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Abstract

A graph G is called a prism fixer if γ(G×K2) = γ(G), where γ(G)
denotes the domination number of G. A symmetric γ-set of G is a
minimum dominating set D which admits a partition D = D1 ∪ D2

such that V (G) − N [Di] = Dj , i, j = 1, 2, i 6= j. It is known that G is
a prism fixer if and only if G has a symmetric γ-set.

Hartnell and Rall [On dominating the Cartesian product of a graph
and K2, Discuss. Math. Graph Theory 24 (2004), 389–402] conjec-
tured that if G is a connected, bipartite graph such that V (G) can be
partitioned into symmetric γ-sets, then G ∼= C4 or G can be obtained
from K2t,2t by removing the edges of t vertex-disjoint 4-cycles. We
construct a counterexample to this conjecture and prove an alterna-
tive result on the structure of such bipartite graphs.
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1. Introduction

We follow [6] for domination terminology and [3] for other graph theoretical
notation and terminology. Specifically, for any graph G = (V,E) and v ∈ V ,
the open neighbourhood N(v) of v is defined by N(v) = {u ∈ V : uv ∈ E},
and its closed neighbourhood N [v] by N(v) ∪ {v}. For S ⊆ V , N(S) =
⋃

s∈S N(s) and N [S] =
⋃

s∈S N [s]. For A,B ⊆ V , NA(B) = N(B) ∩ A;
when B = {u} we write NA(u) instead of NA(B). A set S ⊆ V dominates

G, written S ≻ G, if every vertex in V − S is adjacent to a vertex in
S, i.e., if V = N [S]. The domination number γ(G) of G is defined by
γ(G) = min{|S| : S ≻ G}. A γ-set of G is a dominating set of G of
cardinality γ(G). Further, a γ-set D of G is a symmetric γ-set if D has a
partition D = D1 ∪ D2 such that V (G) − N [Di] = Dj, i, j = 1, 2, i 6= j.
(Symmetric γ-sets are called two-colored γ-sets in [4, 5].)

A set S ⊆ V is a packing (also called a 2-packing) of G if N [u]∩N [v] = φ
for all distinct u, v ∈ S. A dominating set D of G is an efficient dominating

set (also known as a perfect code, or a perfect single-error-correcting code)
if |D ∩ N [v]| = 1 for each v ∈ V (G). Thus D is an efficient dominating set
if and only if D is a dominating set and a packing. As shown in [1] and
[10], respectively, deciding whether a general graph and a bipartite graph,
respectively, has an efficient dominating set, is NP-complete.

The cartesian product G × K2 is also called the prism of G. It is
easy to see that γ(G) ≤ γ(G × K2) ≤ 2γ(G) for all graphs G. If the
lower bound is satisfied, then G is called a prism fixer. It is evident from
the characterization of prism fixers as graphs that possess symmetric γ-sets
(Theorem 2, [5, 7]) that if G is a prism fixer, then G × K2 has an efficient
dominating set, i.e., a perfect code. (Note that the converse of this statement
is not true. For example, the hypercube Q7 is known to have a perfect code
[6, Theorem 4.8] and γ(Q7) = 16. Also, Q7 = Q6×K2, but Q6 is not a prism
fixer because γ(Q6) = 12 [8].) Thus the desirability of a graph possessing a
perfect code serves as partial motivation for studying prism fixers.

Domination in prisms of graphs has been studied in [2, 4, 5, 7, 9]. In
particular, the structure of prism fixers and the relation between prism fixers
and Vizing’s famous conjecture on the domination number of the cartesian
products of graphs were investigated in [4, 5].

Conjecture 1 (Vizing’s Conjecture) [11]. For any graphs G and H,
γ(G × H) ≥ γ(G)γ(H).
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Hartnell and Rall [4] constructed infinite classes of graphs to show that
Vizing’s conjecture, if true, is sharp. Many of these graphs have the prop-
erty that their vertex sets partition into symmetric γ-sets; such a partition
is called a symmetric partition and graphs with symmetric partitions are
said to be partitionable. This connection between prism fixers and Vizing’s
conjecture serves as further motivation for the study of prism fixers. In
[5] Hartnell and Rall further investigated the structure of prism fixers and
closed with the following conjecture on the structure of bipartite partition-
able graphs.

Conjecture 2 [5]. If G is a connected, bipartite, partitionable graph,
then G ∼= C4 or G can be obtained from K2t,2t by removing the edges of t
vertex-disjoint 4-cycles.

