# COUNTEREXAMPLE TO A CONJECTURE ON THE STRUCTURE OF BIPARTITE PARTITIONABLE GRAPHS

Richard G. Gibson<sup>\*</sup> and Christina M. Mynhardt<sup>†</sup>

Department of Mathematics and Statistics University of Victoria P.O. Box 3045, Victoria, BC Canada V8W 3P4

e-mail: richardg@sfu.ca, mynhardt@math.uvic.ca

#### Abstract

A graph G is called a prism fixer if  $\gamma(G \times K_2) = \gamma(G)$ , where  $\gamma(G)$ denotes the domination number of G. A symmetric  $\gamma$ -set of G is a minimum dominating set D which admits a partition  $D = D_1 \cup D_2$ such that  $V(G) - N[D_i] = D_j$ ,  $i, j = 1, 2, i \neq j$ . It is known that G is a prism fixer if and only if G has a symmetric  $\gamma$ -set.

Hartnell and Rall [On dominating the Cartesian product of a graph and  $K_2$ , *Discuss. Math. Graph Theory* **24** (2004), 389–402] conjectured that if G is a connected, bipartite graph such that V(G) can be partitioned into symmetric  $\gamma$ -sets, then  $G \cong C_4$  or G can be obtained from  $K_{2t,2t}$  by removing the edges of t vertex-disjoint 4-cycles. We construct a counterexample to this conjecture and prove an alternative result on the structure of such bipartite graphs.

**Keywords:** domination, prism fixer, symmetric dominating set, bipartite graph.

2000 Mathematics Subject Classification: 05C69.

<sup>&</sup>lt;sup>\*</sup>Recipient of an Undergraduate Student Research Award from the Canadian Natural Science and Engineering Research Council, Summer 2006. Current Address: Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A1S6.

<sup>&</sup>lt;sup>†</sup>Supported by the Natural Sciences and Engineering Research Council of Canada.

## 1. INTRODUCTION

We follow [6] for domination terminology and [3] for other graph theoretical notation and terminology. Specifically, for any graph G = (V, E) and  $v \in V$ , the open neighbourhood N(v) of v is defined by  $N(v) = \{u \in V : uv \in E\}$ , and its closed neighbourhood N[v] by  $N(v) \cup \{v\}$ . For  $S \subseteq V$ ,  $N(S) = \bigcup_{s \in S} N(s)$  and  $N[S] = \bigcup_{s \in S} N[s]$ . For  $A, B \subseteq V$ ,  $N_A(B) = N(B) \cap A$ ; when  $B = \{u\}$  we write  $N_A(u)$  instead of  $N_A(B)$ . A set  $S \subseteq V$  dominates G, written  $S \succ G$ , if every vertex in V - S is adjacent to a vertex in S, i.e., if V = N[S]. The domination number  $\gamma(G)$  of G is defined by  $\gamma(G) = \min\{|S| : S \succ G\}$ . A  $\gamma$ -set of G is a dominating set of G of cardinality  $\gamma(G)$ . Further, a  $\gamma$ -set D of G is a symmetric  $\gamma$ -set if D has a partition  $D = D_1 \cup D_2$  such that  $V(G) - N[D_i] = D_j$ ,  $i, j = 1, 2, i \neq j$ . (Symmetric  $\gamma$ -sets are called two-colored  $\gamma$ -sets in [4, 5].)

A set  $S \subseteq V$  is a packing (also called a 2-packing) of G if  $N[u] \cap N[v] = \phi$ for all distinct  $u, v \in S$ . A dominating set D of G is an *efficient dominating* set (also known as a perfect code, or a perfect single-error-correcting code) if  $|D \cap N[v]| = 1$  for each  $v \in V(G)$ . Thus D is an efficient dominating set if and only if D is a dominating set and a packing. As shown in [1] and [10], respectively, deciding whether a general graph and a bipartite graph, respectively, has an efficient dominating set, is NP-complete.

The cartesian product  $G \times K_2$  is also called the *prism* of G. It is easy to see that  $\gamma(G) \leq \gamma(G \times K_2) \leq 2\gamma(G)$  for all graphs G. If the lower bound is satisfied, then G is called a *prism fixer*. It is evident from the characterization of prism fixers as graphs that possess symmetric  $\gamma$ -sets (Theorem 2, [5, 7]) that if G is a prism fixer, then  $G \times K_2$  has an efficient dominating set, i.e., a perfect code. (Note that the converse of this statement is not true. For example, the hypercube  $Q_7$  is known to have a perfect code [6, Theorem 4.8] and  $\gamma(Q_7) = 16$ . Also,  $Q_7 = Q_6 \times K_2$ , but  $Q_6$  is not a prism fixer because  $\gamma(Q_6) = 12$  [8].) Thus the desirability of a graph possessing a perfect code serves as partial motivation for studying prism fixers.

