∈E

q(E) ≤ ω(H) ≤
∑

E∈MinE
q(E)

and the bounds are sharp.

Proof. If K is a complete reduction sequence of H then the sum of weights
of all edges from MinE decreases at least 1 in every step of the reduction.
Then

max
E∈E

q(E) ≤ |K| ≤
∑

E∈MinE
q(E)

and (7) follows from Theorem 3.2. For weighted set systems satisfying
|MinE| = 1 we have maxE∈E q(E) = q(Ē) for Ē ∈ MinE . Therefore, the
equalities are obtained simultaneously.

The lower bound in (7) is obtained for the following case:

Property 3.5. Let H = (V, E , q). Assume that for each edge E and every
F ⊂ E such that E ⊂ ⋃F we have

(8) q(E) ≥ min
F∈F

q(F ).

Then H is r.s.i. and ω(H) = maxE∈E q(E).

Proof. If (8) holds then K =
⋃{E ∈ E : q(E) > 0} reduces H and HK

also satisfies (8). So we can construct a sequence of the length maxE∈E q(E)
which completely reduces H. It is enough to use Corollary 3.3.
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Let us denote

(9) E+
E = {F ∈ E : E ⊂ F and F 6= E}.

In the same manner as above, we can show:

Property 3.6. Let H = (V, E , q). Assume that for each edge E and the
antichain F = Min E+

E we have

(10) q(E) ≥
∑

F∈F
q(F ).

Then H is r.s.i. and a representation can be obtained as the inverse family
of a set of edges of H.

Proof. Every K ∈ Max{E ∈ E : q(E) > 0} reduces H to HK which also
satisfies the assumption of the Property. So we can construct a sequence K
of elements of E which completely reduces H. It is enough to use Theorem
3.2.

It is easy to check that weighted set systems in Examples 2.3 and 3.1 satisfy
the assumption of Property 3.6. The solutions – the representations P of
Example 2.3 and P of Example 3.1 (presented in Table 4 below) are obtained
by the algorithm given in the proofs of Theorem 3.2 and Property 3.6.

Let us remark that the construction of representation by set intersec-
tions in Grolmusz [6] works for non-modular case only under the assumption
q(E) ≥ ∑

F∈E+
E

q(F ) for each E ⊂ V — stronger than the above assumption
in Property 3.6.

We say that the set of edges E is primitively covered if the following impli-
cation holds: If F ⊂ E and E ⊂ ⋃F then E ⊂ F for some F ∈ F .

Property 3.7. The set of edges E ⊂ 2V is primitively covered if and only
if for every non-increasing weight function q on E the weighted set system
H = (V, E , q) is r.s.i.. Additionally, ω(H) = max{q(E) | E ∈ E}.
Proof. The implication (⇒) follows from Property 3.5.

To the proof the other one, suppose that for every non-increasing weight
function q on E the weighted set system H = (V, E , q) is r.s.i. and E be not
primitive covered. There exist F1, . . . , Fn ∈ E and F ∈ E such that

F ⊂
n⋃

i=1

Fi and F \ Fi 6= ∅ for each i = 1, . . . , n.
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Define q on E as

q(E) =

{
1 if there exists i ≤ n such that E ⊂ Fi,

0 otherwise.

There is no sequence of cliques which completely reduces (V, E , q). By The-
orem 3.2, this weighted set system is not r.s.i., a contradiction.

4. Set Systems with Tightly Non-increasing
Weight

In opposite to E+
E given in (9), let us denote

(11) E−E = {F ∈ E : F ⊂ E and F 6= E}.

For a given H = (V, E , q) we define inductively the function q∗ on E , called
sub-weight in H in the following way:

q∗(E) = 0 for every E ∈ MaxE

and if q∗ has been defined on edges in E+
E then

(12) q∗(E) =
∑

F∈E+
E

[q(F )− q∗(F )] for E ∈ E \MaxE .

Definition 4.1. We call a weight function q tightly non-increasing if

(13) q(E) ≥ q∗(E) for every E ∈ E .

