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1. Introduction

A vertex cover of an undirected graph G = (V,E) is a subset S ⊆ V such
that if e = uv ∈ E, then {u, v} ∩ S 6= ∅. A set D ⊆ V ∪ E is called a total

cover if every element of (V ∪ E) \ D is adjacent or incident to an element
in D.

The notion of total covering is first defined in [1], and then studied
in many papers [2, 5, 12, 13]. Many variations of the covering problems
including vertex covers, total covers, dominating sets, et cetera have been
studied previously (see [6]).

The minimum total cover problem was first shown to be NP-hard in
general graphs by Majumdar [10], where he also gives a linear-time algorithm
for trees. Hedetniemi et al. [7] showed that the problem is NP-hard for
bipartite and chordal graphs. Manlove [11] demonstrates NP-hardness for
planar bipartite graphs of maximum degree 4.

Trivially for every graph a vertex cover together with all isolated vertices
constitute a total cover. It is well-known that a maximal matching can be
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used to find a vertex cover of size at most twice the minimum vertex cover:
If M is a maximal matching of the graph G, the set S of all 2|M | vertices
involved in M constitute a vertex cover of G. Moreover a vertex cover of G

has at least |M | elements, because every vertex is involved in at most one
matching edge. Thus taking the vertices which are involved in a maximal
matching gives a 2-approximation algorithm for the minimum vertex cover
problem.

It is widely believed that it is NP-hard to approximate the vertex cover
problem to within any factor smaller than 2, and recently Khot and Regev [9]
proved that the Unique Games Conjecture would imply this. So far, the best
known lower bound is a recent result of Dinur and Safra [3] which shows that
it is NP-hard to approximate this problem to within any factor smaller than
10
√

5 − 21 ≈ 1.36067.
The approximability of the problem of finding a minimum total cover

does not seem to have received explicit attention in the literature previously.
However given a graph G = (V,E), the relationship α2(G) = γ(T (G)) holds,
where α2(G) denotes the minimum size of a total cover in G, γ(G) denotes
the minimum size of a dominating set in G, and T (G) denotes the total
graph of G (this is the graph with vertex set V ∪ E, and two vertices are
adjacent in T (G) if and only if the corresponding elements are adjacent
or incident as vertices or edges of G). It follows from the correspondence
that the minimum total cover problem is approximable within a factor of
1 + log n, where n = |V | [8]. Also, if ∆(G) ≤ k, then ∆(T (G)) ≤ 2k + 1.
It follows that, in a graph of maximum degree k, the problem of finding
a minimum total cover is approximable within a factor of H2(k+1) − 1

2 [4],

where Hi =
∑i

j=1
1
j

is the ith Harmonic number.
We introduce a simple and elementary algorithm which finds a total

cover of size at most twice the size of an optimal total covering. Note that,
for k ≥ 3, H2(k+1) − 1

2 ≥ 2, implying that the above derived results would
be improved upon this 2-approximation algorithm.

2. The Approximation Algorithm

In this section we introduce an approximation algorithm for computing the
minimum total cover number of a graph.

After that straightforward 2-approximation algorithm for the minimum
vertex cover problem, it is tempting to try the same algorithm for the total
cover problem. It is easy to see that if we modify this algorithm to include



An Approximation Algorithm for the Total ... 555

all isolated vertices too, we obtain an approximation algorithm for the total
cover problem. The following example shows that the algorithm is not a
(4 − ǫ)-approximation: Consider the graph illustrated in Figure 1 for even
n. The maximum matching of this graph is of size n while the set S which
consists of v and all edges of the form e = uiui+1 is a total cover of size
n
2 +1 of the graph. Lemma 1 will immediately conclude that the mentioned
algorithm has factor 4.
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Figure 1. A hard example for maximal matching algorithm.

Next we introduce a 2-approximation algorithm for this problem. Consider
a graph G = (V,E) with t isolated vertices. Let M be a maximum matching
in G of size m. Let k be the number of vertices that (i) are not involved in
M , and (ii) are adjacent to both endpoints of an edge in M ; we call these
bad vertices. Note that since M is of maximum size, if a bad vertex w is
adjacent to both endpoints of e = uv, then neither u nor v is adjacent to
any other vertex outside M . We will find a total cover S of size m + k + t

in G through the following algorithm:

1. Obviously every isolated vertex must be in S. Remove all these vertices
from G.

2. Select a matching edge e = v1v2 where both v1 and v2 are adjacent to a
bad vertex v. Add v and e to S and remove v, v1, v2 from G. Repeat this
until all bad vertices are removed.

3. After the first two steps the size of S is 2k + t. Now we have a graph G1

with a maximum matching M1 of size m − k without any bad vertices.
Next we apply the following step:

• Pick the edges e = uv ∈ M1 in an arbitrary order, and note that at
most one of u and v is adjacent to some vertices in G1 \ M1:

– If one of u and v is adjacent to some vertices z ∈ G1 \ M1 which
are not covered by S, then add that vertex to S.

– Otherwise add e to S.
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It is clear that S is of size m+ k + t. We now show that S covers every edge
between vertices covered by M1 (It is clear that S covers all other elements
of G). Suppose that e1 = u1v1 and e2 = u2v2 are matching edges in M1

and the edge e = u1u2 is not covered. Then none of e1, e2, u1, u2 are in
S, and so both v1, v2 are in S. Suppose that among e1 and e2, the edge
e1 was picked first. So there is a vertex w1 ∈ G1 \ M1 adjacent to v1 and
there is a vertex w2 ∈ G1 \ M1 which is adjacent to v2 but not to v1. The
path w1,v1,u1,u2,v2,w2 is an augmenting path for M1 and this contradicts
the fact that M is a maximum matching of G.

Lemma 1. The minimum total cover of G has at least m+k
2 + t elements.

P roof. Call every triangle consisting of a bad vertex v and a matching
edge whose both endpoints are adjacent to v a bad triangle. There are k

bad vertices, and no two bad vertices can share a common matching edge,
thus there exist at least k bad triangles.

Suppose that S is a total cover in G. Let A ⊆ S be a maximal set of
edges which covers 2|A| edges of M , consisting of the edges each covering
precisely two edges of M . Let B = S \ A. Every bad triangle has at least
one edge which is not covered by A. Since no edge is incident to two bad
triangles with distinct vertices, no element (that is, neither a vertex nor an
edge) can cover two edges from two disjoint bad triangles. Since the number
of the bad triangles is at least k, we have |B| ≥ k + t, as B has to cover the
isolated vertices too.

Since B covers at most |B| − t edges of M , S = A ∪ B covers at most
2|A| + |B| − t edges of M . Thus 2|A| + |B| − t ≥ m. From this inequality
and |B| ≥ k + t we get 2(|A| + |B|) ≥ m + k + 2t which implies that
|S| = |A| + |B| ≥ m+k

2 + t.

Theorem 1. The minimum total cover problem admits a 2-approximation

algorithm.

P roof. Immediately from Lemma 1.

Consider the graph illustrated in Figure 1. Our algorithm finds a total cover
of size n + 1. The graph in Figure 1 has a total cover of size n

2 + 1. The
result of our algorithm is 2− o(1) times the size of the minimum total cover
of the graph. So our algorithm is not a (2 − ǫ)-approximation, for any ǫ.



An Approximation Algorithm for the Total ... 557

References
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