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Abstract

For a spanning tree T' in a nontrivial connected graph G and for
vertices u and v in G, there exists a unique u—v path u = ug, u1, us, .. .,
up=vinT. Au—vT-pathin G isawu—v path u = vg,v1,...,vp =v
in G that is a subsequence of the sequence u = ug, u1, us,...,ur = v.
A u—wv T-path of minimum length is a u — v T-geodesic in G. The T-
distance dg|r(u,v) from u to v in G is the length of a u —v T-geodesic.
Let geo(G) and geo(G|T) be the set of geodesics and the set of T-
geodesics respectively in G. Necessary and sufficient conditions are
established for (1) geo(G) = geo(G|T) and (2) geo(G|T') = geo(G|T*),
where T"and T* are two spanning trees of GG. It is shown for a connected
graph G that geo(G|T) = geo(Q) for every spanning tree T of G if and
only if G is a block graph. For a spanning tree T of a connected
graph G, it is also shown that geo(G|T) satisfies seven of the eight
axioms of the characterization of geo(G). Furthermore, we study the
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relationship between the distance d and T-distance dg|r in graphs and
present several realization results on parameters and subgraphs defined
by these two distances.

Keywords: distance, geodesic, T-path, T-geodesic, T-distance.
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1. T-DISTANCE IN GRAPHS

Let G be a nontrivial connected graph. The standard distance d(u,v) be-
tween two vertices u and v of G is the length of a shortest u — v path in G
and a u — v path of minimum length is a u — v geodesic in G. Let T be a
spanning tree of GG. For vertices u and v of G, there exists a unique u — v
path

(1) U= UG, UL, U,y . .., U =V

inT. Au—wvT-pathin G is a u — v path
(2) U= V,V],...,0g =7

in G such that the sequence (2) is a subsequence of the sequence (1). First,
we present two lemmas, the first of which is a consequence of the definitions.

Lemma 1.1. Let T be a spanning tree of a connected graph G and let P :
w,v,w be a path in G. Then P is a T-path in G if and only if v lies on the
u—w path in T

Lemma 1.2. Let T be a spanning tree of a connected graph G and let
P :ug,ui,...,up
be a path in G, where k > 2. Then P is a T-path in G if and only if
(3) i, uit1,uit2 18 a T-path in G for each integer i with 0 < i <n — 2.

Proof. We proceed by induction on k. The case when k = 2 is obvious.
Let k > 3. Clearly, if P is a T-path, then (3) holds. Conversely, let (3) hold.
By the induction hypothesis,

P Up, ULy e -y Uk—1
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is a T-path in G. Hence P* is a subsequence of the ug — uip_1 path in 7.
Since ug_o, Ugp_1,u is a T-path, we see that ui_1 belongs to the ug_o — ug
path in T'. Since ui_1 # up_s, we see that that P is a subsequence of the
ug — u, path in T. Hence P is a T-path in G. [ |

A u—v T-path of minimum length is a u—v T'-geodesic in G. The T'-distance
dar(u,v) from u to v in G is the length of any u — v T-geodesic, that is,
d(;|T(u, v) is the minimum length of a u — v T-path in G. In particular, if
dg(u,v) <1, then dgp(u,v) = dg(u,v). Hence if P is the u — v path in (1)
and @ is the u — v T-path in (2), then @ is obtained from P by possibly
deleting some interior vertices of P and adding some edges of G — E(T).
Thus for each connected graph G and each spanning tree T' of G,

(4) da(u, U) < dG\T(u7 v) < dT(u7 v)

for every two vertices v and v of G.
For example, consider the graph G of Figure 1 and the spanning tree T’
of GG, where the edges of T are indicated in bold. For the vertices u and v

of G,

da(u,v) = 3, dgir(u,v) = 6, and dr(u,v) = 9.

G /o
[

v O O O

Figure 1. T-Distance in a graph

For a connected graph G and a spanning tree T of G, it follows for every
two vertices u and v of G that

(i) dgir(u,v) >0,
(ii) dgr(u,v) = 0 if and only if u = v, and

(iil) dgr(u,v) = dgir(v, u).
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Despite the fact that T-distance satisfies properties (i)-(iii), dgr is not a
metric on V(G) as it does not satisfy the triangle inequality. For example,
for the graph G = C5 and the spanning tree T' of G shown in Figure 2,

dair(u,v) =3 > 1+ 1 = dgip(u,w) + dgp(w,v).

05:

Figure 2. Failure of the triangle inequality for T-distance.

2. T-GEODESICS IN GRAPHS

We refer to the book [3] for graph theory notation and terminology not
described in this paper. Let G be a connected graph and T a spanning tree

of G. We denote by geo(G) and geo(G|T) the set of all geodesics and the
set of T-geodesics respectively in G. First, we make two observations.