Domination in prisms of graphs has been studied in [2, 4, 5, 7, 9]. In particular, the structure of prism fixers and the relation between prism fixers and Vizing's famous conjecture on the domination number of the cartesian products of graphs were investigated in [4, 5].

**Conjecture 1** (Vizing's Conjecture) [11]. For any graphs G and H,  $\gamma(G \times H) \geq \gamma(G)\gamma(H)$ .

Hartnell and Rall [4] constructed infinite classes of graphs to show that Vizing's conjecture, if true, is sharp. Many of these graphs have the property that their vertex sets partition into symmetric  $\gamma$ -sets; such a partition is called a *symmetric partition* and graphs with symmetric partitions are said to be *partitionable*. This connection between prism fixers and Vizing's conjecture serves as further motivation for the study of prism fixers. In [5] Hartnell and Rall further investigated the structure of prism fixers and closed with the following conjecture on the structure of bipartite partitionable graphs.

**Conjecture 2** [5]. If G is a connected, bipartite, partitionable graph, then  $G \cong C_4$  or G can be obtained from  $K_{2t,2t}$  by removing the edges of t vertex-disjoint 4-cycles.

We provide a counterexample to Conjecture 2 and prove a suitably amended result instead.

# 2. PRISM FIXERS AND SYMMETRIC $\gamma$ -Sets

We begin by stating properties of symmetric  $\gamma$ -sets and a characterization of prism fixers.

**Proposition 1** [5, 7]. If A is a symmetric  $\gamma$ -set of G, then

- (a) A is independent;
- (b)  $A_i$ , i = 1, 2, is a maximal packing of G;
- (c) each vertex in V A is adjacent to exactly one vertex in  $A_i$ , i = 1, 2;
- (d) for each vertex  $u \in V A$  there exists a vertex  $v \in V A$  such that  $N_A(u) = N_A(v) = \{x, y\}$  (say) and  $\langle u, v, x, y \rangle = C_4$ ;
- (e)  $\delta(G) \geq 2$ .

**Theorem 2** [5, 7]. The graph G is a prism fixer if and only if G has a symmetric  $\gamma$ -set.

Note that  $C_4$  is a prism fixer and, indeed, a bipartite partitionable graph. The following result on bipartite partitionable graphs was proved by Hartnell and Rall. **Proposition 3** [5]. Let  $G \neq C_4$  be a bipartite graph such that V(G) can be partitioned into t symmetric  $\gamma$ -sets  $A^1, \ldots, A^t$ . Then G is 2(t-1)-regular,  $\gamma(G) = 4k$  for some integer k and for each  $i = 1, \ldots, t$ ,  $|A_1^i| = |A_2^i| = 2k$ .

We now define notation for prism fixers that will be used in the rest of the paper. See Figure 1. For a prism fixer G and a symmetric  $\gamma$ -set A of G, let  $G^*$  be the graph with vertex set  $V(G^*) = A$  and edge set  $E(G^*) = \{uv : N_G(u) \cap N_G(v) \neq \phi\}$ . Let  $F_1^*, \ldots, F_n^*$  be the components of  $G^*$ . We say  $F_1^*, \ldots, F_n^*$  are the graphs used in the construction of G with respect to A. It follows from Proposition 1 that  $F_i^*$  is bipartite for each i (regardless of whether G is bipartite or not). Further, for each  $F_i^*$  let  $F_i$  be the subgraph of G induced by  $N_G[V(F_i^*)]$ .



Figure 1. The graphs  $F_1^*$ ,  $F_2^*$  used in the construction of G, and the graphs  $F_1$  and  $F_2$ .