It is easy to check, that if q is tightly non-increasing then it is non-increasing.
For every two edges E ⊂ F we have

q(E) ≥ q∗(E) ≥ [q(F )− q∗(F )] + q∗(F ) = q(F ).

Theorem 4.1. Let H = (V, E , q). If q is tightly non-increasing, then H is
r.s.i. weighted set system. Further, a representation can be obtained as the
inverse family of a subset of E .
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Proof. Suppose that K ∈ E satisfies

(14) q(K) > 0 and q(E) = 0 for each E ∈ E+
K .

The function qK , given by (4), is nonnegative. So a reduction by K is feasible
and K reduces H to HK = (V, E , qK) with the sub-weight of edges q∗K .

Point 1. The function q∗K satisfies:

(15) q∗K(E) =

{
q∗(E)− 1 for E ∈ E−K ,

q∗(E) otherwise.

For E ∈ MaxE we have q∗K(E) = 0 = q∗(E) and (15) holds. Suppose that
E ∈ E and for each F ∈ E+

E (15) holds. If E ∈ E−K then

q∗(E) =
∑

F∈E+
E∩E−K

[qK(F )− q∗K(F )] + [qK(K)− q∗K(K)]

+
∑

F∈E+
E \(E−K∪{K})

[qK(F )− q∗K(F )]

=
∑

F∈E+
E∩E−K

[q(F )− 1− q∗(F ) + 1] + [q(K)− 1− q∗(K)]

+
∑

F∈E+
E \(E−K∪{K})

[q(F )− q∗(F )] = q∗(E)− 1.

If E 6∈ E−K then E+
E ∩ (E−K ∪ {K}) = ∅ and q∗K(E) = q∗(E). Therefore E

satisfies (15).

Point 2. The function q∗K is tightly non-increasing. For E ∈ E−K , by (15) we
have

qK(E) = q(E)− 1 ≥ q∗(E)− 1 = q∗K(E).

The same holds for E ∈ E+
K . For E = K we have

qK(K) = q(K)− 1 ≥ 0 = q∗K(K)

because of the assumption on K.
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In order to prove the Theorem we construct step by step cliques for suc-
cessive reduction. We take K1 ∈ E which satisfies (14) for q. So on, for
i = 1, . . . , n − 1 if only qK1...Ki 6≡ 0, we take Ki+1 ∈ E which satisfies (14)
for qK1...Ki . There exists n such that qK1...Kn ≡ 0. All functions qK1...Ki are
nonnegative and, by Point 2, tightly non-increasing.

The constructed sequence K = (K1, . . . , Kn) of cliques of H completely
reduces H. From Theorem 3.2 follows that Inv(K) with the universe S =
{1, . . . , n} is a desired representation of H.

It is easy to check that weighted set systems in Examples 2.3 and 3.1 have
tightly non-increasing weight functions. The weighted set system in Example
2.2 does not satisfy this property.

As a corollary we have a generalization of the Marczewski existence
theorem.

Corollary 4.2. If (V, E) is a hypergraph such that E is an antichain (in
particular a uniform hypergraph), then for every weight q the weighted set
system H = (V, E , q) is r.s.i..

Example 4.3. Consider weighted set system given in Example 3.1, i.e.,
H = (V, E , q), where V = {a, b, c, d, e, f}, E and the weight of edges q are
given in the Table 1. We have (see (2)):

Ẽ = {{a, d, f}, {a, e, f}, {b, c}, {e, f}, {a, d}, {d}, {e}}
and

Ẽ− = Ẽ ∪ {{a, f}, {d, f}, {a, e}, {a}, {b}, {c}, {f}, ∅}.

Define H̄ = (V, E ∪ (2V \ Ẽ−), q̄), where

q̄(E) =

{
q(E) for E ∈ E ,

0 for E ∈ (2V \ Ẽ−) \ E .