Observation 2.1. Let T and T™ be two spanning trees of a connected graph G.
If geo(G|T) =geo(G|T™), then dgir = dgr=-

The converse of Observation 2.1 is not true, however. For example, consider
the graph G = K4 — e of Figure 3 and the two spanning trees 1" and T™ of
G. Observe that dgp = dgr+, while geo(G|T) # geo(G|T™), as u,z,v is a
u — v T*-geodesic in G that is not a u — v T-geodesic in G.

The following result provides a necessary and sufficient condition for the
set of T-geodesics and the set of T*-geodesics of a connected graph G to be
the same for spanning trees T and T™ of G.

Theorem 2.2. Let T and T* be spanning trees of a connected graph G.
Then

geo(G|T) = geo(G|T")
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if and only if every T-geodesic of length 2 in G is a T™*-path in G and every
T*-geodesic of length 2 in G is a T-path in G.

u v U
(@]

Figure 3. The converse of Observation 2.1 is false.

Proof. 1If geo(G|T) = geo(G|T*), then obviously every T-geodesic of
length 2 in G is a T*-path in G and every T*-geodesic of length 2 in G is
a T-path in G. It remains to verify the converse. Assume that every T-
geodesic of length 2 in G is a T™*-path in G and every T™-geodesic of length
2 in G is a T-path in G. Let

P:u=ug,uy,...,ur =v (k>0)

be a T-geodesic in G. We show that P is also a T™-geodesic in G. If
k € {0,1}, then certainly P is a T*-path (indeed, a T*-geodesic) in G. Thus
we may assume that k& > 2. By Lemma 1.2, w;, w1, ui42 IS & u; — w42
T-path in G. Furthermore, it is a u; — u;10 T-geodesic in G, for otherwise,
P is not a T-geodesic in G. By assumption, it follows that w;, w;11, tito
is a u; — u;yo T*-path in G. Again, by Lemma 1.2, P is a T*-path in
G. This implies that dgp«(u,v) < dgr(u,v). Similarly, every u — v T*-
geodesic in G is a u — v T-path in G and so dg|r(u,v) < dgr+(u,v). Thus
dair(u,v) = dgir+(u,v), implying that P is a T*-geodesic in G and so
geo(G|T') C geo(G|T™). Similarly, geo(G|T™) C geo(G|T). Thus geo(G|T") =
geo(G|T™). |

For a spanning tree T' of a connected graph G, let geoy(G|T') denote the
set of all T-geodesics of length 2 in G. The following is a consequence of
Theorem 2.2.

Corollary 2.3. Let T and T™ be spanning trees of a connected graph G.
Then

geo(G|T) = geo(G|T*) if and only if geoy(G|T) = geoy(G|T™).
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We now study necessary and sufficient conditions for the sets of geodesics
and T-geodesics of a connected graph G to be the same for a spanning tree
T of G.

Theorem 2.4. Let T be a spanning tree of a connected graph G. Then
geo(G|T) = geo(G)
if and only if every geodesic of length 2 in G is a T-path in G.

Proof. If geo(G|T) = geo(G), then every geodesic of length 2 in G is a
T-geodesic of length 2 in G and therefore, a T-path in G.

For the converse, assume that every geodesic of length 2 is a T-path in G.
We show that geo(G|T') = geo(G). We first show that geo(G) C geo(G|T).
Let

P: u=wug,ui,ug,...,up =v

be a u — v geodesic in G. Thus P; : u;, w11, u;12 is a u; — w40 geodesic
of length 2 for every integer ¢ (0 < ¢ < k — 2). By hypothesis, P, is a
T-path in G for 0 < ¢ < k—2. By Lemma 1.2 ; P is a u — v T-path in
G. Thus dgp(u,v) < dg(u,v). However, since dg(u,v) < dgr(u,v), it
follows that dg(u,v) = dgr(u,v) and P is a u — v T-geodesic in G. Hence
geo(G) C geo(G|T).

Next, we show that geo(G|T) C geo(G). Let

Q:u=wvy,v1,V9,...,00 =0

be a u — v T-geodesic in G. Since geo(G) C geo(G|T), it follows that
da(u,v) = dgr(u,v) = £and so Q is a geodesic in G. Therefore, geo(G|T') C
geo(@), which completes the proof. [

For a connected graph G, let geo,(G) denote the set of all geodesics of length
2 in G. The following two corollaries are consequences of Theorem 2.4.

Corollary 2.5. Let T be a spanning tree of a connected graph G. Then
geo(G) = geo(G|T) if and only if geoy(G) = geoy(G|T).

For a graph F, the square F? of I is the graph whose vertex set is V (F?) =
V(F) such that uv € E(F?) if and only if 1 < dp(u,v) < 2.

