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Abstract

For a spanning tree T in a nontrivial connected graph G and for
vertices u and v in G, there exists a unique u−v path u = u0, u1, u2, . . .,
uk = v in T . A u− v T -path in G is a u− v path u = v0, v1, . . . , vℓ = v
in G that is a subsequence of the sequence u = u0, u1, u2, . . . , uk = v.
A u− v T -path of minimum length is a u− v T -geodesic in G. The T -
distance dG|T (u, v) from u to v in G is the length of a u−v T -geodesic.
Let geo(G) and geo(G|T ) be the set of geodesics and the set of T -
geodesics respectively in G. Necessary and sufficient conditions are
established for (1) geo(G) = geo(G|T ) and (2) geo(G|T ) = geo(G|T ∗),
where T and T ∗ are two spanning trees of G. It is shown for a connected
graph G that geo(G|T ) = geo(G) for every spanning tree T of G if and
only if G is a block graph. For a spanning tree T of a connected
graph G, it is also shown that geo(G|T ) satisfies seven of the eight
axioms of the characterization of geo(G). Furthermore, we study the
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relationship between the distance d and T -distance dG|T in graphs and
present several realization results on parameters and subgraphs defined
by these two distances.
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1. T -Distance in Graphs

Let G be a nontrivial connected graph. The standard distance d(u, v) be-
tween two vertices u and v of G is the length of a shortest u − v path in G
and a u − v path of minimum length is a u − v geodesic in G. Let T be a
spanning tree of G. For vertices u and v of G, there exists a unique u − v
path

u = u0, u1, u2, . . . , uk = v(1)

in T . A u − v T -path in G is a u − v path

u = v0, v1, . . . , vℓ = v(2)

in G such that the sequence (2) is a subsequence of the sequence (1). First,
we present two lemmas, the first of which is a consequence of the definitions.

Lemma 1.1. Let T be a spanning tree of a connected graph G and let P :
u, v,w be a path in G. Then P is a T -path in G if and only if v lies on the

u − w path in T .

Lemma 1.2. Let T be a spanning tree of a connected graph G and let

P : u0, u1, . . . , uk

be a path in G, where k ≥ 2. Then P is a T -path in G if and only if

ui, ui+1, ui+2 is a T -path in G for each integer i with 0 ≤ i ≤ n − 2.(3)

P roof. We proceed by induction on k. The case when k = 2 is obvious.
Let k ≥ 3. Clearly, if P is a T -path, then (3) holds. Conversely, let (3) hold.
By the induction hypothesis,

P ∗ : u0, u1, . . . , uk−1
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is a T -path in G. Hence P ∗ is a subsequence of the u0 − uk−1 path in T .
Since uk−2, uk−1, uk is a T -path, we see that uk−1 belongs to the uk−2 − uk

path in T . Since uk−1 6= uk−2, we see that that P is a subsequence of the
u0 − uk path in T . Hence P is a T -path in G.

A u−v T -path of minimum length is a u−v T -geodesic in G. The T -distance

dG|T (u, v) from u to v in G is the length of any u − v T -geodesic, that is,
dG|T (u, v) is the minimum length of a u − v T -path in G. In particular, if
dG(u, v) ≤ 1, then dG|T (u, v) = dG(u, v). Hence if P is the u− v path in (1)
and Q is the u − v T -path in (2), then Q is obtained from P by possibly
deleting some interior vertices of P and adding some edges of G − E(T ).
Thus for each connected graph G and each spanning tree T of G,

dG(u, v) ≤ dG|T (u, v) ≤ dT (u, v)(4)

for every two vertices u and v of G.

For example, consider the graph G of Figure 1 and the spanning tree T
of G, where the edges of T are indicated in bold. For the vertices u and v
of G,

dG(u, v) = 3, dG|T (u, v) = 6, and dT (u, v) = 9.
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Figure 1. T -Distance in a graph

For a connected graph G and a spanning tree T of G, it follows for every
two vertices u and v of G that

(i) dG|T (u, v) ≥ 0,

(ii) dG|T (u, v) = 0 if and only if u = v, and

(iii) dG|T (u, v) = dG|T (v, u).
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Despite the fact that T -distance satisfies properties (i)–(iii), dG|T is not a
metric on V (G) as it does not satisfy the triangle inequality. For example,
for the graph G = C5 and the spanning tree T of G shown in Figure 2,

dG|T (u, v) = 3 > 1 + 1 = dG|T (u,w) + dG|T (w, v).