We provide a counterexample to Conjecture 2 and prove a suitably amended
result instead.

2. Prism Fixers and Symmetric γ-Sets

We begin by stating properties of symmetric γ-sets and a characterization
of prism fixers.

Proposition 1 [5, 7]. If A is a symmetric γ-set of G, then

(a) A is independent;

(b) Ai, i = 1, 2, is a maximal packing of G;

(c) each vertex in V − A is adjacent to exactly one vertex in Ai, i = 1, 2;

(d) for each vertex u ∈ V − A there exists a vertex v ∈ V − A such that

NA(u) = NA(v) = {x, y} (say) and 〈u, v, x, y〉 = C4;

(e) δ(G) ≥ 2.

Theorem 2 [5, 7]. The graph G is a prism fixer if and only if G has a

symmetric γ-set.

Note that C4 is a prism fixer and, indeed, a bipartite partitionable graph.
The following result on bipartite partitionable graphs was proved by Hartnell
and Rall.
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Proposition 3 [5]. Let G 6= C4 be a bipartite graph such that V (G) can be

partitioned into t symmetric γ-sets A1, . . . , At. Then G is 2(t − 1)-regular,

γ(G) = 4k for some integer k and for each i = 1, . . . , t, |Ai
1| = |Ai

2| = 2k.

We now define notation for prism fixers that will be used in the rest of the
paper. See Figure 1. For a prism fixer G and a symmetric γ-set A of G, let
G∗ be the graph with vertex set V (G∗) = A and edge set E(G∗) = {uv :
NG(u) ∩ NG(v) 6= φ}. Let F ∗

1 , . . . , F ∗
n be the components of G∗. We say

F ∗
1 , . . . , F ∗

n are the graphs used in the construction of G with respect to A.
It follows from Proposition 1 that F ∗

i is bipartite for each i (regardless of
whether G is bipartite or not). Further, for each F ∗

i let Fi be the subgraph
of G induced by NG[V (F ∗

i )].

G

F

G

FF

F

*a

*a*a
1a

2a1a

2a

Figure 1. The graphs F ∗

1 , F ∗

2 used in the construction of G, and the graphs F1

and F2.

3. Counterexample

A counterexample to Conjecture 2 is given by the graph G in Figure 2
with vertex set V (G) = {0, 1, . . . , 15} ∪ {0′, 1′, . . . , 15′} and the following
(abbreviated) adjacency list:

v N(v) v N(v)

0, 0′ 4, 4′, 5, 5′, 6, 6′ 5, 5′ 0, 0′, 12, 12′, 13, 13′

1, 1′ 7, 7′, 8, 8′, 9, 9′ 6, 6′ 0, 0′, 10, 10′, 14, 14′

2, 2′ 10, 10′, 11, 11′, 12, 12′ 7, 7′ 1, 1′, 12, 12′, 14, 14′

3, 3′ 13, 13′, 14, 14′, 15, 15′ 8, 8′ 1, 1′, 10, 10′, 15, 15′

4, 4′ 0, 0′, 11, 11′, 15, 15′ 9, 9′ 1, 1′, 11, 11′, 13, 13′
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0'a

1'a

3a

3'a

2'a

2a

1a

0a

4a 6a5'a5a4'a 6'a 12'a11'a11a 12a10'a10a

9'a 8'a9a 7a7'a8a15a 13a13'a14a15'a 14'a

Figure 2. A counterexample to Conjecture 2.

Note that G is a connected, bipartite graph. We have verified by computer
that γ(G) = 8; an analytical proof is not difficult, just tedious. More-
over, V (G) can be partitioned into the γ-sets A1 = {0, 0′, 1, 1′, 2, 2′, 3, 3′},
A2 = {4, 4′, 7, 7′, 10, 10′, 13, 13′}, A3 = {5, 5′, 8, 8′, 11, 11′, 14, 14′} and A4 =
{6, 6′, 9, 9′, 12, 12′, 15, 15′}, which are easily seen to be symmetric γ-sets.
Also note that if G could be obtained from K16,16 by removing 8 vertex-
disjoint 4-cycles, then deg v = 14 for all v ∈ V (G). However, deg v = 6 for
all v ∈ V (G) and thus Conjecture 2 does not hold for G.