Corollary 2.6. Let T be a nontrivial tree. If G is the square of T, then
geo(G) = geo(G|T).
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Proof. Consider an arbitrary path P of length 2 in G. Observe that if
P is not a T-path in G, then P is not a geodesic in G. Hence the result
follows. [ |

A connected graph G is a block graph if every block of G is complete. In
fact, block graphs are the only connected graphs G for which geo(G|T') =
geo(@) for every spanning tree T of G. In order to show that, we first
establish some preliminary results. Let T' be a spanning tree of a connected
graph G. If u,v,w € V(G) and w belongs to a u — v T-geodesic, then
dar(u,v) = dgr(u, w) + dgp(w,v). The converse of this statement is not
true. For example, for the 4-cycle Cy : u,u*,v,w,u and the spanning tree
T = Cy — uw of Cy in Figure 4,
dair(u,v) =2=1+1=dgr(u,w) + dgr(w,v),

but w belongs to no u — v T-geodesic in G.

U u*

Cy - T

Figure 4. The 4-cycle C4 and a spanning tree 7" in Cjy.
In general, we have the following.

Lemma 2.7. Let v be a cut-vertex of a connected graph G and let T be a
spanning tree of G. Let

/. _ /. _
P oug,ur,ug, .. w1, =v and P v =wug, wigq, ..., Uk

be paths in G such that u;—1 and u;+1 belong to distinct components of G—wv.
Then

P UQ, UL, Uy e v oy Ug—T1y Uy Ug41y -+ - 5 Up

is a T-path in G if and only if P’ and P" are T-paths in G. Furthermore,
P is a T-geodesic in G if and only if P’ and P" are T-geodesics in G.
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Theorem 2.8. Let G be a connected graph. Then geo(G|T) = geo(G) for
every spanning tree T of G if and only if G is a block graph.

Proof. First, assume that G is not a block graph. Then there exists a
block B of G such that B is not complete. Necessarily, B is 2-connected.
Then there exists a 2-connected induced subgraph H of minimum order p in
B that is not complete. Either p >4 and H =C, orp=4and H = K4 —e.
We consider these two cases.

Case 1. H = C),. Let H : uy,ug,...,up, u;, where p > 4. Then there
exists a spanning tree 17 of GG such that

UL U, URUS, . . ., Up—1Up € E(T1) and upuy ¢ E(T1).
Since p > 4, the path
Up—1, Up, U1
is a geodesic in G but not a Tj-geodesic in G.

Case 2. H = K4y —e. Let V(H) = {u,v,x,y} such that E(H) =
{uz,uy,vx,vy, zy}. Then there exists a spanning tree Ty of G such that

uz,vz,zy € E(Ty) and uy,vy ¢ E(Ty).
Since H is an induced subgraph of G, it follows that
P: uy,v

is a geodesic in G. On the other hand, P is not a Ts-path in G and so it is
not a Th-geodesic in G.

For the converse, let G be a block graph. Let X be the set of all paths
u,v,w in G, where v is a cut-vertex of G and u and w belong to distinct
components of G — v. Consider an arbitrary spanning tree T of G. Since
geoy(G) = X = geoy(G|T), it follows by Corollary 2.5 that geo(G|T') =
geo(G). |
Next, we present a necessary condition for a subset of the set of all paths

in a nontrivial connected graph G to be geo(G|T') for some spanning tree

T of G.
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Theorem 2.9. Let G be a nontrivial connected graph and let T be a spanning
tree of G. Put A = geo(G|T). Then A is a subset of the set of all paths in
G and satisfies the following seven axioms:

Axiom 1: If wv € E(QG), then the path u,v belongs to A.

Axiom 2: If the path ug,u1,...,u, (p > 1) belongs to A, then the path
Up, Up—1,- .., Uy also belongs to A.

Axiom 3: If the path ug,u1,...,u, (p > 1) belongs to A, then the path
Ug, U1, - .., Up—1 also belongs to A.

Axiom 4: If PO . Up, UL, - .-, Up and P®@ . V0, V1, ...,V (Pyqg > 1) are
paths belonging to A such that vy = u; and vy = u; for some pair i,j with
0 <i<j<p, then the path

3) . — —
PO s ug,ur, . = V0, Uy« -+ s Vg = Ujy Ujg1s- - -, Up
also belongs to A.

Axiom 5: If u and v are two distinct vertices of G, then there exist vertices
wp, wi, ..., wg (k>1)in G such that u = wgy, v = wy, and the sequence

U =wy,Wly...,0 = Wi
also belongs to A.

Axiom 6: If p > 2 and the path ug,u1,...,u, belongs to A, then the sequence
ug, up does not belong to A.

Axiom 7: If the paths

1) .

Q( ) * Vo, Up, ULy - -, Up,
2) .

Q¥ D UQ, V0, V1, ..., Vg, and
3) .

Q( ) *Up, Vg, Vg—1, - - -, V0O,

all belong to A, then the sequence
Vg Up, Up—15 - - -, UQ
also belongs to A.

Proof. 1t is trivial to verify Axioms 1, 2, 3, 5, and 6. To verify Axiom 4,
let P and P® be two T-geodesics in G. Hence p = j — i. By Axioms 2
and 3,
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* .
P UGy U1y ey Uj

is also a T-geodesic in G. Since P and P® are T-paths in G, the path
P®) is also a T-path in G. Hence P®) is a T-geodesic in G as well.