### 3. Counterexample

A counterexample to Conjecture 2 is given by the graph G in Figure 2 with vertex set  $V(G) = \{0, 1, ..., 15\} \cup \{0', 1', ..., 15'\}$  and the following (abbreviated) adjacency list:

| v     | N(v)                                     | v     | N(v)                    |
|-------|------------------------------------------|-------|-------------------------|
| 0, 0' | 4, 4', 5, 5', 6, 6'                      | 5, 5' | 0, 0', 12, 12', 13, 13' |
| 1, 1' | $7,7^{\prime},8,8^{\prime},9,9^{\prime}$ | 6, 6' | 0, 0', 10, 10', 14, 14' |
| 2, 2' | 10, 10', 11, 11', 12, 12'                | 7,7'  | 1, 1', 12, 12', 14, 14' |
| 3,3'  | 13, 13', 14, 14', 15, 15'                | 8, 8' | 1, 1', 10, 10', 15, 15' |
| 4, 4' | 0, 0', 11, 11', 15, 15'                  | 9,9'  | 1, 1', 11, 11', 13, 13' |



Figure 2. A counterexample to Conjecture 2.

Note that G is a connected, bipartite graph. We have verified by computer that  $\gamma(G) = 8$ ; an analytical proof is not difficult, just tedious. Moreover, V(G) can be partitioned into the  $\gamma$ -sets  $A^1 = \{0, 0', 1, 1', 2, 2', 3, 3'\}$ ,  $A^2 = \{4, 4', 7, 7', 10, 10', 13, 13'\}$ ,  $A^3 = \{5, 5', 8, 8', 11, 11', 14, 14'\}$  and  $A^4 = \{6, 6', 9, 9', 12, 12', 15, 15'\}$ , which are easily seen to be symmetric  $\gamma$ -sets. Also note that if G could be obtained from  $K_{16,16}$  by removing 8 vertexdisjoint 4-cycles, then deg v = 14 for all  $v \in V(G)$ . However, deg v = 6 for all  $v \in V(G)$  and thus Conjecture 2 does not hold for G.

# 4. Structural Results

However, a revised statement of Conjecture 2 does hold. Denote the disjoint union of n copies of the graph H by nH and note that  $lC_4$  is a spanning subgraph of  $K_{2l,2l}$ . We shall prove:

**Theorem 4.** Let G be a connected, bipartite, partitionable graph. Then there exist pairwise edge-disjoint subgraphs  $H_1 \cong \cdots \cong H_\lambda \cong lC_4$  of  $K_{2l,2l}$ such that G can be obtained from  $K_{2l,2l}$  by removing the edges in  $\bigcup_{i=1}^{\lambda} E(H_i)$ . We first prove several other results about the structure of bipartite partitionable graphs. The first result concerns the way in which one  $\gamma$ -set in a symmetric partition  $\mathcal{P}$  dominates another  $\gamma$ -set in  $\mathcal{P}$ .

**Proposition 5.** Let G be a bipartite, partitionable graph,  $\mathcal{P}$  a symmetric partition of V(G),  $A, B \in \mathcal{P}$  and  $x \in A$ . If  $u_1, u_2 \in B \cap N(x)$ , then  $N_A(u_1) = N_A(u_2)$ .

**Proof.** Note that  $A \cap B = \phi$  since  $\mathcal{P}$  is a partition. Without loss of generality, assume  $x \in A_1$  and  $u_1 \in B_1$ .

Suppose to the contrary that  $N_A(u_1) \neq N_A(u_2)$ ; say  $N_A(u_1) = \{x, y_1\}$ and  $N_A(u_2) = \{x, y_2\}$ . Note that  $y_1, y_2 \in A_2$ , hence  $y_1, y_2 \notin B$ . Let  $S = \{b \in B_1 : ub \in E(G) \text{ for some } u \in N(x) \cap N(y_1)\}$  and  $T = \{a \in A_2 : ab \in E(G) \text{ for some } b \in S\}$ . Since  $S \subseteq B, A \cap S = \phi$ . Since  $B_1$  is a packing (Proposition 1(b)), no two vertices in S share a neighbour. Also, every vertex in S has exactly one neighbour in  $A_2$  and hence in T. Therefore |S| = |T|. Finally, note that the only vertices not dominated by A - T are the vertices in T and that  $S \succ N(x) \cap N(y_1) - \{u_1\}$ .

Suppose there exists a vertex  $a \in T$  such that  $N(x) \cap N(a) \neq \phi$ . Then there exist vertices  $b \in S$  and  $u \in N(x) \cap N(y_1)$  such that  $ab, bu \in E(G)$ . If  $a = y_1$ , then  $b = u_1$  and x, b, u, x is an odd cycle in G; a contradiction since G is bipartite. If  $a \neq y_1$ , then  $b \neq u_1$  and there exists a vertex  $w \in N(x) \cap N(a)$ ; thus  $w \neq b, u$ . But then x, u, b, a, w, x is an odd cycle in G; a contradiction. Therefore  $N(x) \cap N(a) = \phi$  for all  $a \in T$  and thus  $y_1 \notin T$ .