C5 :

T
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Figure 2. Failure of the triangle inequality for T -distance.

2. T -Geodesics in Graphs

We refer to the book [3] for graph theory notation and terminology not
described in this paper. Let G be a connected graph and T a spanning tree
of G. We denote by geo(G) and geo(G|T ) the set of all geodesics and the
set of T -geodesics respectively in G. First, we make two observations.

Observation 2.1. Let T and T ∗ be two spanning trees of a connected graph G.

If geo(G|T ) =geo(G|T ∗), then dG|T = dG|T ∗.

The converse of Observation 2.1 is not true, however. For example, consider
the graph G = K4 − e of Figure 3 and the two spanning trees T and T ∗ of
G. Observe that dG|T = dG|T ∗ , while geo(G|T ) 6= geo(G|T ∗), as u, x, v is a
u − v T ∗-geodesic in G that is not a u − v T -geodesic in G.

The following result provides a necessary and sufficient condition for the
set of T -geodesics and the set of T ∗-geodesics of a connected graph G to be
the same for spanning trees T and T ∗ of G.

Theorem 2.2. Let T and T ∗ be spanning trees of a connected graph G.

Then

geo(G|T ) = geo(G|T ∗)
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if and only if every T -geodesic of length 2 in G is a T ∗-path in G and every

T ∗-geodesic of length 2 in G is a T -path in G.

T ∗ :T :

y x
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Figure 3. The converse of Observation 2.1 is false.

P roof. If geo(G|T ) = geo(G|T ∗), then obviously every T -geodesic of
length 2 in G is a T ∗-path in G and every T ∗-geodesic of length 2 in G is
a T -path in G. It remains to verify the converse. Assume that every T -
geodesic of length 2 in G is a T ∗-path in G and every T ∗-geodesic of length
2 in G is a T -path in G. Let

P : u = u0, u1, . . . , uk = v (k ≥ 0)

be a T -geodesic in G. We show that P is also a T ∗-geodesic in G. If
k ∈ {0, 1}, then certainly P is a T ∗-path (indeed, a T ∗-geodesic) in G. Thus
we may assume that k ≥ 2. By Lemma 1.2, ui, ui+1, ui+2 is a ui − ui+2

T -path in G. Furthermore, it is a ui − ui+2 T -geodesic in G, for otherwise,
P is not a T -geodesic in G. By assumption, it follows that ui, ui+1, ui+2

is a ui − ui+2 T ∗-path in G. Again, by Lemma 1.2, P is a T ∗-path in
G. This implies that dG|T ∗(u, v) ≤ dG|T (u, v). Similarly, every u − v T ∗-
geodesic in G is a u − v T -path in G and so dG|T (u, v) ≤ dG|T ∗(u, v). Thus
dG|T (u, v) = dG|T ∗(u, v), implying that P is a T ∗-geodesic in G and so
geo(G|T ) ⊆ geo(G|T ∗). Similarly, geo(G|T ∗) ⊆ geo(G|T ). Thus geo(G|T ) =
geo(G|T ∗).

For a spanning tree T of a connected graph G, let geo2(G|T ) denote the
set of all T -geodesics of length 2 in G. The following is a consequence of
Theorem 2.2.

Corollary 2.3. Let T and T ∗ be spanning trees of a connected graph G.

Then

geo(G|T ) = geo(G|T ∗) if and only if geo2(G|T ) = geo2(G|T ∗).
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We now study necessary and sufficient conditions for the sets of geodesics
and T -geodesics of a connected graph G to be the same for a spanning tree
T of G.

Theorem 2.4. Let T be a spanning tree of a connected graph G. Then

geo(G|T ) = geo(G)

if and only if every geodesic of length 2 in G is a T -path in G.

P roof. If geo(G|T ) = geo(G), then every geodesic of length 2 in G is a
T -geodesic of length 2 in G and therefore, a T -path in G.

For the converse, assume that every geodesic of length 2 is a T -path in G.
We show that geo(G|T ) = geo(G). We first show that geo(G) ⊆ geo(G|T ).
Let

P : u = u0, u1, u2, . . . , uk = v

be a u − v geodesic in G. Thus Pi : ui, ui+1, ui+2 is a ui − ui+2 geodesic
of length 2 for every integer i (0 ≤ i ≤ k − 2). By hypothesis, Pi is a
T -path in G for 0 ≤ i ≤ k − 2. By Lemma 1.2 , P is a u − v T -path in
G. Thus dG|T (u, v) ≤ dG(u, v). However, since dG(u, v) ≤ dG|T (u, v), it
follows that dG(u, v) = dG|T (u, v) and P is a u − v T -geodesic in G. Hence
geo(G) ⊆ geo(G|T ).