To verify Axiom 7, let Q) and Q® be T-geodesics in G. Then Q®) is
not a T-path in G and so Q) is not a T-geodesic in G. [ |

Remark. With the aid of Theorem 1 in [5], we have the following charac-
terization of the set of all geodesics in a nontrivial connected graph: Let G
be a nontrivial connected graph and let A be a subset of the set of all paths
in G. Then A = geo(G) if and only if A satisfies Axioms 1-7 in Theorem 2.9
as well as

Axiom 8: If ug, uq,...,ur,v € V(G), k > 2, and the paths
UG, ULy« oo, U and Ug, v

belong to A, then at least one of the statements (a), (b), and (c¢) holds:

(a) there exist vg,...,v, € V(G), p > 1, such that vy = w9, v, = v, and
the sequence vy, ..., v, ur belongs to A,

(b) there exist wo,...,w, € V(G), ¢ > 1, such that wy = u;, wy = v, and
the sequence ug, wo, ..., w, belongs to A,

(c) the sequence up,ug,...,ur, v belongs to A.

(Also, see [6] and [7].)

Let us compare properties of geo(G) and geo(G|T") for a nontrivial connected
graph G and a spanning tree T of G. Although the following result is a con-
sequence of Theorem 2.9 and Remark, we are able to present an alternative
proof, which is independent of Theorem 2.9 and Remark.

Proposition 2.10. Let G be a nontrivial connected graph and let T be a
spanning tree of G. If geo(G) # geo(G|T), then geo(G|T) does not satisfy
Axiom 8.

Proof. Assume that geo(G) # geo(G|T). By Corollary 2.5, geoy(G) #
geoy(G|T). If geoy(G) C geoy(G|T), then it is easy to see that geoy(G) =
geos(G|T); a contradiction. Thus there exists a path P : x,y, z of order 3
such that P belongs to geo(G) —geo(G|T). It is clear that z does not belong
to the x — y path in T or = does not belong to the y — z path in T'. Without
loss of generality, we assume that z does not belong to the x — y path in 7.



DISTANCE DEFINED BY SPANNING TREES IN GRAPHS 495

Put k = dgp(z,2). By virtue of (4), k > 2. There exist ug,u1,...,u; €
V(G) such that ug = x, up = 2z, and Q : = wug,uy,...,ux, = 2z is a
T-geodesic in G. Since zy € E(G), the path z,y of order two is also a
T-geodesic in G. Since zy € E(G), no z — y T-geodesic in G contains uy.
Obviously, P is not a T-path in G. It is easy to see that no x — z T-geodesic
in G contains y.

Assume that R : uq,...,ux = 2,y is a T-geodesic in G. Then z belongs
to u; —y path in 7. Since @) is a T-geodesic in G, it follows that u; belongs
to the x — z path in 7. This implies that z belongs to the x — y path in
T, which is a contradiction. Thus R is not a T-geodesic in G. We see that
geo(G|T') does not satisfy Axiom 8. ]

Next we show that if G is a connected triangle-free graph and 7" and T™ are
spanning trees of G, then geo(G|T") = geo(G|T™) only when T' = T*. To
order to do this, we first present a lemma.

Lemma 2.11. Let T be a spanning tree of a connected graph G and let u and
v be adjacent vertices of G belonging to no triangle in G. Then uv ¢ E(T)
if and only if there exist k > 2 vertices ui, us, ..., u; of G such that both

U, UL, U,y -, Uk ANA UL, U, o oy U, V

are T-geodesics in G.

Proof. First suppose that uv ¢ E(T'). Then T is a spanning tree of G —uuv.
Since uv does not belong to any triangle in G, every u — v path in G — uw
has length at least 3. Let

P u=wug,ui,ug,... upupr1 =0,

be a u — v T-geodesic P in G — uv, where k > 2. Then by Axioms 2 and 3
in Theorem 2.9, both

U = U, UL, U2, ..., Ut and Uy, Ug, ..., Uk, Uktr] =V

are T-geodesics in G.

We now verify the converse. Assume, to the contrary, that uv € E(T).
Then either v belongs to the u; — v path in T or v belongs to the u; — u
path in 7. In either case, ui_; belongs to the uy — v path in 7. Hence
Uk—1, Uk, Up+1 = © is not a T-path in GG, which is a contradiction. Therefore,
wv ¢ E(T). |
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Proposition 2.12. Let G be a connected triangle-free graph and T and T*
be spanning trees of G. Then geo(G|T) = geo(G|T*) if and only if T = T*.

