
Discussiones Mathematicae

Graph Theory 27 (2007 ) 541–547

FRACTIONAL DOMINATION IN PRISMS

Matthew Walsh

Department of Mathematical Sciences

Indiana-Purdue University

Fort Wayne, Indiana 46805, USA

e-mail: walshm@ipfw.edu

Abstract

Mynhardt has conjectured that if G is a graph such that γ(G) =
γ(πG) for all generalized prisms πG then G is edgeless. The fractional
analogue of this conjecture is established and proved by showing that,
if G is a graph with edges, then γf (G × K2) > γf (G).
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Throughout let us assume that graphs are finite and simple; our notation
concurs with [3]. Let G = (V,E) be a graph; the (closed) neighbourhood

N [v] of a vertex v ∈ V consists of v itself and all vertices u ∈ V such that
u ∼ v. A set S ⊆ V is independent if no two members of S are adjacent; S
is dominating if ∪v∈SN [v] = V . The size of a smallest dominating set in G
is denoted by γ(G) and termed the domination number of G.

By generalizing “set” to “fuzzy set” in the definition of domination, one
can define the concept of fractional domination. A function f : V → [0, 1]
is a fractional dominating function precisely when

∑

u∈N [v] f(u) ≥ 1 for all
v ∈ V . If one defines the size of a fractional dominating function f by
|f | =

∑

v∈V f(v) then one can talk about the minimum size of a fractional
dominating function of G; this is the fractional domination number of G
and denoted by γf (G). Since the characteristic function of a dominating set
in G is clearly a fractional dominating function of G, γf (G) ≤ γ(G).

(Notation will sometimes be abused in the following standard fashions:
if S is a set of vertices, then f(S) =

∑

v∈S f(v). Thus, |f | = f(V ). In the
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particular case where the set in question is the closed neighbourhood N [v]
of the vertex v, the notation is further condensed to f [v] = f(N [v]).)

An equitable partition P1, . . . , Pk of the vertices of a graph G is a parti-
tion with the properties that every induced graph G[Pi] is regular, and every
induced bipartite graph between two cells Pi, Pj is biregular. The following
result can be found in [5].

Theorem 1. If G is a graph that admits an equitable partition {Pi}
k
i=1,

then there exists a minimum fractional dominating function of G that is

constant on each cell Pi, i = 1, . . . , k.

Suppose that G is a graph and π a permutation on its vertex set V . The
generalized prism πG is the graph with vertex set Vπ = V × {0, 1}, with
(u, i) ∼ (v, j) when either i = j and u ∼ v in G, or else i 6= j and v = π(u).
When π = 1, the identity permutation, then the graph 1G = G × K2 is
called the prism of G.

The following result from [1] is easily shown.

Lemma 2. For any graph G and any permutation π of its vertex set, γ(G) ≤
γ(πG) ≤ 2γ(G).

A graph G for which γ(G) = γ(πG) for any permutation π is a universal

γ-fixer ; if 2γ(G) = γ(πG) for all π, then G is a universal γ-doubler. In [4]
it is conjectured that the only universal γ-fixers are graphs without edges.

This paper is concerned with the fractional analogue of the conjecture
mentioned above. To develop this, some elementary tools are needed.

As discussed in [2], for a function f : V → [0, 1] define the sets Bf =
{v ∈ V : f [v] = 1} and Pf = {v ∈ V : f(v) > 0}.

Lemma 3 [2]. A dominating function f is a minimal dominating function

if and only if Bf dominates Pf .

If f is a fractional dominating function of the prism πG, then define the
condensation fπ : V (G) → [0, 1] of f by

fπ(v) = min{1, f((v, 0)) + f((π(v), 1))}

for all v ∈ V (G).