Next, we show that geo(G|T ) ⊆ geo(G). Let

Q : u = v0, v1, v2, . . . , vℓ = v

be a u − v T -geodesic in G. Since geo(G) ⊆ geo(G|T ), it follows that
dG(u, v) = dG|T (u, v) = ℓ and so Q is a geodesic in G. Therefore, geo(G|T ) ⊆
geo(G), which completes the proof.

For a connected graph G, let geo2(G) denote the set of all geodesics of length
2 in G. The following two corollaries are consequences of Theorem 2.4.

Corollary 2.5. Let T be a spanning tree of a connected graph G. Then

geo(G) = geo(G|T ) if and only if geo2(G) = geo2(G|T ).

For a graph F , the square F 2 of F is the graph whose vertex set is V (F 2) =
V (F ) such that uv ∈ E(F 2) if and only if 1 ≤ dF (u, v) ≤ 2.

Corollary 2.6. Let T be a nontrivial tree. If G is the square of T , then

geo(G) = geo(G|T ).
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P roof. Consider an arbitrary path P of length 2 in G. Observe that if
P is not a T -path in G, then P is not a geodesic in G. Hence the result
follows.

A connected graph G is a block graph if every block of G is complete. In
fact, block graphs are the only connected graphs G for which geo(G|T ) =
geo(G) for every spanning tree T of G. In order to show that, we first
establish some preliminary results. Let T be a spanning tree of a connected
graph G. If u, v,w ∈ V (G) and w belongs to a u − v T -geodesic, then
dG|T (u, v) = dG|T (u,w) + dG|T (w, v). The converse of this statement is not
true. For example, for the 4-cycle C4 : u, u∗, v, w, u and the spanning tree
T = C4 − uw of C4 in Figure 4,

dG|T (u, v) = 2 = 1 + 1 = dG|T (u,w) + dG|T (w, v),

but w belongs to no u − v T -geodesic in G.
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Figure 4. The 4-cycle C4 and a spanning tree T in C4.

In general, we have the following.

Lemma 2.7. Let v be a cut-vertex of a connected graph G and let T be a

spanning tree of G. Let

P ′ : u0, u1, u2, . . . , ui−1, ui = v and P ′′ : v = ui, ui+1, . . . , uk

be paths in G such that ui−1 and ui+1 belong to distinct components of G−v.
Then

P : u0, u1, u2, . . . , ui−1, ui, ui+1, . . . , un

is a T -path in G if and only if P ′ and P ′′ are T -paths in G. Furthermore,

P is a T -geodesic in G if and only if P ′ and P ′′ are T -geodesics in G.
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Theorem 2.8. Let G be a connected graph. Then geo(G|T ) = geo(G) for

every spanning tree T of G if and only if G is a block graph.

P roof. First, assume that G is not a block graph. Then there exists a
block B of G such that B is not complete. Necessarily, B is 2-connected.
Then there exists a 2-connected induced subgraph H of minimum order p in
B that is not complete. Either p ≥ 4 and H = Cp or p = 4 and H = K4 − e.
We consider these two cases.

Case 1. H = Cp. Let H : u1, u2, . . . , up, u1, where p ≥ 4. Then there
exists a spanning tree T1 of G such that

u1u2, u2u3, . . . , up−1up ∈ E(T1) and upu1 /∈ E(T1).

Since p ≥ 4, the path

up−1, up, u1

is a geodesic in G but not a T1-geodesic in G.

Case 2. H = K4 − e. Let V (H) = {u, v, x, y} such that E(H) =
{ux, uy, vx, vy, xy}. Then there exists a spanning tree T2 of G such that

ux, vx, xy ∈ E(T2) and uy, vy /∈ E(T2).

Since H is an induced subgraph of G, it follows that

P : u, y, v

is a geodesic in G. On the other hand, P is not a T2-path in G and so it is
not a T2-geodesic in G.

For the converse, let G be a block graph. Let X be the set of all paths
u, v,w in G, where v is a cut-vertex of G and u and w belong to distinct
components of G − v. Consider an arbitrary spanning tree T of G. Since
geo2(G) = X = geo2(G|T ), it follows by Corollary 2.5 that geo(G|T ) =
geo(G).