4. Structural Results

However, a revised statement of Conjecture 2 does hold. Denote the disjoint
union of n copies of the graph H by nH and note that lC4 is a spanning
subgraph of K2l,2l. We shall prove:

Theorem 4. Let G be a connected, bipartite, partitionable graph. Then

there exist pairwise edge-disjoint subgraphs H1
∼= · · · ∼= Hλ

∼= lC4 of K2l,2l

such that G can be obtained from K2l,2l by removing the edges in
⋃λ

i=1 E(Hi).
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We first prove several other results about the structure of bipartite parti-
tionable graphs. The first result concerns the way in which one γ-set in a
symmetric partition P dominates another γ-set in P.

Proposition 5. Let G be a bipartite, partitionable graph, P a symmetric

partition of V (G), A,B ∈ P and x ∈ A. If u1, u2 ∈ B ∩ N(x), then

NA(u1) = NA(u2).

P roof. Note that A ∩ B = φ since P is a partition. Without loss of
generality, assume x ∈ A1 and u1 ∈ B1.

Suppose to the contrary that NA(u1) 6= NA(u2); say NA(u1) = {x, y1}
and NA(u2) = {x, y2}. Note that y1, y2 ∈ A2, hence y1, y2 /∈ B. Let S = {b ∈
B1 : ub ∈ E(G) for some u ∈ N(x) ∩ N(y1)} and T = {a ∈ A2 : ab ∈ E(G)
for some b ∈ S}. Since S ⊆ B, A∩S = φ. Since B1 is a packing (Proposition
1(b)), no two vertices in S share a neighbour. Also, every vertex in S has
exactly one neighbour in A2 and hence in T . Therefore |S| = |T |. Finally,
note that the only vertices not dominated by A − T are the vertices in T
and that S ≻ N(x) ∩ N(y1) − {u1}.

Suppose there exists a vertex a ∈ T such that N(x) ∩ N(a) 6= φ. Then
there exist vertices b ∈ S and u ∈ N(x) ∩ N(y1) such that ab, bu ∈ E(G).
If a = y1, then b = u1 and x, b, u, x is an odd cycle in G; a contradiction
since G is bipartite. If a 6= y1, then b 6= u1 and there exists a vertex
w ∈ N(x) ∩ N(a); thus w 6= b, u. But then x, u, b, a, w, x is an odd cycle
in G; a contradiction. Therefore N(x) ∩ N(a) = φ for all a ∈ T and thus
y1 /∈ T .

It follows that the only vertices not dominated by A′ = A−T−{x, y1} are
the vertices of T ∪{x, y1}∪(N(x)∩N(y1)). But then A′′ = A′∪S∪{u1} ≻ G
and |A′′| = |A| − |T | − 2 + |S| + 1 = |A| − 1 = γ − 1; a contradiction.

Using Proposition 5 we now prove that if G is a bipartite, partitionable
graph, then with respect to any γ-set in a symmetric partition of G, F ∗

i = K2

for all i.

Theorem 6. Let G be a bipartite, partitionable graph and P a symmetric

partition of V (G). If A ∈ P and F ∗
1 , . . . , F ∗

n are the graphs used in the

construction of G with respect to A, then F ∗
i = K2 for all i ∈ {1, . . . , n}.

P roof. Suppose to the contrary that F ∗
1 6= K2. Then without loss of

generality there exists a vertex x ∈ A1 ∩ V (F1) such that NA2
(N(x)) ⊇

{y, z}, y 6= z.
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Let B ∈ P − {A}; thus x, y, z /∈ B. By Proposition 1(c), x has exactly
two neighbours in B; say NB(x) = {v,w}. We may assume without loss
of generality that v ∈ N(y). Then by Proposition 5, NA(v) = NA(w) and
so w ∈ N(y). Without loss of generality v ∈ B1 and w ∈ B2. Since
NB(x) = {v,w},

(1) N(x) ∩ N(z) ∩ B = φ.

Therefore each vertex u ∈ N(x) ∩ N(z) has exactly one neighbour in B1.

Let S = {b ∈ B1 : bu ∈ E(G) for some u ∈ N(x) ∩ N(z)} and T = {a ∈
A2 : ab ∈ E(G) for some b ∈ S}. Since A ∩ B = φ, S ∩ A = φ, so every
vertex in S has exactly one neighbour in A2 and since B1 is a packing, no
two vertices of S share the same neighbour. It follows that |S| = |T |. Note
that S ≻ N(x) ∩ N(z).