Proof. If T = T*, then obviously geo(G|T) = geo(G|T*). It remains
to verify the converse. Since G is triangle-free, it follows by Lemma 2.11
that E(T) is determined by geo(G|T'). Similarly, E(T™) is determined by
geo(G|T*). Thus if geo(G|T') = geo(G|T*), then T = T™*. |

3. REALIZATION RESULTS

For every connected graph G, for every spanning tree T' of G, and for every
pair u, v of vertices of G,

(1) we have referred to three distances defined between u and v,
(2) we will see several distance parameters defined for G, and

(3) we will describe two induced subgraphs of G defined in terms of 7T

In this section, we show that every three positive integers satisfying some
expected conditions can be realized as the distances referred to in (1), com-
binations of numbers satisfying some necessary conditions can be realized
as the values of the parameters referred to in (2), and that graphs, one of
which satisfies some prescribed conditions, can be realized as the subgraphs
referred to in (3). We begin with (1).

Proposition 3.1. Let a, b, and c be positive integers with a < b < c. There
exist a connected graph G, a spanning tree T of G, and two vertices u and
v of G such that dg(u,v) = a, dgr(u,v) = b, and dr(u,v) = c if and only
ifa#1orb=1.

Proof. Suppose first that a = 1 and b # 1. We have seen that for every
connected graph G and a spanning tree T' of G such that dg(u,v) = 1 for
u,v € V(G), we have dG‘T(u,v) = 1. Thus, there is no connected graph G
with a spanning tree 7" and two vertices u and v for which dg(u,v) = 1 and
dG|T(u7U) # 1.

For the converse, assume that a # 1 or b = 1. Suppose first that b = 1.
Then a = 1. If c =1, then G =T = P, with V(G) = {u,v} has the desired
properties. If ¢ # 1, then let G = C.y1, where e = uv € E(G), and let
T = G — e, which have the desired properties. We now assume that b # 1.
Thus a > 2. We consider four cases.
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Casel. a =b=c. Let G = P,;1 and let u and v be the two end-vertices
of G. Then dg(u,v) = dgr(u,v) = dr(u,v).

Case 2. 2 < a < b<c. Let G be the graph obtained from the path
(5) P:u=wugu,...,uc =0

of length ¢ by (i) adding a new vertex w and joining w to ug—o and v,
and (ii) adding the edge up_1u.. Let T be the spanning tree of G obtained
from P by adding the edge wu,—2. Then dg(u,v) = a, dgjr(u,v) = b, and
dr(u,v) = c.

Case 3. 1 < a =1b < c. Let G be the graph obtained from the path P
in (5) by adding the edge u,—1u. and let T = P be a spanning tree of G.
Then dg(u,v) = dgr(u,v) = a and dr(u,v) = c.

Case 4. 2 < a < b = c. Let G be the graph obtained from the path
P in (5) by adding a new vertex w and joining w to ugs—o and v. Let T
be the spanning tree of G obtained from P by adding the edge wwv. Thus
da(u,v) = a and dgr(u,v) = dr(u,v) = c. ]

Let T be a spanning tree of a connected graph G. For v € V(G), the T-
eccentricity eqr(v) of v in G is defined as the T-distance from v to a vertex
farthest from v. Define the T-radius radr(G) of G as

radr(G) = min{egr(v) : v € V(G)}
and the T'-diameter diamr(G) of G as
diamr(G) = max{egr(v) : v € V(G)}.

For example, consider the graph G of Figure 5 and the spanning tree T' =
G — uzv — usv of G. Since P : wug,uy,uo,...,ug is a T-path of greatest
length in G, it follows that diam7(G) = egr(ug) = 6. On the other hand,
eqir(v) =2 and eqp(u;) > 3 for 0 <4 < 6. Thus radr(G) = 2.

For the standard radius rad(G) and diameter diam(G) of a connected
graph G, it is well-known that

rad(G) < diam(G) < 2rad(G).
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As the example in Figure 5 illustrates, these same bounds do not hold for
T-radius and T-diameter. Indeed, there are no restrictions on rady(G) and
diam7(G) other than rady(G) < diamr(G).

Uo U1 Uz us Uy Uus Ug
G: O O
T
v

Figure 5. A graph G and a spanning tree T' of G for which rady(G) = 2 and
diamr(G) = 6.

Proposition 3.2. For each pair (r,d) of positive integers with r < d, there
exist a connected graph G and a spanning tree T of G such that

radr(G) = r and diamy(G) = d.
Proof. We consider two cases.

Case 1. 1 <r < (d+1)/2. Let G be the graph obtained from the u —v
path P : u = ug,uq,...,uq = v of length d by adding a new vertex w and
joining w to wu; for every ¢ with r —1 < ¢ < d. Let T be the spanning tree of
G obtained from P by adding the edge wu,_1. Since r < di;, it follows that
dair(ur—1,uq) = d —1+1>r. Thus egr(w) =7, eqr(u) = eqr(v) = d,
and 7 < egp(r) < d for all z € V(G). Therefore, radr(G) = r and
diamy(G) = d.

Case 2. r > d/2. We consider two subcases, according to whether r = d
or r <d.