The sub-weight q∗ is given in Table 3:

Table 3

E {abc} {adf} {aef} {bc} {ef} {cd} {ad} {d} {e}
q(E) 0 2 1 2 2 0 2 2 2
q∗(E) 0 0 0 0 1 0 2 2 2
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It is easy to see that q̄∗(E) = q∗(E) for each E ∈ E and q̄∗(E) = 0 for
each other edge of H̄. Therefore, q̄ is tightly non-increasing weight function
of H̄. The sequence K = ({adf}, {adf}, {aef}, {bc}, {bc}, {ef}) is a partition
of edges of H̄ which forms a completely reducing sequence. It leads to the
representation P = (Pv)v∈V with the universe S = {1, . . . , 6} of H, given in
Table 4.

Table 4

V a b c d e f

Pv {1, 2, 3} {4, 5} {4, 5} {1, 2} {3, 6} {1, 2, 3, 6}

It is worth to remark that both families of sets R (given in Table 2) and P
(in Table 4) are representations of H by set intersection. Namely, H is an
intersection set system only of the family P because (V, Ẽ) is not intersection
hypergraph of R. Therefore, see Theorem 2.4, H is i.s.s..

Theorem 4.4. If the weight function of a weighted set system H = (V, E , q)
is tightly non-increasing, then it is an intersection set system. Further,

ω̄(H) =
∑

E∈E
[q(E)− q∗(E)].

Proof. According to Theorem 2.4, we construct the weighted set system
H̄ = (V, E ∪ (2V \ Ẽ−), q̄), where q̄ is an extension of q such that q̄(E) = 0 for
each E ∈ (2V \ Ẽ−) \ E . It is easy to check that q̄ is tightly non-increasing in
H̄ and q̄∗(E) = q∗(E) for each E ∈ E . From Theorems 2.4 and 4.1 follows
that H is i.s.s..

Let P with the universe S be a representation of H̄. Its weight function
qP satisfies:

qP(E) = q̄(E) for each E ∈ E ∪ (2V \ Ẽ−)

and
qP(E) 6= 0 ⇔ E ∈ Ẽ−.

Therefore, q∗P(E) = q̄∗(E) for each E ∈ E ∪ (2V \ Ẽ−) and |S| = qP(∅) with

(16) qP(∅) ≥ q∗P(∅) =
∑

E∈E
[q(E)− q∗(E)] +

∑

E∈(Ẽ\E)

[qP(E)− q∗P(E)].
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Let q̃ be the unique extension of q̄ on 2V such that q̃ = q̃∗. The weight
function q̃ is tightly non-increasing. If R is a representation with the
universe W of (V, 2V , q̃) then it is also a representation of H̄. Additionally,
H is an intersection set system of R. We have

|W | = qR(∅) =
∑

E∈2V

[q̃(E)− q̃∗(E)] =
∑

E∈E
[q(E)− q∗(E)] = ω̄(H)

because the construction and (16).

For the case considered in Example 4.1, the unique extension of q̄ on 2V

such that q̃ = q̃∗ is presented in Table 5.

Table 5

E abc adf aef bc ef cd ad d e af df ae f a b c ∅
q̃(E) 0 2 1 2 2 0 2 2 2 3 2 1 4 3 2 2 6
q̃∗(E) 0 0 0 0 1 0 2 2 2 3 2 1 4 3 2 2 6

4.1. Representations of complete weighted set systems

In the remainder of this section we assume H = (V, 2V , q). We ask for which
q the weighted set system H is r.s.i.. We begin with some observations.

If R = (Rv)v∈V is an indexed family of subsets of V and E ⊂ V, then the
set

ΛR(E) =
( ⋂

v∈E

Rv

)
\

( ⋃

v∈V \E
Rv

)

is called an atom of R generated by E.

Lemma 1. Let R = (Rv)v∈V be an indexed family. We have:

(i) If E, F ∈ 2V and E 6= F, then ΛR(E) ∩ ΛR(F ) = ∅,
(ii) for each v ∈ V

Rv =
⋃
{ΛR(E) : E ⊂ V and v ∈ E}.
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Proof. Suppose (i) of the lemma is false and E \ F 6= ∅. Then we could
find v ∈ E \F and s ∈ ΛR(E)∩ΛR(E). It follows that s ∈ Rv because v ∈ E
and s ∈ ΛR(E). On the contrary, s 6∈ Rv because v 6∈ F and s ∈ ΛR(F ).