Suppose there exists a vertex a ∈ T such that N(x) ∩ N(a) 6= φ; say
w ∈ N(x) ∩ N(a). Then there exist vertices b ∈ S, u ∈ N(x) ∩ N(z) such
that ab, bu ∈ E(G). By (1), b /∈ N(x)∩N(z). If a 6= z, then x,w, a, b, u, x is
an odd cycle in G; a contradiction. If a = z, then z, b, u, z is an odd cycle
in G; a contradiction. Therefore N(x) ∩ N(a) = φ for all a ∈ T and it also
follows that z /∈ T .

Now the only vertices not dominated by A′ = A − T − {x, z} are the
vertices of T ∪{x, z}∪ (N(x)∩N(z)). But then letting u ∈ N(x)∩N(z), we
have A′′ = A′∪S∪{u} ≻ G and |A′′| = |A|−|T |−2+|S|+1 = |A|−1 = γ−1;
a contradiction. Therefore F ∗

i = K2 for all i ∈ {1, . . . , n}.

In our final lemma before the proof of Theorem 4 we compare the cardi-
nalities of the sets Ai ∩ Vj , i, j = 1, 2, where G has bipartition (V1, V2) and
A = A1 ∪ A2 is a set in a symmetric partition of V (G).

Lemma 7. Let G be a bipartite, partitionable graph with bipartition (V1, V2)
and symmetric partition P. If A ∈ P, then

(a) |A1 ∩ Vi| = |A2 ∩ Vi|, i = 1, 2,

(b) |Ai ∩ V1| = |Ai ∩ V2|, i = 1, 2.

P roof. (a) Let F ∗
1 , . . . , F ∗

n be the graphs used in the construction of G
with respect to A. Then by Theorem 6, F ∗

i = K2 for all i. Thus each vertex
x ∈ A1 ∩ V1 has a unique vertex y ∈ A2 ∩ V1 such that N(x) = N(y) and
therefore |A1∩V1| = |A2∩V1|. Similarly for V2, we have |A1∩V2| = |A2∩V2|.
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(b) Note that
⋃

x∈A1∩V1
N(x) = V2−A and A1 is a packing. By Proposition

3, G is 2(t − 1)-regular (where t = |P|), hence

|A1 ∩ V1| =
|V2 − A|

2(t − 1)

and similarly

|A1 ∩ V2| =
|V1 − A|

2(t − 1)
.

Let H = 〈V − A〉. Then H is bipartite with bipartition (H1,H2) = (V1 −
A,V2 − A). Since every vertex in V − A is adjacent in G to exactly two
vertices of A, degH v = degG v−2 for all v ∈ V (H). Since G is regular, H is
also regular. Hence |H1| = |H2| and so |V1 − A| = |V2 − A|. It follows that
|A1 ∩ V1| = |A1 ∩ V2|. A similar argument shows that |A2 ∩ V1| = |A2 ∩ V2|.

We are now ready to prove Theorem 4. For vertices a, b, c, d ∈ V (K2l,2l)
with a, c ∈ V1, b, d ∈ V2, we write the 4-cycle a, b, c, d, a in K2l,2l simply as
abcd.

Proof of Theorem 4. Let G have bipartition (V1, V2) and symmetric
partition P = {A1, . . . , At}. By Proposition 3 and Lemma 7, G is a spanning
subgraph of K2l,2l for some l. If G = C4, let λ = 0 and we are done. So
assume G ≇ C4 (thus t ≥ 3). Let F ∗

i,1, . . . , F
∗
i,n be the graphs used in the

construction of G with respect to Ai. By Theorem 6, F ∗
i,j = K2 for all i, j.

Let a = |Ai
1∩V1| = |Ai

1∩V2| = |Ai
2∩V1| = |Ai

2∩V2|(=
γ
4 ). For i ∈ {1, . . . , t},

q ∈ {1, 2}, let

Ai
1 ∩ Vq =

{

vi
1,q, v

i
2,q, . . . , v

i
a,q

}

and Ai
2 ∩ Vq =

{

wi
1,q, w

i
2,q, . . . , w

i
a,q

}

so that N(vi
j,q) = N(wi

j,q) for all j.
For each i = 1, . . . , t, we first define a mutually disjoint sets, each con-

taining a mutually disjoint 4-cycles with vertex sets in Ai and edge sets in
E(G). For each k ∈ {1, . . . , a}, define

Ci
k =

{

vi
p,1v

i
p+k(mod a),2w

i
p,1w

i
p+k(mod a),2 : 1 ≤ p ≤ a

}

.