It follows that the only vertices not dominated by  $A' = A - T - \{x, y_1\}$  are the vertices of  $T \cup \{x, y_1\} \cup (N(x) \cap N(y_1))$ . But then  $A'' = A' \cup S \cup \{u_1\} \succ G$  and  $|A''| = |A| - |T| - 2 + |S| + 1 = |A| - 1 = \gamma - 1$ ; a contradiction.

Using Proposition 5 we now prove that if G is a bipartite, partitionable graph, then with respect to any  $\gamma$ -set in a symmetric partition of G,  $F_i^* = K_2$  for all *i*.

**Theorem 6.** Let G be a bipartite, partitionable graph and  $\mathcal{P}$  a symmetric partition of V(G). If  $A \in \mathcal{P}$  and  $F_1^*, \ldots, F_n^*$  are the graphs used in the construction of G with respect to A, then  $F_i^* = K_2$  for all  $i \in \{1, \ldots, n\}$ .

**Proof.** Suppose to the contrary that  $F_1^* \neq K_2$ . Then without loss of generality there exists a vertex  $x \in A_1 \cap V(F_1)$  such that  $N_{A_2}(N(x)) \supseteq \{y, z\}, y \neq z$ .

532

Let  $B \in \mathcal{P} - \{A\}$ ; thus  $x, y, z \notin B$ . By Proposition 1(c), x has exactly two neighbours in B; say  $N_B(x) = \{v, w\}$ . We may assume without loss of generality that  $v \in N(y)$ . Then by Proposition 5,  $N_A(v) = N_A(w)$  and so  $w \in N(y)$ . Without loss of generality  $v \in B_1$  and  $w \in B_2$ . Since  $N_B(x) = \{v, w\}$ ,

(1) 
$$N(x) \cap N(z) \cap B = \phi.$$

Therefore each vertex  $u \in N(x) \cap N(z)$  has exactly one neighbour in  $B_1$ .

Let  $S = \{b \in B_1 : bu \in E(G) \text{ for some } u \in N(x) \cap N(z)\}$  and  $T = \{a \in A_2 : ab \in E(G) \text{ for some } b \in S\}$ . Since  $A \cap B = \phi$ ,  $S \cap A = \phi$ , so every vertex in S has exactly one neighbour in  $A_2$  and since  $B_1$  is a packing, no two vertices of S share the same neighbour. It follows that |S| = |T|. Note that  $S \succ N(x) \cap N(z)$ .

Suppose there exists a vertex  $a \in T$  such that  $N(x) \cap N(a) \neq \phi$ ; say  $w \in N(x) \cap N(a)$ . Then there exist vertices  $b \in S$ ,  $u \in N(x) \cap N(z)$  such that  $ab, bu \in E(G)$ . By (1),  $b \notin N(x) \cap N(z)$ . If  $a \neq z$ , then x, w, a, b, u, x is an odd cycle in G; a contradiction. If a = z, then z, b, u, z is an odd cycle in G; a contradiction. Therefore  $N(x) \cap N(a) = \phi$  for all  $a \in T$  and it also follows that  $z \notin T$ .

Now the only vertices not dominated by  $A' = A - T - \{x, z\}$  are the vertices of  $T \cup \{x, z\} \cup (N(x) \cap N(z))$ . But then letting  $u \in N(x) \cap N(z)$ , we have  $A'' = A' \cup S \cup \{u\} \succ G$  and  $|A''| = |A| - |T| - 2 + |S| + 1 = |A| - 1 = \gamma - 1$ ; a contradiction. Therefore  $F_i^* = K_2$  for all  $i \in \{1, \ldots, n\}$ .

In our final lemma before the proof of Theorem 4 we compare the cardinalities of the sets  $A_i \cap V_j$ , i, j = 1, 2, where G has bipartition  $(V_1, V_2)$  and  $A = A_1 \cup A_2$  is a set in a symmetric partition of V(G).