Subcase 2.1. r = d. Let Sy41(Por+1) be the (r + 1)-step graph of Py,.4q
obtained from the path Po.41 : xg,21,...,x9, of order 2r 4+ 1 by adding an
edge between every two vertices of Ps,11 whose distance is r + 1 in Po,y1,
and let T' = Py-11. Observe that egp(v) = r for every vertex v of G. Thus
rady(G) = diamp(G) = r. In the case where r = d = 4, the graph S5(Fy) is
shown in Figure 6.

Subcase 2.2. d/2 < r < d. Let d =r+k, where 0 < k < r. Let G
be the graph obtained from the graph S,i1(Par+1) of Subcase 2.1 and the
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path P} : y1,y2,...,yx of order k by adding the edge zo,y;. Let T be the
spanning path xg, z1, ..., Tor, Y1, Y2, - - -, Yk in G.

Since r > d/2, it follows that egr(z2,) =7, eqr(yr) =7+ k = d, and
r <egr(z) <dfor all z € V(G). Therefore, radr(G) = r and diamr(G) =
d, as desired. m

S5(Py) : mo

o €1 o xrs3 X4 Ts5 T6 X7 xrs

Figure 6. The graph S5(Py) and a spanning tree T' of S5(Py) with radr(Ss5(Py)) =
diamy(S5(Py)) = 4 in Subcase 2.1.

Let G be a connected graph and T a spanning tree of G. For a vertex v of
G, it follows by (4) that

da(v,z) < dgir(v,z) < dr(v, )
for all x € V(G). Thus
ec(v) < eqr(v) < er(v)
for every vertex v of G. Therefore,
rad(G) < radp(G) < rad(T)

and
diam(G) < diamp(G) < diam(7T).

Next, we determine all positive integers a,b,c with a < b < c¢ that are
realizable as rad(G), radr(G), and rad(7") (and diam(G), diamy(G), and
diam(T")), respectively, for some connected graph G and a spanning tree T’

of G.

Theorem 3.3. For every three positive integers a,b,c with a < b < ¢, there
exists a connected graph G and a spanning tree T' of G such that

rad(G) = a, radp(G) = b, and rad(T') = c.
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Proof. We consider four cases.

Case 1. a =b=c. Let G =T = Pyyy1. Then rad(G) = radp(G) =
rad(T') = a.

Case 2. a =b < c. Let T be the tree obtained by adding the edge ww-
to the two paths P, : wq,wo,...,w, and

P20+1: Ucy Ue—15 -+ -5 UL, W, V1, V2, ..., VUc.

Let G be the graph obtained by adding the edges u;w and v;w to T for
i > a+ 1. Then eq(w) = a and eg(z) > a for all z € V(G), implying that
rad(G) = a. Then rad(T) = c. Since egir(w) = a and egr(z) > a for all
x € V(Q), it follows that radr(G) = a.

Case 3. a < b=c Let k =b—a > 1. Consider the graph H =
Py i1 + Ky, where Py yq @ ug,ug,...,ug, and V(Kp) = {v}. Let G be the
graph obtained from H by subdividing each edge u;v a total of @ — 1 times.
Suppose that we insert a — 1 vertices u; 1, %2, ..., ujq—1 of degree 2 into
each edge u;v for 0 < ¢ < 2k such that u;, u; 1, w2, ..., Uiq—1, v is a path
for each i (0 <4 < 2k). Then T'= G — {u; q—1v : 1 < i <2k} is a spanning
tree of G. The graph G and the spanning path T of G are shown in Figure 7
for a =3 and b =5 (where k = 2).

Figure 7. The graph G and a spanning tree T of G with rad(G) = 3 and radr(G) =
rad(7) = 5 in Case 3.

Since eg(v) = a and eg(z) > a for all z € V(G), it follows that rad(G) = a.
Since eg|r(ur) = k+(a—1)+1 = k+a =band egp(z) > bforall z € V(G),
it follows that radr(G) = b. Furthermore, er(u;) = b and e(x) > b for all
x € V(T), it follows that rad(T") = b.
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Case 4. a < b < c. Let b—a = k. We start with the graph G in
Case 3. Let G’ be the graph obtained from G by replacing the vertex wu; by
the complete graph Ko.;1 and joining each vertex of Ka.y1 to every vertex
in the neighborhood Ng(ug) of uy in G. Let

V(K2c+1) = {ycaycfla e Y1, Ty 21,22, -0 ,ZC}

and let 7" be the spanning tree obtained from the spanning tree T" of G and
the path

P:ycaycfla-"ay17$azlaz27"'azc

by identifying ug in 7" and x in P. Observe that e/ (v) = a and eg/(u) > a
for all u € V(G), implying that rad(G") = a. Since egr1v(2;) = k+a = b for
1 <i<tl4+1andegp(u) > aforallu € V(G), it follows that rad (G') = b.
Furthermore, ers(z) = ¢ and ers(u) > ¢ for all u € V(T"), implying that
rad(T") = c. ]

Theorem 3.4. For every three positive integers a,b, ¢ with a < b < ¢, there
exists a connected graph G and a spanning tree T' of G such that

diam(G) = a, diamp(G) = b, and diam(T) = ¢

if and only ifa#1 orb=1.