For the graph in Figure 2 the sets C1
1 (solid black lines) and C1

2 (broken black
lines) are shown in Figure 3. Since Ai is independent, all of the edges in
each of the 4-cycles in Ci

k are in E(G). Also,
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(2) for each k, every vertex of Ai is in exactly one 4-cycle of Ci
k

and

(3) Ci
k ∩ Ci

k′ = φ when k 6= k′.

For j ∈ {1, . . . , t}−{i}, each vertex of Ai has exactly two neighbours in Aj .
For i fixed and each p ∈ {1, . . . , a}, let Aj ∩ N(vi

p,q) = {rj
p,q, s

j
p,q} = Aj ∩

N(wi
p,q). For each i ∈ {1, . . . , t} and each j ∈ {1, . . . , t}−{i}, we now define

a − 1 mutually disjoint sets, each containing 2a mutually disjoint 4-cycles
with vertex sets in Ai∪Aj and edge sets in E(G). For each k ∈ {1, . . . , a−1},
define

C
(i,j)
k =

{

vi
p,qr

j
p+k(mod a),qw

i
p,qs

j
p+k(mod a),q : 1 ≤ p ≤ a, 1 ≤ q ≤ 2

}

.

For the graph in Figure 2 the set C
(1,2)
1 (with solid black lines for q = 1

and broken black lines for q = 2) is shown in Figure 4. Since
rj
p+k(mod a),q, s

j
p+k(mod a),q /∈ N({vi

p,q, w
i
p,q}) for all k ∈ {1, . . . , a − 1}, it

follows that all of the edges in each of the 4-cycles of C
(i,j)
k are in E(G).

Also note that

(4) every vertex of Ai ∪ Aj is in exactly one 4-cycle of C
(i,j)
k ,

(5) C
(i,j)
k ∩ C

(i,j)
k′ = φ whenk 6= k′,

and for each i ∈ {1, . . . , t}, j ∈ {1, . . . , a}, q ∈ {1, 2},

(6)

NK2l,2l
(vi

j,q) − NG(vi
j,q)

=

( a
⋃

p=1

{

vi
p,q+1(mod 2), w

i
p,q+1(mod 2)

}

)

∪

( t
⋃

h=1
h 6=i

a
⋃

p=1
p 6=j

{

rh
p,q, s

h
p,q

}

)

.

Thus the vertices “missing” from the neighbourhood of vi
j,q are precisely the

vertices adjacent to vi
j,q in the 4-cycles contained in all of the Ci

k and the

C
(i,j)
k . We now consider two cases depending on the parity of t.
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1,1a

1,1a

1,2a

1,2a

2,2a

2,2a

2,1a

2,1a

1a1a

1a1a

1a1a

1a1a

Figure 3. Sets C1
1 (solid black lines) and C1

2 (broken lines) for the graph in

Figure 2.

Case 1. t is even. Then Kt is 1-factorable (see [3, Theorem 9.19]). Let
V (Kt) = {1, . . . , t} and let M1, . . . ,Mt−1 be the edge sets of a 1-factorization
of Kt. For each h ∈ {1, . . . , t−1}, we obtain the sets Sh

1 , . . . ,Sh
a−1 as follows.

For each k ∈ {1, . . . , a − 1}, define

Sh
k =

⋃

ij∈Mh,i<j

C
(i,j)
k .

Since Mh is a perfect matching in Kt, it follows from (4) that each vertex of
V (G) =

⋃t
i=1 Ai is in exactly one 4-cycle of Sh

k and thus
〈

Sh
k

〉

∼= lC4. Also,
by (5), Sh

k ∩ Sh
k′ = φ when k 6= k′. Moreover, each ij ∈ E(Kt) is in exactly

one Mh and so Sh
k ∩ Sh′

k′ = φ when h 6= h′.

Further, for each k ∈ {1, . . . , a}, define

Sk =

t
⋃

i=1

Ci
k.
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1,21,2

2,22,2

2,1

2,1

Figure 4. Set C
(1,2)
1 for the graph in Figure 2.

By (2), every vertex of V (G) is in exactly one 4-cycle in Sk and thus 〈Sk〉 ∼=
lC4. Also, by (3), Sk ∩ Sk′ = φ when k 6= k′. Let

C =

( a
⋃

k=1

〈Sk〉

)

∪

( t−1
⋃

h=1

a−1
⋃

k=1

〈

Sh
k

〉

)

.