**Lemma 7.** Let G be a bipartite, partitionable graph with bipartition  $(V_1, V_2)$ and symmetric partition  $\mathcal{P}$ . If  $A \in \mathcal{P}$ , then

- (a)  $|A_1 \cap V_i| = |A_2 \cap V_i|, i = 1, 2,$
- (b)  $|A_i \cap V_1| = |A_i \cap V_2|, i = 1, 2.$

**Proof.** (a) Let  $F_1^*, \ldots, F_n^*$  be the graphs used in the construction of G with respect to A. Then by Theorem 6,  $F_i^* = K_2$  for all i. Thus each vertex  $x \in A_1 \cap V_1$  has a unique vertex  $y \in A_2 \cap V_1$  such that N(x) = N(y) and therefore  $|A_1 \cap V_1| = |A_2 \cap V_1|$ . Similarly for  $V_2$ , we have  $|A_1 \cap V_2| = |A_2 \cap V_2|$ .

(b) Note that  $\bigcup_{x \in A_1 \cap V_1} N(x) = V_2 - A$  and  $A_1$  is a packing. By Proposition 3, G is 2(t-1)-regular (where  $t = |\mathcal{P}|$ ), hence

$$|A_1 \cap V_1| = \frac{|V_2 - A|}{2(t - 1)}$$

and similarly

$$|A_1 \cap V_2| = \frac{|V_1 - A|}{2(t - 1)}.$$

Let  $H = \langle V - A \rangle$ . Then H is bipartite with bipartition  $(H_1, H_2) = (V_1 - V_1)$  $A, V_2 - A$ ). Since every vertex in V - A is adjacent in G to exactly two vertices of A,  $\deg_H v = \deg_G v - 2$  for all  $v \in V(H)$ . Since G is regular, H is also regular. Hence  $|H_1| = |H_2|$  and so  $|V_1 - A| = |V_2 - A|$ . It follows that  $|A_1 \cap V_1| = |A_1 \cap V_2|$ . A similar argument shows that  $|A_2 \cap V_1| = |A_2 \cap V_2|$ .

We are now ready to prove Theorem 4. For vertices  $a, b, c, d \in V(K_{2l,2l})$ with  $a, c \in V_1$ ,  $b, d \in V_2$ , we write the 4-cycle a, b, c, d, a in  $K_{2l,2l}$  simply as abcd.

**Proof of Theorem 4.** Let G have bipartition  $(V_1, V_2)$  and symmetric partition  $\mathcal{P} = \{A^1, \ldots, A^t\}$ . By Proposition 3 and Lemma 7, G is a spanning subgraph of  $K_{2l,2l}$  for some l. If  $G = C_4$ , let  $\lambda = 0$  and we are done. So assume  $G \ncong C_4$  (thus  $t \ge 3$ ). Let  $F_{i,1}^*, \ldots, F_{i,n}^*$  be the graphs used in the construction of G with respect to  $A^i$ . By Theorem 6,  $F_{i,j}^* = K_2$  for all i, j. Let  $a = |A_1^i \cap V_1| = |A_1^i \cap V_2| = |A_2^i \cap V_1| = |A_2^i \cap V_2| (= \frac{\gamma}{4})$ . For  $i \in \{1, \dots, t\}$ ,  $q \in \{1, 2\},$ let

$$A_1^i \cap V_q = \{v_{1,q}^i, v_{2,q}^i, \dots, v_{a,q}^i\}$$
 and  $A_2^i \cap V_q = \{w_{1,q}^i, w_{2,q}^i, \dots, w_{a,q}^i\}$ 

so that  $N(v_{j,q}^i) = N(w_{j,q}^i)$  for all j. For each  $i = 1, \ldots, t$ , we first define a mutually disjoint sets, each containing a mutually disjoint 4-cycles with vertex sets in  $A^i$  and edge sets in  $E(\overline{G})$ . For each  $k \in \{1, \ldots, a\}$ , define

$$\mathcal{C}_{k}^{i} = \left\{ v_{p,1}^{i} v_{p+k(\text{mod }a),2}^{i} w_{p,1}^{i} w_{p+k(\text{mod }a),2}^{i} : 1 \le p \le a \right\}.$$

For the graph in Figure 2 the sets  $\mathcal{C}_1^1$  (solid black lines) and  $\mathcal{C}_2^1$  (broken black lines) are shown in Figure 3. Since  $A^i$  is independent, all of the edges in each of the 4-cycles in  $\mathcal{C}_k^i$  are in  $E(\overline{G})$ . Also,