Lemma 4. If f is a fractional dominating function on πG, then its con-

densation fπ is a fractional dominating function on G with |fπ| ≤ |f |.
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P roof. Let v ∈ V (G) and consider
∑

u∈NG[v] fπ(u). If fπ(v) = 1 then
clearly this sum exceeds 1; otherwise, for each u ∈ NG(v) we have that
fπ(u) ≥ f((u, 0)), and fπ(v) = f((v, 0)) + f((π(v), 1)). Hence

∑

u∈NG[v]

fπ(u) = fπ(v) +
∑

u∈NG(v)

fπ(u)

≥ f((v, 0)) + f((π(v), 1)) +
∑

u∈NG(v)

f((u, 0))

=
∑

x∈NπG[(v,0)]

f(x)

≥ 1.

A similar calculation shows that |fπ| ≤ |f |.

Corollary 5. For any graph G and any permutation π of its vertex set,

γf (G) ≤ γf (πG) ≤ 2γf (G), and these bounds are sharp.

P roof. The lower bound follows from Lemma 4. To show the upper bound,
let f be a minimum fractional dominating function of G. Then the function
f ′ : V (πG) → [0, 1] defined by f ′((u, i)) = f(u) is fractional dominating
with |f ′| = 2|f |.

An example of the lower bound occurs when G contains no edges and
π is an arbitrary permutation: γf (G) = γf (πG) = |V (G)|. For the upper
bound, let G = K1,n for n ≥ 2 and let π be any automorphism of G; then
γf (G) = 1 and γf (πG) = 2.

The fractional version of Mynhardt’s question is then: For which graphs G
is it true that, for any permutation π of V (G), γf (πG) = γf (G)? Such a
graph would naturally be termed a universal γf -fixer. As it turns out, this
question can be answered without considering any permutations other than
the identity.

Lemma 6. Let f be fractional dominating on 1G with condensation f1 such

that |f1| = |f |. Then for any vertex v ∈ V (G), f1[v] = f [(v, 0)] + f [(v, 1)] −
f1(v).

P roof. Since |f1| = |f | is follows that f1(v) = f((v, 0)) + f((v, 1)) for all
vertices v. The result then follows from a simple computation using the fact
that f [(v, i)] = f({(u, i) : u ∈ NG[v]} + f((v, 1 − i)) for i = 0, 1.
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Lemma 7. Let 1G be the prism of a simple graph G with vertex set V =
{v1, . . . , vn}. Then the collection of sets {(vi, 0), (vi, 1)}

n
i=1 forms an equi-

table partition of the vertices of 1G.

P roof. Let Pi denote the set containing the images of vi in the prism. Each
1G[Pi] consists of a single edge (and is thus 1-regular); the bipartite graph
between Pi and Pj will either be edgeless (if vi and vj are not adjacent) or
1-regular.

Theorem 8. Let G be a graph such that γf (1G) = γf (G). Then G = Kn

for some positive integer n.

P roof. Let G be a graph such that γf (1G) = γf (G), and suppose that
f is a minimum fractional dominating function of 1G with condensation
f1. Let us assume (by Theorem 1 and Lemma 7) that for any v ∈ V (G),
f((v, 0)) = f((v, 1)). By Lemma 4 f1 is a fractional dominating function
of G with |f1| ≤ γf (1G) = γf (G), and hence f1 is in fact a minimum
fractional dominating function of G. Further, by this equality we know that
f((v, 0))+f((v, 1)) ≤ 1, and hence that f(x) ≤ 1

2 for any vertex x ∈ V (1G).

Suppose that v is a vertex in G such that f1(v) = 0. Then by Lemma 6,
f1(N [v]) = f(N [(v, 0)]) + f(N [(v, 1)]), and since f is fractional dominating
in 1G the two right-hand terms are each at least 1; hence, f1(N [v]) ≥ 2 for
any vertex v receiving a weight of 0.

Let v∗ ∈ V (G) be such that f1[v
∗] = 1; such a vertex exists from

Lemma 3. It follows that f [(v∗, 0)] = 1
2f1[v

∗] + 1
2f1(v

∗) = 1
2 + 1

2f1(v
∗) ≥ 1

since f is dominating; hence f1(v
∗) ≥ 1 so f1(v

∗) = 1. Moreover, f1(u) = 0
for all u ∼ v∗.