Next, we present a necessary condition for a subset of the set of all paths
in a nontrivial connected graph G to be geo(G|T ) for some spanning tree
T of G.
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Theorem 2.9. Let G be a nontrivial connected graph and let T be a spanning

tree of G. Put A = geo(G|T ). Then A is a subset of the set of all paths in

G and satisfies the following seven axioms:

Axiom 1: If uv ∈ E(G), then the path u, v belongs to A.

Axiom 2: If the path u0, u1, . . . , up (p ≥ 1) belongs to A, then the path

up, up−1, . . . , u0 also belongs to A.

Axiom 3: If the path u0, u1, . . . , up (p ≥ 1) belongs to A, then the path

u0, u1, . . . , up−1 also belongs to A.

Axiom 4: If P (1) : u0, u1, . . . , up and P (2) : v0, v1, . . . , vq (p, q ≥ 1) are

paths belonging to A such that v0 = ui and vq = uj for some pair i, j with

0 ≤ i < j ≤ p, then the path

P (3) : u0, u1, . . . , ui = v0, v1, . . . , vq = uj , uj+1, . . . , up

also belongs to A.

Axiom 5: If u and v are two distinct vertices of G, then there exist vertices

w0, w1, . . ., wk (k ≥ 1) in G such that u = w0, v = wk, and the sequence

u = w0, w1, . . . , v = wk

also belongs to A.

Axiom 6: If p ≥ 2 and the path u0, u1, . . . , up belongs to A, then the sequence

u0, up does not belong to A.

Axiom 7: If the paths

Q(1) : v0, u0, u1, . . . , up,

Q(2) : u0, v0, v1, . . . , vq, and

Q(3) : up, vq, vq−1, . . . , v0,

all belong to A, then the sequence

vq, up, up−1, . . . , u0

also belongs to A.

P roof. It is trivial to verify Axioms 1, 2, 3, 5, and 6. To verify Axiom 4,
let P (1) and P (2) be two T -geodesics in G. Hence p = j − i. By Axioms 2
and 3,
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P ∗ : ui, ui+1, . . . , uj

is also a T -geodesic in G. Since P (1) and P (2) are T -paths in G, the path
P (3) is also a T -path in G. Hence P (3) is a T -geodesic in G as well.

To verify Axiom 7, let Q(1) and Q(2) be T -geodesics in G. Then Q(3) is
not a T -path in G and so Q(3) is not a T -geodesic in G.

Remark. With the aid of Theorem 1 in [5], we have the following charac-
terization of the set of all geodesics in a nontrivial connected graph: Let G
be a nontrivial connected graph and let A be a subset of the set of all paths
in G. Then A = geo(G) if and only if A satisfies Axioms 1-7 in Theorem 2.9
as well as

Axiom 8: If u0, u1, . . . , uk, v ∈ V (G), k ≥ 2, and the paths

u0, u1, . . . , uk and uk, v

belong to A, then at least one of the statements (a), (b), and (c) holds:

(a) there exist v0, . . . , vp ∈ V (G), p ≥ 1, such that v0 = u0, vp = v, and
the sequence v0, . . . , vp, uk belongs to A,

(b) there exist w0, . . . , wq ∈ V (G), q ≥ 1, such that w0 = u1, wq = v, and
the sequence u0, w0, . . . , wq belongs to A,

(c) the sequence u1, u2, . . . , uk, v belongs to A.

(Also, see [6] and [7].)

Let us compare properties of geo(G) and geo(G|T ) for a nontrivial connected
graph G and a spanning tree T of G. Although the following result is a con-
sequence of Theorem 2.9 and Remark, we are able to present an alternative
proof, which is independent of Theorem 2.9 and Remark.

Proposition 2.10. Let G be a nontrivial connected graph and let T be a

spanning tree of G. If geo(G) 6= geo(G|T ), then geo(G|T ) does not satisfy

Axiom 8.

P roof. Assume that geo(G) 6= geo(G|T ). By Corollary 2.5, geo2(G) 6=
geo2(G|T ). If geo2(G) ⊆ geo2(G|T ), then it is easy to see that geo2(G) =
geo2(G|T ); a contradiction. Thus there exists a path P : x, y, z of order 3
such that P belongs to geo(G)−geo(G|T ). It is clear that z does not belong
to the x− y path in T or x does not belong to the y− z path in T . Without
loss of generality, we assume that z does not belong to the x− y path in T .
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Put k = dG|T (x, z). By virtue of (4), k ≥ 2. There exist u0, u1, . . . , uk ∈
V (G) such that u0 = x, uk = z, and Q : x = u0, u1, . . . , uk = z is a
T -geodesic in G. Since zy ∈ E(G), the path z, y of order two is also a
T -geodesic in G. Since xy ∈ E(G), no x − y T -geodesic in G contains u1.
Obviously, P is not a T -path in G. It is easy to see that no x− z T -geodesic
in G contains y.

