Discussiones Mathematicae Graph Theory 27 (2007) 549–551

A PROOF OF THE CROSSING NUMBER OF $K_{3,n}$ IN A SURFACE

Pak Tung Ho

Department of Mathematics, MATH 1044 Purdue University West Lafayette, IN 47907–2067, USA e-mail: pho@math.purdue.edu

Abstract

In this note we give a simple proof of a result of Richter and Siran by basic counting method, which says that the crossing number of $K_{3,n}$ in a surface with Euler genus ε is

$$\left\lfloor \frac{n}{2\varepsilon+2} \right\rfloor \left\{ n - (\varepsilon+1) \left(1 + \left\lfloor \frac{n}{2\varepsilon+2} \right\rfloor \right) \right\}.$$

Keywords: crossing number, bipartite graph, surface. **2000 Mathematics Subject Classification:** 05C10.

1. INTRODUCTION

In [1], Guy and Jenkyns showed that the crossing number of $K_{3,n}$ in the torus is $\lfloor (n-3)^2/12 \rfloor$. In [2], Richter and Siran generalized their result and showed the following:

Theorem 1.1. If the surface Σ has Euler genus ε , then the crossing number of $K_{3,n}$ in Σ is given by

(1)
$$cr_{\Sigma}(K_{3,n}) = \left\lfloor \frac{n}{2\varepsilon + 2} \right\rfloor \left\{ n - \left(\varepsilon + 1\right)\left(1 + \left\lfloor \frac{n}{2\varepsilon + 2} \right\rfloor \right) \right\}.$$

(The *Euler genus* of a surface Σ is 2h if Σ is the sphere with h handles and k if Σ is the sphere with k crosscaps.) In this note, we give a simple proof of Theorem 1.1 by using basic counting method. In the following, we will denote the right hand side of (1) by $f(\varepsilon, n)$.

2. Proof of Theorem 1.1

To prove that $cr_{\Sigma}(K_{3,n}) \leq f(\varepsilon, n)$, one can refer to [2] for the drawings. To complete the proof, it suffices to show that

(2)
$$cr_{\Sigma}(K_{3,n}) \ge f(\varepsilon, n).$$

We will prove (2) by induction. For $n \leq 2\varepsilon + 2$, from [3] and [4], we know that $K_{3,n}$ can be embedded in Σ . Therefore, $cr_{\Sigma}(K_{3,n}) = 0 = f(\varepsilon, n)$, which shows that (2) is true for $n \leq 2\varepsilon + 2$.

Therefore we may assume that $n > 2\varepsilon + 2$. Let $n = (2\varepsilon + 2)q + r$ where $0 \le r \le 2\varepsilon + 1$. Then

(3)
$$f(\varepsilon, n) = (\varepsilon + 1)(q^2 - q) + qr.$$

Note that, in a crossing-free drawing of a (connected) subgraph of $K_{3,n}$ in Σ , every face has even degree. Let t_j be the number of regions with j bounding arcs; and F, E, V be the number of faces, arcs, vertices, respectively. Then $t_j = 0$ if j is odd, $F = t_4 + t_6 + t_8 + ...$, and $2E = 4t_4 + 6t_6 + 8t_8 + ...$, and by the Euler's formula for Σ ,

(4)
$$V \ge 2 - \varepsilon + E - F,$$

(5)
$$V \ge 2 - \varepsilon + t_4 + 2t_6 + 3t_8 + \ldots \ge 2 - \varepsilon + F.$$

Suppose we have an optimal drawing of $K_{3,n}$ in Σ , i.e., one with $cr_{\Sigma}(K_{3,n})$ crossings, and that by removing $cr_{\Sigma}(K_{3,n})$ edges, a crossing-free drawing is produced. Then (4) and (5) give $E - V = (3n - cr_{\Sigma}(K_{3,n})) - (3 + n) \leq F + \varepsilon - 2 \leq V + 2\varepsilon - 4 = 3 + n + 2\varepsilon - 4$, so

(6)
$$cr_{\Sigma}(K_{3,n}) \ge n - 2 - 2\varepsilon.$$

If q = 1, then $n = (2\varepsilon + 2) + r$. Then by (3) and (6), we have

$$cr_{\Sigma}(K_{3,(2\varepsilon+2)+r}) \ge r = f(\varepsilon, (2\varepsilon+2)+r)$$

This implies that (2) holds for q = 1.

Therefore we may assume that $q \geq 2$. Since $K_{3,n}$ contains n different $K_{3,n-1}$ and each of $K_{3,n-1}$ contains at least $f(\varepsilon, n-1)$ crossings by induction hypothesis. Note that a crossing in a drawing of $K_{3,n}$ appears in n-2

A PROOF OF THE CROSSING NUMBER OF ...

different drawings of $K_{3,n-1}$. Hence

(7)
$$cr_{\Sigma}(K_{3,n}) \ge \frac{n}{n-2} cr_{\Sigma}(K_{3,n-1}) = \frac{n}{n-2} f(\varepsilon, n-1).$$

From (3) and (7), we have (8)

$$cr_{\Sigma}(K_{3,n}) \ge \begin{cases} (\varepsilon+1)(q^2-q) + qr - 1 + \frac{qr+r-2}{n-2}, & \text{if } 1 \le r \le 2\varepsilon + 1; \\ (\varepsilon+1)(q^2-q), & \text{if } r = 0. \end{cases}$$

Note that $q \ge 2$ and $1 \le r \le 2\varepsilon + 1$ imply that $\frac{qr+r-2}{n-2} > 0$. Hence (3), (8) and the fact that the crossing number is an integer imply that (2) holds for $q \ge 2$. This completes the proof of Theorem 1.1.

References

- [1] R.K. Guy and T.A. Jenkyns, *The toroidal crossing number of* $K_{m,n}$, J. Combin. Theory **6** (1969) 235–250.
- [2] R.B. Richter and J. Siran, *The crossing number of* $K_{3,n}$ *in a surface*, J. Graph Theory **21** (1996) 51–54.
- [3] G. Ringel, Das Geschlecht des vollständigen paaren Graphen, Abh. Math. Sem. Univ. Hamburg 28 (1965) 139–150.
- [4] G. Ringel, Der vollständige paare Graph auf nichtorientierbaren Flächen, J. Reine Angew. Math. 220 (1965) 88–93.

Received 11 September 2006 Accepted 21 March 2007