Let v ∈ V and denote Av =
⋃ {ΛR(E) : E ⊂ V and v ∈ E }. If

s ∈ Rv then s ∈ ΛR({u ∈ V : s ∈ Ru}) ⊂ Av. If s ∈ Av then there
exists F ⊂ V such that s ∈ ΛR(F ) and v ∈ F. It implies s ∈ Rv. Then we
have (ii).

Lemma 2. If R is a representation of H = (V, 2V , q) then for every edge
E ⊂ V we have

(17) |ΛR(E)| = q(E)− q∗(E).

Proof. We prove it step by step starting from E = V.

|ΛR(V )| =
∣∣∣

⋂

v∈V

Rv

∣∣∣ = q(V ) = q(V )− q∗(V ).

Suppose (17) is true for each F such that E ⊂ F and F 6= E. From Lemma 1
we have

q(E) =
∣∣∣

⋂

v∈E

Rv

∣∣∣ =
∣∣∣

⋂

v∈E

⋃
{ΛR(F ) : F ⊂ E and v ∈ F}

∣∣∣

=
∣∣∣
⋃
{ΛR(F ) : F ⊂ V and E ⊂ F}

∣∣∣ = |ΛR(E)|+
∑

F∈(2V )+E

|ΛR(F )|

= |ΛR(E)|+
∑

F∈(2V )+E

[q(F )− q∗(F )] = |ΛR(E)|+ q∗(E).

Theorem 4.5. A weighted set system H = (V, 2V , q) is r.s.i. if and only if
its weight function is tightly non-increasing. Further, there exists at most
one representation.

Proof. The first part of the theorem follows from Theorem 4.1 and
Lemma 2. Let R = (Rv)v∈V and P = (Pv)v∈V be representations of H
by set intersections. By Lemma 1(i), each of S =

⋃
Rv and W =

⋃
Pv can

be partitioned into disjoint subsets;

S =
⋃

E⊂V

ΛR(E) and W =
⋃

E⊂V

ΛP(E).
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For every E ⊂ V we have |ΛR(E)| = |ΛP(E)|, because Lemma 1(i). Let ϕE

be a bijection from ΛR(E) on ΛP(E) and ϕ : S → W such that

ϕ(s) = ϕE(s) if and only if s ∈ ΛR(E).

Of course, ϕ is a bijection and for every v ∈ V we have Pv = ϕ(Rv).

4.2. Intersection hypergraphs

For a given hypergraph (V, E) we define a class QE of adequate weight func-
tions on 2V such that q ∈ QE if and only if {E ⊂ V : q(E) > 0 = E−}.

The problem if a hypergraph (V, E) is an intersection hypergraph is
equivalent to the following problem:

For which hypergraphs (V, E) there exists a weight q ∈ QE such that the
weighted set system (V, 2V , q) is r.s.i.. We define the intersection number of
(V, E) as

w((V, E)) = min{ω((V, 2V , q)) : q ∈ QE}.

In this context, there is a natural question about uniquely intersectable
hypergraphs (see Bylka and Komar [3] for intersection graphs).

Theorem 4.6. Every hypergraph (V, E) is an intersection hypergraph. Fur-
ther w((V, E)) = |MaxE| with unique representation by set intersections.

Proof. There exists exactly one function q ∈ QE such that

qE(E) =





0 for E ∈ 2V \ E−,

1 for E ∈ MaxE ,

q∗(E) for E ∈ E− \MaxE .

Of course, to know q on MaxE ∪ (2V \ E−) we can construct q∗ on 2V . The
weight q is tightly non-increasing and every complete reduction sequence
has |MaxE| elements. The theorem follows from Theorem 4.5 and the con-
struction.
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