Proof. Let GG be a connected graph and let T" be a spanning tree of G such
that diam(G) = a, diamyp(G) = b, and diam(7T) = c. Then 1 <a <b <ec.
If a = 1, then G is complete and so diamp(G) = 1 for every spanning tree
T of G. Thus b= 1.

For the converse, let a, b, ¢ be positive integers with a < b < ¢. Suppose
first that b = 1. Let G = K,, for some integer n > ¢+ 1. Then diam(G) =
diamp(G) = 1 for every spanning tree T' of G. Since n > ¢ + 1, there exists
a tree of order n with diameter ¢ and so GG contains a spanning tree with
diameter c¢. Therefore, G = K, has the desired property. Hence we may
assume that ¢ # 1. Thus 2 < a < b < ¢. We consider four cases.

Case 1. a=b=rc. Let G =T = P,;1. Then diam(G) = diamp(G) =
diam(T") = a.

Case 2. 2 < a=1b < c. Let G be the graph obtained from the path P.;1:
Vg, V1, - .., U of order ¢+ 1 by adding all edges v;v; witha —1<i<j<c
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and let T'= P.;1. Then diam(G) = a and diam(7") = c. Since eg|r(vo) = a
and egr(r) < a for all z € V(G), it follows that diamr(G) = a.

Case 3. 2<a<b=c. Let k=0b-—a > 1. We start with the wheel
Ciiq + K1, where Clqyq @ uo,u, ..., ugy3, ug and V(K;) = {w}. The graph
G = Ciqq + K if a = 2, while if @ > 3, then G is obtained from Cj 4+ K3
and the path P, 1 : vy, v1,...,v4—2 of order a — 1 by identifying the vertices
ug and vg. Let

T=G-{wu: 0<i<k+2}U {upoupis})

be a spanning tree of G. The graph G and the spanning tree T" of G are
shown in Figure 8 for a =5 and b =9 (for k = 4).

usz
U9 Uyg
U1 u
lw 5
O Ug
U3 V2 U1 Uo Uy

Figure 8. The graph G and a spanning tree T of G with diam(G) = 5 and
diamr (G) = diam(T') = 9.

Since eg(vs—2) = a and eg(z) < a for all z € V(G), it follows that
diam(G) = a. Because egp(vq—2) = (a —2)+ (k+2) =a+k =band
eqir(z) < b for all x € V(G), it follows that diam7(G) = b. Furthermore,
er(ve—2) = b and ep(z) < b for all x € V(T'). Thus diam(T") = b.

Case 4. 2<a<b<ec Letb—a=kand c—b=/ We consider two
subcases.

Subcase 4.1. a = 2. We construct the graph G from the wheel C 4+ K7,
where Cyi4 : ug,uq,...,urr3,ug and V(K;7) = {w}, by replacing ug by the
complete graph K1 and joining each vertex of Ky to every vertex in the
neighborhood of uy in Cy14+ Ki. Let V(Kyy1) = {z1,22,..., 2041} and let
T be the spanning tree of G obtained from the path

215322y vy ZP4+1,UT, U2, . ., Uk42, W



DISTANCE DEFINED BY SPANNING TREES IN GRAPHS 503

by adding the edge z¢11ug 3. Then diam(G) = 2. Since egp(2;) = k+2 =05
(1 <i<{l+1) and egp(x) < bfor all x € V(G), it follows that diam(G) =
b. Furthermore, er(z1) = b+ ¢ = c and er(z) < ¢ for all € V(T'). Thus
diam(T") = c.

Subcase 4.2. a > 3. In this case, we start with the graph G in Case 3 and
construct the graph G’ from G by replacing the vertex v, s by the complete
graph K1 and joining each vertex of Ky to the vertex in Ng(v,—2) (see
Figure 9 for =3, a =5, and b = 9).

21
usz
U2 Uy
Uy U
z3 w 5
O Ug
24 V2 U1 Uo ur

Figure 9. The graph G’ and a spanning tree 77 of G’ with diam(G’) =5,
diamp/ (G') = 9, and diam(7") = 12.

Let V(Kpi1) = {z1,22,...,2¢41} and let T” be the spanning tree of G’
obtained from the spanning tree T' (with v,_2 being relabeled as zs41) of G
in Case 3 and the path P : z1, 29,...,2¢ by adding the edge zpzp11. Then
egr(z) =a (1 <i<{€+1)and eq(z) < a for all z € V(G'), implying
that diam(G’) = a. Since e/ (2¢41) = b and eqrp/(x) < b, it follows that
diamy/(G") = b. Furthermore, er/(z1) = b+ ¢ = ¢ and egpr(z) < ¢ for all
x € V(T'"), implying that diam(7") = c. ]

A vertex v of a connected graph G with a spanning tree T is a T'-central
verter of G if egp(v) = radr(G). By the T-center Cenr(G) of G, we mean
the subgraph of G induced by its T-central vertices. Harary and Norman [4]
proved, for standard distance in graphs, that the center of every connected
graph G lies in a single block of G. This is true for T-distance as well.

