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Abstract

In this note we give a simple proof of a result of Richter and Siran
by basic counting method, which says that the crossing number of K3,n

in a surface with Euler genus ε is
⌊ n

2ε + 2

⌋{

n − (ε + 1)
(

1 +
⌊ n

2ε + 2

⌋)}

.
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1. Introduction

In [1], Guy and Jenkyns showed that the crossing number of K3,n in the
torus is ⌊(n− 3)2/12⌋. In [2], Richter and Siran generalized their result and
showed the following:

Theorem 1.1. If the surface Σ has Euler genus ε, then the crossing number

of K3,n in Σ is given by

crΣ(K3,n) =
⌊ n

2ε + 2

⌋{

n −
(

ε + 1)(1 +
⌊ n

2ε + 2

⌋)}

.(1)

(The Euler genus of a surface Σ is 2h if Σ is the sphere with h handles and
k if Σ is the sphere with k crosscaps.) In this note, we give a simple proof
of Theorem 1.1 by using basic counting method. In the following, we will
denote the right hand side of (1) by f(ε, n).
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2. Proof of Theorem 1.1

To prove that crΣ(K3,n) ≤ f(ε, n), one can refer to [2] for the drawings. To
complete the proof, it suffices to show that

crΣ(K3,n) ≥ f(ε, n).(2)

We will prove (2) by induction. For n ≤ 2ε + 2, from [3] and [4], we know
that K3,n can be embedded in Σ. Therefore, crΣ(K3,n) = 0 = f(ε, n), which
shows that (2) is true for n ≤ 2ε + 2.

Therefore we may assume that n > 2ε + 2. Let n = (2ε + 2)q + r where
0 ≤ r ≤ 2ε + 1. Then

f(ε, n) = (ε + 1)(q2 − q) + qr.(3)

Note that, in a crossing-free drawing of a (connected) subgraph of K3,n in Σ,
every face has even degree. Let tj be the number of regions with j bounding
arcs; and F , E, V be the number of faces, arcs, vertices, respectively. Then
tj = 0 if j is odd, F = t4 + t6 + t8 + ..., and 2E = 4t4 + 6t6 + 8t8 + ..., and
by the Euler’s formula for Σ,

V ≥ 2 − ε + E − F,(4)

V ≥ 2 − ε + t4 + 2t6 + 3t8 + . . . ≥ 2 − ε + F.(5)

Suppose we have an optimal drawing of K3,n in Σ, i.e., one with crΣ(K3,n)
crossings, and that by removing crΣ(K3,n) edges, a crossing-free drawing is
produced. Then (4) and (5) give E − V = (3n − crΣ(K3,n)) − (3 + n) ≤
F + ε − 2 ≤ V + 2ε − 4 = 3 + n + 2ε − 4, so

crΣ(K3,n) ≥ n − 2 − 2ε.(6)

If q = 1, then n = (2ε + 2) + r. Then by (3) and (6), we have

crΣ(K3,(2ε+2)+r) ≥ r = f(ε, (2ε + 2) + r).

This implies that (2) holds for q = 1.

Therefore we may assume that q ≥ 2. Since K3,n contains n different
K3,n−1 and each of K3,n−1 contains at least f(ε, n − 1) crossings by induc-
tion hypothesis. Note that a crossing in a drawing of K3,n appears in n− 2
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different drawings of K3,n−1. Hence

crΣ(K3,n) ≥
n

n − 2
crΣ(K3,n−1) =

n

n − 2
f(ε, n − 1).(7)

From (3) and (7), we have
(8)

crΣ(K3,n) ≥







(ε + 1)(q2 − q) + qr − 1 +
qr + r − 2

n − 2
, if 1 ≤ r ≤ 2ε + 1;

(ε + 1)(q2 − q), if r = 0.

Note that q ≥ 2 and 1 ≤ r ≤ 2ε + 1 imply that qr+r−2
n−2 > 0. Hence (3), (8)

and the fact that the crossing number is an integer imply that (2) holds for
q ≥ 2. This completes the proof of Theorem 1.1.
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