Then C consists of a + (a − 1)(t − 1) = t(a − 1) + 1 disjoint copies of lC4.

Also,
⋃

C is precisely all of the 4-cycles in all of the Ci
k and C

(i,j)
k . Thus by

(6), G can be obtained from K2l,2l by removing the edges of the copies of
lC4 in C.

Case 2. t is odd. Let M1, . . . ,Mt be the edge sets of a 1-factorization
of Kt+1, where V (Kt+1) = {1, . . . , t+ 1}. For each h ∈ {1, . . . , t}, we obtain
the sets Sh

1 , . . . ,Sh
a−1 as follows. For each k ∈ {1, . . . , a − 1}, define

Sh
k =

⋃

ij∈Mh,i<j<t+1

C
(i,j)
k ∪ Cm

a where m(t + 1) ∈ Mh.

Since Mh is a perfect matching in Kt+1, (2) and (4) imply that each vertex
of V (G) is in exactly one 4-cycle of Sh

k and thus
〈

Sh
k

〉

∼= lC4. Since each
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vertex in {1, . . . , t} is adjacent to vertex t + 1 in exactly one Mh, (3) and
(5) imply that Sh

k ∩ Sh
k′ = φ when k 6= k′. Also, Sh

k ∩ Sh′

k′ = φ when h 6= h′.
Further, for each k ∈ {1, . . . , a − 1}, define

Sk =
t

⋃

i=1

Ci
k.

Then by (2), every vertex of V (G) is in exactly one 4-cycle in Sk and thus
〈Sk〉 ∼= lC4. Note that we do not have an Sa because the sets Ci

a were
included in the Sh

k above. By (3), Sk ∩ Sk′ = φ when k 6= k′. Let

C =

( a−1
⋃

k=1

Sk

)

∪

( t
⋃

h=1

a−1
⋃

k=1

Sh
k

)

.

Then C consists of a − 1 + t(a − 1) = (t + 1)(a − 1) disjoint copies of lC4.

Also,
⋃

C is precisely all of the 4-cycles in all of the Ci
k and C

(i,j)
k . Thus by

(6), G can be obtained from K2l,2l by removing the edges of the copies of
lC4 in C.

In the proof of Theorem 4, a given bipartite graph whose vertex set partitions
into t symmetric γ-sets was obtained by deleting the edges of t(a − 1) + 1
or (t + 1)(a − 1), depending on whether t is even or odd, pairwise disjoint
copies of lC4 from K2l,2l, where a = γ(G)/4 and t = l

a
. We close with the

following problem.

Problem 1. Consider K2l,2l and let a ≥ 1 be a divisor of l such that t =
l
a
≥ 3. For which values of l and a is it possible to remove the edges of

t(a− 1) + 1 if t is even, or (t + 1)(a− 1) if t is odd, pairwise disjoint copies

of lC4 from K2l,2l and obtain a connected, bipartite, partitionable graph?

Note that it is possible to remove edges as described and obtain a bipar-
tite graph whose vertex set partitions into dominating sets with the same
properties as symmetric γ-sets (Proposition 1), except that they are not
necessarily γ-sets.

For example, if l = 6 and a = 2, there are two ways of removing edges
of four disjoint copies of 6C4 from K12,12 to obtain a bipartite graph G
whose vertex set partitions into three dominating sets, each of which satisfies
Proposition 1 and F ∗

i = K2 for each i. In one case γ(G1) = 4a = 8 and G1

is partitionable but not connected. In the other case γ(G2) = 6, and the
dominating sets in the partition are thus not γ-sets. See Figure 5.
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G G
1a 2a

Figure 5. G1 is partitionable but disconnected; G2 is not partitionable.

As a final remark we note that the graph G in Figure 2 with γ(G) = 8 can
be obtained as a “duplication” of its induced subgraph H = 〈{0, 1, . . . , 15}〉;
that is, for each vertex v ∈ V (H) we add a duplicate vertex v′, joining v′

to all vertices u, u′, where u ∈ N(v) and u′ is the duplication of u. The set
{0, 1, 2, 3} is an efficient dominating set of H, hence γ(H) = 4 [6, Theorem
4.2]. However, it is not true in general that if G is a duplication of a graph G′

with efficient dominating set of size k, then γ(G) = 2k. It is an obvious upper
bound, but the graph G2 in Figure 5 presents a counterexample to equality
in this bound. It is a duplication of C12, which has efficient dominating sets
of size 4, but γ(G2) = 6 as shown.
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