(2) for each k, every vertex of  $A^i$  is in exactly one 4-cycle of  $\mathcal{C}_k^i$ 

and

(3) 
$$\mathcal{C}_k^i \cap \mathcal{C}_{k'}^i = \phi \text{ when } k \neq k'.$$

For  $j \in \{1, \ldots, t\} - \{i\}$ , each vertex of  $A^i$  has exactly two neighbours in  $A^j$ . For i fixed and each  $p \in \{1, \ldots, a\}$ , let  $A^j \cap N(v_{p,q}^i) = \{r_{p,q}^j, s_{p,q}^j\} = A^j \cap N(w_{p,q}^i)$ . For each  $i \in \{1, \ldots, t\}$  and each  $j \in \{1, \ldots, t\} - \{i\}$ , we now define a - 1 mutually disjoint sets, each containing 2a mutually disjoint 4-cycles with vertex sets in  $A^i \cup A^j$  and edge sets in  $E(\overline{G})$ . For each  $k \in \{1, \ldots, a-1\}$ , define

$$\mathcal{C}_{k}^{(i,j)} = \left\{ v_{p,q}^{i} r_{p+k(\text{mod }a),q}^{j} w_{p,q}^{i} s_{p+k(\text{mod }a),q}^{j} : 1 \le p \le a, 1 \le q \le 2 \right\}.$$

For the graph in Figure 2 the set  $C_1^{(1,2)}$  (with solid black lines for q = 1and broken black lines for q = 2) is shown in Figure 4. Since  $r_{p+k(\text{mod }a),q}^j, s_{p+k(\text{mod }a),q}^j \notin N(\{v_{p,q}^i, w_{p,q}^i\})$  for all  $k \in \{1, \ldots, a-1\}$ , it follows that all of the edges in each of the 4-cycles of  $C_k^{(i,j)}$  are in  $E(\overline{G})$ . Also note that

(4) every vertex of  $A^i \cup A^j$  is in exactly one 4-cycle of  $\mathcal{C}_k^{(i,j)}$ ,

(5) 
$$\mathcal{C}_{k}^{(i,j)} \cap \mathcal{C}_{k'}^{(i,j)} = \phi \text{ when } k \neq k',$$

and for each  $i \in \{1, \ldots, t\}, j \in \{1, \ldots, a\}, q \in \{1, 2\},\$ 

$$N_{K_{2l,2l}}(v_{j,q}^{i}) - N_{G}(v_{j,q}^{i})$$

$$(6) \qquad = \left(\bigcup_{p=1}^{a} \left\{ v_{p,q+1(\text{mod }2)}^{i}, w_{p,q+1(\text{mod }2)}^{i} \right\} \right) \cup \left(\bigcup_{\substack{h=1\\h\neq i}}^{t} \bigcup_{\substack{p=1\\p\neq j}}^{a} \left\{ r_{p,q}^{h}, s_{p,q}^{h} \right\} \right).$$

Thus the vertices "missing" from the neighbourhood of  $v_{j,q}^i$  are precisely the vertices adjacent to  $v_{j,q}^i$  in the 4-cycles contained in all of the  $C_k^i$  and the  $C_k^{(i,j)}$ . We now consider two cases depending on the parity of t.



Figure 3. Sets  $C_1^1$  (solid black lines) and  $C_2^1$  (broken lines) for the graph in Figure 2.

Case 1. t is even. Then  $K_t$  is 1-factorable (see [3, Theorem 9.19]). Let  $V(K_t) = \{1, \ldots, t\}$  and let  $M_1, \ldots, M_{t-1}$  be the edge sets of a 1-factorization of  $K_t$ . For each  $h \in \{1, \ldots, t-1\}$ , we obtain the sets  $\mathcal{S}_1^h, \ldots, \mathcal{S}_{a-1}^h$  as follows. For each  $k \in \{1, \ldots, a-1\}$ , define

$$\mathcal{S}_k^h = \bigcup_{ij \in M_h, i < j} \mathcal{C}_k^{(i,j)}.$$

Since  $M_h$  is a perfect matching in  $K_t$ , it follows from (4) that each vertex of  $V(G) = \bigcup_{i=1}^t A^i$  is in exactly one 4-cycle of  $\mathcal{S}_k^h$  and thus  $\langle \mathcal{S}_k^h \rangle \cong lC_4$ . Also, by (5),  $\mathcal{S}_k^h \cap \mathcal{S}_{k'}^h = \phi$  when  $k \neq k'$ . Moreover, each  $ij \in E(K_t)$  is in exactly one  $M_h$  and so  $\mathcal{S}_k^h \cap \mathcal{S}_{k'}^{h'} = \phi$  when  $h \neq h'$ .