By Lemma 3, if f1(w) > 0 then there exists v∗ ∈ N [w] such that
f1[v

∗] = 1; if v∗ ∈ N(w) then f1(w) = 0, contradicting our premise, and
hence w = v∗ and so f1(w) = 1. Therefore, f1 is the characteristic func-
tion of an independent 2-dominating set of G. (A 2-dominating set S is one
where, for every vertex u /∈ S, |N(u)∩S| ≥ 2. The 2-domination comes from
the fact that f only takes the values 0 and 1

2 ; any vertex in 1G which receives
a weight of 0 must therefore be adjacent to two vertices in the support of f ,
and this carries over into the condensation.)

So let d = dG(v∗) for some vertex v∗ such that f1(v
∗) = 1, and suppose

that d > 0. Pick some w ∈ V (G) that is distance 2 from v such that
f1(w) > 0; this exists by fact that the support of f1 is 2-dominating.
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Define the function f∗ : V (G) → [0, 1] as follows:

f∗(v) =























0 if v = v∗,
1
d

if v ∼ v∗,

1 − 1
d

if v = w,

f1(v) otherwise.

f∗ is a fractional dominating function of G: If v is a vertex such that
f1(v) = 1, then clearly f∗(v) = 1. Otherwise f1(v) = 0 and hence f1[v] ≥ 2
as v has at least two neighbours with weight 1. If its only two such neigh-
bours are v∗ and w, then f∗[v] = f∗(v) + f∗(w) = 1; otherwise, it is clear
that f∗[v] ≥ 1.

But |f∗| < |f1|, so the latter is not minimum, and hence γf (G) <
γf (1G). This fails only when there is no v∗ with neighbouring vertices, and
hence only when G contains no edges.

Corollary 9. The only universal γf -fixers are the edgeless graphs.

One consequence of this result to the original conjecture is that if G is a
γ-fixer with respect to the identity permutation and not empty then it must
be the case that γf (G) < γ(G), and hence this must be true of any universal
γ-fixer.

Much of the power in the proof of Theorem 8 comes from the fact that
the equitable partition in 1G guaranteed by Lemma 7 allows us to restrict our
choice of fractional dominating functions significantly. This can be exploited
for more general permutations π.

Theorem 10. Let G be a graph that admits the equitable partition P1, . . . , Pk,

and let π be a permutation of V (G) that fixes each Pi setwise. Then γf (G) =
γf (πG) if and only if G is edgeless.

P roof. The images {(v, j) : v ∈ Pi, j ∈ {0, 1}} of the partition cells Pi form
an equitable partition in πG, so we find a minimum fractional dominating
function f of πG that is constant on each of these sets. Using this, we can
show (analogously to Lemma 6) that if fπ is the condensation of f to G,
then fπ(N [v]) = f(N [(v, 0)])+f(N [(πv, 1)])−fπ(v). The proof then echoes
that of Theorem 8.
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Finally, here is a construction for γf -fixers with respect to restricted classes
of permutations. Construct the corona cor(G) of a graph G by adjoining a
pendant vertex to every node of G.

Theorem 11. For any graph G, let V = V (G) and V ∗ = V (cor(G)) − V .

Let π be any permutation of V (cor(G)) such that π(V ) = V ∗. Then

γf (cor(G)) = γf (π cor(G)).

P roof. Since the closed neighbourhoods of pendant vertices in cor(G) are
disjoint, γf (cor(G)) = |V |. Define f on V (π cor(G)) by

f((v, i)) =

{

1
2 if v ∈ V,

0 if v ∈ V ∗.

Then f is fractional dominating, and |f | = |V |.

An example of this construction is shown in Figure 1, with P4 = cor(P2).
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Figure 1. P4 and its prism πP4, where π = (12)(34), with minimum fractional

dominating functions.
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