# A PROOF OF THE CROSSING NUMBER OF $K_{3, n}$ IN A SURFACE 

Pak Tung Ho<br>Department of Mathematics, MATH 1044<br>Purdue University<br>West Lafayette, IN 47907-2067, USA<br>e-mail: pho@math.purdue.edu


#### Abstract

In this note we give a simple proof of a result of Richter and Siran by basic counting method, which says that the crossing number of $K_{3, n}$ in a surface with Euler genus $\varepsilon$ is $$
\left\lfloor\frac{n}{2 \varepsilon+2}\right\rfloor\left\{n-(\varepsilon+1)\left(1+\left\lfloor\frac{n}{2 \varepsilon+2}\right\rfloor\right)\right\}
$$


Keywords: crossing number, bipartite graph, surface.
2000 Mathematics Subject Classification: 05 C 10 .

## 1. Introduction

In [1], Guy and Jenkyns showed that the crossing number of $K_{3, n}$ in the torus is $\left\lfloor(n-3)^{2} / 12\right\rfloor$. In [2], Richter and Siran generalized their result and showed the following:

Theorem 1.1. If the surface $\Sigma$ has Euler genus $\varepsilon$, then the crossing number of $K_{3, n}$ in $\Sigma$ is given by

$$
\begin{equation*}
\operatorname{cr}_{\Sigma}\left(K_{3, n}\right)=\left\lfloor\frac{n}{2 \varepsilon+2}\right\rfloor\left\{n-(\varepsilon+1)\left(1+\left\lfloor\frac{n}{2 \varepsilon+2}\right\rfloor\right)\right\} . \tag{1}
\end{equation*}
$$

(The Euler genus of a surface $\Sigma$ is $2 h$ if $\Sigma$ is the sphere with $h$ handles and $k$ if $\Sigma$ is the sphere with $k$ crosscaps.) In this note, we give a simple proof of Theorem 1.1 by using basic counting method. In the following, we will denote the right hand side of (1) by $f(\varepsilon, n)$.

## 2. Proof of Theorem 1.1

To prove that $\operatorname{cr} r_{\Sigma}\left(K_{3, n}\right) \leq f(\varepsilon, n)$, one can refer to [2] for the drawings. To complete the proof, it suffices to show that

$$
\begin{equation*}
\operatorname{cr}_{\Sigma}\left(K_{3, n}\right) \geq f(\varepsilon, n) . \tag{2}
\end{equation*}
$$

We will prove (2) by induction. For $n \leq 2 \varepsilon+2$, from [3] and [4], we know that $K_{3, n}$ can be embedded in $\Sigma$. Therefore, $\operatorname{cr}_{\Sigma}\left(K_{3, n}\right)=0=f(\varepsilon, n)$, which shows that (2) is true for $n \leq 2 \varepsilon+2$.

Therefore we may assume that $n>2 \varepsilon+2$. Let $n=(2 \varepsilon+2) q+r$ where $0 \leq r \leq 2 \varepsilon+1$. Then

$$
\begin{equation*}
f(\varepsilon, n)=(\varepsilon+1)\left(q^{2}-q\right)+q r . \tag{3}
\end{equation*}
$$

Note that, in a crossing-free drawing of a (connected) subgraph of $K_{3, n}$ in $\Sigma$, every face has even degree. Let $t_{j}$ be the number of regions with $j$ bounding arcs; and $F, E, V$ be the number of faces, arcs, vertices, respectively. Then $t_{j}=0$ if $j$ is odd, $F=t_{4}+t_{6}+t_{8}+\ldots$, and $2 E=4 t_{4}+6 t_{6}+8 t_{8}+\ldots$, and by the Euler's formula for $\Sigma$,

$$
\begin{align*}
& V \geq 2-\varepsilon+E-F,  \tag{4}\\
& V \geq 2-\varepsilon+t_{4}+2 t_{6}+3 t_{8}+\ldots \geq 2-\varepsilon+F . \tag{5}
\end{align*}
$$

Suppose we have an optimal drawing of $K_{3, n}$ in $\Sigma$, i.e., one with $\operatorname{cr}_{\Sigma}\left(K_{3, n}\right)$ crossings, and that by removing $c r_{\Sigma}\left(K_{3, n}\right)$ edges, a crossing-free drawing is produced. Then (4) and (5) give $E-V=\left(3 n-c r_{\Sigma}\left(K_{3, n}\right)\right)-(3+n) \leq$ $F+\varepsilon-2 \leq V+2 \varepsilon-4=3+n+2 \varepsilon-4$, so

$$
\begin{equation*}
\operatorname{cr}_{\Sigma}\left(K_{3, n}\right) \geq n-2-2 \varepsilon . \tag{6}
\end{equation*}
$$

If $q=1$, then $n=(2 \varepsilon+2)+r$. Then by (3) and (6), we have

$$
c r_{\Sigma}\left(K_{3,(2 \varepsilon+2)+r}\right) \geq r=f(\varepsilon,(2 \varepsilon+2)+r) .
$$

This implies that (2) holds for $q=1$.
Therefore we may assume that $q \geq 2$. Since $K_{3, n}$ contains $n$ different $K_{3, n-1}$ and each of $K_{3, n-1}$ contains at least $f(\varepsilon, n-1)$ crossings by induction hypothesis. Note that a crossing in a drawing of $K_{3, n}$ appears in $n-2$
different drawings of $K_{3, n-1}$. Hence

$$
\begin{equation*}
\operatorname{cr}_{\Sigma}\left(K_{3, n}\right) \geq \frac{n}{n-2} \operatorname{cr}_{\Sigma}\left(K_{3, n-1}\right)=\frac{n}{n-2} f(\varepsilon, n-1) . \tag{7}
\end{equation*}
$$

From (3) and (7), we have
$\operatorname{cr}_{\Sigma}\left(K_{3, n}\right) \geq \begin{cases}(\varepsilon+1)\left(q^{2}-q\right)+q r-1+\frac{q r+r-2}{n-2}, & \text { if } 1 \leq r \leq 2 \varepsilon+1 ; \\ (\varepsilon+1)\left(q^{2}-q\right), & \text { if } r=0 .\end{cases}$
Note that $q \geq 2$ and $1 \leq r \leq 2 \varepsilon+1$ imply that $\frac{q r+r-2}{n-2}>0$. Hence (3), (8) and the fact that the crossing number is an integer imply that (2) holds for $q \geq 2$. This completes the proof of Theorem 1.1.

## References

[1] R.K. Guy and T.A. Jenkyns, The toroidal crossing number of $K_{m, n}$, J. Combin. Theory 6 (1969) 235-250.
[2] R.B. Richter and J. Siran, The crossing number of $K_{3, n}$ in a surface, J. Graph Theory 21 (1996) 51-54.
[3] G. Ringel, Das Geschlecht des vollständigen paaren Graphen, Abh. Math. Sem. Univ. Hamburg 28 (1965) 139-150.
[4] G. Ringel, Der vollständige paare Graph auf nichtorientierbaren Flächen, J. Reine Angew. Math. 220 (1965) 88-93.