Further, for each  $k \in \{1, \ldots, a\}$ , define

$$\mathcal{S}_k = \bigcup_{i=1}^t \mathcal{C}_k^i.$$



Figure 4. Set  $C_1^{(1,2)}$  for the graph in Figure 2.

By (2), every vertex of V(G) is in exactly one 4-cycle in  $\mathcal{S}_k$  and thus  $\langle \mathcal{S}_k \rangle \cong lC_4$ . Also, by (3),  $\mathcal{S}_k \cap \mathcal{S}_{k'} = \phi$  when  $k \neq k'$ . Let

$$\mathfrak{C} = \left( \bigcup_{k=1}^{a} \langle \mathcal{S}_k \rangle \right) \cup \left( \bigcup_{h=1}^{t-1} \bigcup_{k=1}^{a-1} \left\langle \mathcal{S}_k^h \right\rangle \right).$$

Then  $\mathfrak{C}$  consists of a + (a - 1)(t - 1) = t(a - 1) + 1 disjoint copies of  $lC_4$ . Also,  $\bigcup \mathfrak{C}$  is precisely all of the 4-cycles in all of the  $\mathcal{C}_k^i$  and  $\mathcal{C}_k^{(i,j)}$ . Thus by (6), G can be obtained from  $K_{2l,2l}$  by removing the edges of the copies of  $lC_4$  in  $\mathfrak{C}$ .

Case 2. t is odd. Let  $M_1, \ldots, M_t$  be the edge sets of a 1-factorization of  $K_{t+1}$ , where  $V(K_{t+1}) = \{1, \ldots, t+1\}$ . For each  $h \in \{1, \ldots, t\}$ , we obtain the sets  $S_1^h, \ldots, S_{a-1}^h$  as follows. For each  $k \in \{1, \ldots, a-1\}$ , define

$$\mathcal{S}_k^h = \bigcup_{ij \in M_h, i < j < t+1} \mathcal{C}_k^{(i,j)} \cup \mathcal{C}_a^m \text{ where } m(t+1) \in M_h.$$

Since  $M_h$  is a perfect matching in  $K_{t+1}$ , (2) and (4) imply that each vertex of V(G) is in exactly one 4-cycle of  $\mathcal{S}_k^h$  and thus  $\langle \mathcal{S}_k^h \rangle \cong lC_4$ . Since each

vertex in  $\{1, \ldots, t\}$  is adjacent to vertex t + 1 in exactly one  $M_h$ , (3) and (5) imply that  $\mathcal{S}_k^h \cap \mathcal{S}_{k'}^h = \phi$  when  $k \neq k'$ . Also,  $\mathcal{S}_k^h \cap \mathcal{S}_{k'}^{h'} = \phi$  when  $h \neq h'$ .

Further, for each  $k \in \{1, \ldots, a-1\}$ , define

$$\mathcal{S}_k = \bigcup_{i=1}^t \mathcal{C}_k^i.$$

Then by (2), every vertex of V(G) is in exactly one 4-cycle in  $\mathcal{S}_k$  and thus  $\langle \mathcal{S}_k \rangle \cong lC_4$ . Note that we do not have an  $\mathcal{S}_a$  because the sets  $\mathcal{C}_a^i$  were included in the  $\mathcal{S}_k^h$  above. By (3),  $\mathcal{S}_k \cap \mathcal{S}_{k'} = \phi$  when  $k \neq k'$ . Let

$$\mathfrak{C} = \left(\bigcup_{k=1}^{a-1} \mathcal{S}_k\right) \cup \left(\bigcup_{h=1}^t \bigcup_{k=1}^{a-1} \mathcal{S}_k^h\right).$$

Then  $\mathfrak{C}$  consists of a - 1 + t(a - 1) = (t + 1)(a - 1) disjoint copies of  $lC_4$ . Also,  $\bigcup \mathfrak{C}$  is precisely all of the 4-cycles in all of the  $\mathcal{C}_k^i$  and  $\mathcal{C}_k^{(i,j)}$ . Thus by (6), G can be obtained from  $K_{2l,2l}$  by removing the edges of the copies of  $lC_4$  in  $\mathfrak{C}$ .