Theorem 3.5. Let T be a spanning tree of a nontrivial connected graph G.
Then the T-center of G lies in a single block of G.

Proof. Assume, to the contrary, that there exists a nontrivial connected
graph GG and a spanning tree T of G such that two T-central vertices of G
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lies in distinct blocks of G. Then G contains a cut-vertex v such that two
T-central vertices of G lies in distinct components of G — v. Let u be a
vertex of G such that dgp(u,v) = egr(v) and let P"” be a u — v T-geodesic
in G. Then some component G’ of G — v contains a T-central vertex w
but contains no vertices of P”. Let P’ be a w — v T-geodesic in G. By
Lemma 2.7, the path P obtained from P’ followed by P” is a T-geodesic in
G. Thus egr(v) > egr(w), producing a contradiction. |

Hedetniemi (see [2]) showed that every graph is the center of some connected
graph. This result is now extended to T-centers.

Theorem 3.6. For every graph G, there exists a connected graph H and a
spanning tree T of H such that Cen(H) = Ceny(H) = G.

Proof. First, add two new vertices u and v to G and join them to every
vertex of G but not to each other. Next, we add two additional vertices
u1 and v1, where we join u; to w and join v; to v. The resulting graph
is denoted by H, as shown in Figure 10. By the proof of the Hedetniemi
theorem, Cen(H) = G. Let T be the spanning tree of H shown in Figure 10
whose edges are indicated in bold. Since ey (u1) = egr(vi) = 4, egr(u) =
er(v) = 3, and eyp(z) = 2 for every vertex z in G, it follows that V(G)
is the set of T-central vertices of H and so Cenr(H) = G as well. |

Figure 10. The graph H in the proof of Proposition 3.6.

A vertex v of a connected graph G with a spanning tree T is a T'-peripheral
verter of G if eqp(v) = diamp(G). By the T-periphery Perp(G) of G, we
mean the subgraph of G induced by its T-peripheral vertices. Bielak and
Systo [1] showed that a nontrivial graph G is the periphery of some connected
graph if and only if every vertex of G has eccentricity 1 or no vertex of G
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has eccentricity 1. We next show that this theorem can be extended to
T-peripheries.

Theorem 3.7. Let G be a nontrivial graph. Then the following statements
are equivalent:

(1) Every vertex of G has eccentricity 1 or no vertez of G has eccentricity 1.
(2) There exists a connected graph F such that Per(F) = G.

(3) There exists a connected graph H and a spanning tree T of H such that
Per(H) = Perr(H) = G.

Proof. That (1) and (2) are equivalent is a restatement of the theorem of
Bielak and Systo. We show that (1) and (3) are equivalent.

Assume first that every vertex of G has eccentricity 1 or no vertex of G
has eccentricity 1. If every vertex of GG has eccentricity 1, then G is complete
and Per(G) = G. Furthermore, Perp(G) = G for every spanning tree T' of
G. Now assume that no vertex of G has eccentricity 1. This implies that for
every vertex u of GG, there is a vertex v in G that is not adjacent to u. Let
H be the graph obtained by adding a new vertex w and joining w to every
vertex of G. It is a consequence of the proof of the Bielak-Systo theorem
that Per(H) = G. Let T be the spanning tree of H that is the star with
central vertex w. Then egr(w) = 1. Since epr(x) = 2 for every vertex z
of G, it follows that every vertex of GG is a T-peripheral vertex of H and so
Perp(H) = G as well. Hence (1) implies (3).

We now show that (3) implies (1). Let G be a graph that contains
some vertices of eccentricity 1 and some vertices whose eccentricity is not
1. Tt is a consequence of Bielak-Systo theorem that Per(H*) # G for every
connected graph H*. It remains to show that for every connected graph H’
and every spanning tree T" of H', Perp(H') # G. Assume, to the contrary,
that there exists a connected graph H and a spanning tree T of H such that
Perp(H) = G. Necessarily, G is an induced subgraph of H. Furthermore, G
is a proper subgraph of H since for every vertex y of G, ey r(y) = 1 if and
only if eg(y) = 1. Thus there exists an integer k > 2 such that egp(v) =k
for every vertex v of G; while egp(v) < k for every vertex v of H that is
not in G. Let = be a vertex of G such that eg(z) = 1 and let w be a vertex
of H such that dyp(z,w) = egyr(z) = k > 2. Since w is not adjacent to =,
it follows that w is not in G. However, dgr(w,r) = k and so egr(w) > k,
which implies that e H\T(w) = k. This, however, contradicts the fact that w
is not in the T-periphery of H. [ |
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