In the proof of Theorem 4, a given bipartite graph whose vertex set partitions into t symmetric  $\gamma$ -sets was obtained by deleting the edges of t(a-1) + 1or (t+1)(a-1), depending on whether t is even or odd, pairwise disjoint copies of  $lC_4$  from  $K_{2l,2l}$ , where  $a = \gamma(G)/4$  and  $t = \frac{l}{a}$ . We close with the following problem.

**Problem 1.** Consider  $K_{2l,2l}$  and let  $a \ge 1$  be a divisor of l such that  $t = \frac{l}{a} \ge 3$ . For which values of l and a is it possible to remove the edges of t(a-1)+1 if t is even, or (t+1)(a-1) if t is odd, pairwise disjoint copies of  $lC_4$  from  $K_{2l,2l}$  and obtain a connected, bipartite, partitionable graph?

Note that it is possible to remove edges as described and obtain a bipartite graph whose vertex set partitions into dominating sets with the same properties as symmetric  $\gamma$ -sets (Proposition 1), except that they are not necessarily  $\gamma$ -sets.

For example, if l = 6 and a = 2, there are two ways of removing edges of four disjoint copies of  $6C_4$  from  $K_{12,12}$  to obtain a bipartite graph Gwhose vertex set partitions into three dominating sets, each of which satisfies Proposition 1 and  $F_i^* = K_2$  for each *i*. In one case  $\gamma(G_1) = 4a = 8$  and  $G_1$ is partitionable but not connected. In the other case  $\gamma(G_2) = 6$ , and the dominating sets in the partition are thus not  $\gamma$ -sets. See Figure 5.



Figure 5.  $G_1$  is partitionable but disconnected;  $G_2$  is not partitionable.

As a final remark we note that the graph G in Figure 2 with  $\gamma(G) = 8$  can be obtained as a "duplication" of its induced subgraph  $H = \langle \{0, 1, \ldots, 15\} \rangle$ ; that is, for each vertex  $v \in V(H)$  we add a duplicate vertex v', joining v'to all vertices u, u', where  $u \in N(v)$  and u' is the duplication of u. The set  $\{0, 1, 2, 3\}$  is an efficient dominating set of H, hence  $\gamma(H) = 4$  [6, Theorem 4.2]. However, it is not true in general that if G is a duplication of a graph G'with efficient dominating set of size k, then  $\gamma(G) = 2k$ . It is an obvious upper bound, but the graph  $G_2$  in Figure 5 presents a counterexample to equality in this bound. It is a duplication of  $C_{12}$ , which has efficient dominating sets of size 4, but  $\gamma(G_2) = 6$  as shown.

### References

- D.W. Bange, A.E. Barkauskas and P.J. Slater, *Efficient dominating sets in graphs*, in: R.D. Ringeisen and F.S. Roberts, eds, Applications of Discrete Mathematics 189–199 (SIAM, Philadelphia, PA, 1988).
- [2] A.P. Burger, C.M. Mynhardt and W.D. Weakley, On the domination number of prisms of graphs, Discuss. Math. Graph Theory 24 (2004) 303–318.
- [3] G. Chartrand and L. Leśniak, Graphs and Digraphs, Third Edition (Chapman & Hall, London, 1996).
- [4] B.L. Hartnell and D.F. Rall, On Vizing's conjecture, Congr. Numer. 82 (1991) 87–96.
- [5] B.L. Hartnell and D.F. Rall, On dominating the Cartesian product of a graph and K<sub>2</sub>, Discuss. Math. Graph Theory 24 (2004) 389–402.

- [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
- [7] C.M. Mynhardt and Zhixia Xu, *Domination in prisms of graphs: Universal fixers*, Utilitas Math., to appear.
- [8] P.R.J. Östergård and W.D. Weakley, Classification of binary covering codes, J. Combin. Des. 8 (2000) 391–401.
- [9] M. Schurch, Domination Parameters for Prisms of Graphs (Master's thesis, University of Victoria, 2005).
- [10] C.B. Smart and P.J. Slater, Complexity results for closed neighborhood order parameters, Congr. Numer. 112 (1995) 83–96.
- [11] V.G. Vizing, Some unsolved problems in graph theory, Uspehi Mat. Nauk 23 (1968) 117–134.

Received 21 August 2006 Revised 21 February 2007 Accepted 7 March 2007