Assume that R : u1, . . . , uk = z, y is a T -geodesic in G. Then z belongs
to u1 − y path in T . Since Q is a T -geodesic in G, it follows that u1 belongs
to the x − z path in T . This implies that z belongs to the x − y path in
T , which is a contradiction. Thus R is not a T -geodesic in G. We see that
geo(G|T ) does not satisfy Axiom 8.

Next we show that if G is a connected triangle-free graph and T and T ∗ are
spanning trees of G, then geo(G|T ) = geo(G|T ∗) only when T = T ∗. To
order to do this, we first present a lemma.

Lemma 2.11. Let T be a spanning tree of a connected graph G and let u and

v be adjacent vertices of G belonging to no triangle in G. Then uv /∈ E(T )
if and only if there exist k ≥ 2 vertices u1, u2, . . . , uk of G such that both

u, u1, u2, . . . , uk and u1, u2, . . . , uk, v

are T -geodesics in G.

P roof. First suppose that uv /∈ E(T ). Then T is a spanning tree of G−uv.
Since uv does not belong to any triangle in G, every u − v path in G − uv
has length at least 3. Let

P : u = u0, u1, u2, . . . , uk, uk+1 = v,

be a u − v T -geodesic P in G − uv, where k ≥ 2. Then by Axioms 2 and 3
in Theorem 2.9, both

u = u0, u1, u2, . . . , uk and u1, u2, . . . , uk, uk+1 = v

are T -geodesics in G.

We now verify the converse. Assume, to the contrary, that uv ∈ E(T ).
Then either u belongs to the u1 − v path in T or v belongs to the u1 − u
path in T . In either case, uk−1 belongs to the uk − v path in T . Hence
uk−1, uk, uk+1 = v is not a T -path in G, which is a contradiction. Therefore,
uv /∈ E(T ).
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Proposition 2.12. Let G be a connected triangle-free graph and T and T ∗

be spanning trees of G. Then geo(G|T ) = geo(G|T ∗) if and only if T = T ∗.

P roof. If T = T ∗, then obviously geo(G|T ) = geo(G|T ∗). It remains
to verify the converse. Since G is triangle-free, it follows by Lemma 2.11
that E(T ) is determined by geo(G|T ). Similarly, E(T ∗) is determined by
geo(G|T ∗). Thus if geo(G|T ) = geo(G|T ∗), then T = T ∗.

3. Realization Results

For every connected graph G, for every spanning tree T of G, and for every
pair u, v of vertices of G,

(1) we have referred to three distances defined between u and v,

(2) we will see several distance parameters defined for G, and

(3) we will describe two induced subgraphs of G defined in terms of T .

In this section, we show that every three positive integers satisfying some
expected conditions can be realized as the distances referred to in (1), com-
binations of numbers satisfying some necessary conditions can be realized
as the values of the parameters referred to in (2), and that graphs, one of
which satisfies some prescribed conditions, can be realized as the subgraphs
referred to in (3). We begin with (1).

Proposition 3.1. Let a, b, and c be positive integers with a ≤ b ≤ c. There

exist a connected graph G, a spanning tree T of G, and two vertices u and

v of G such that dG(u, v) = a, dG|T (u, v) = b, and dT (u, v) = c if and only

if a 6= 1 or b = 1.

P roof. Suppose first that a = 1 and b 6= 1. We have seen that for every
connected graph G and a spanning tree T of G such that dG(u, v) = 1 for
u, v ∈ V (G), we have dG|T (u, v) = 1. Thus, there is no connected graph G
with a spanning tree T and two vertices u and v for which dG(u, v) = 1 and
dG|T (u, v) 6= 1.

For the converse, assume that a 6= 1 or b = 1. Suppose first that b = 1.
Then a = 1. If c = 1, then G = T = P2 with V (G) = {u, v} has the desired
properties. If c 6= 1, then let G = Cc+1, where e = uv ∈ E(G), and let
T = G − e, which have the desired properties. We now assume that b 6= 1.
Thus a ≥ 2. We consider four cases.
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Case 1. a = b = c. Let G = Pa+1 and let u and v be the two end-vertices
of G. Then dG(u, v) = dG|T (u, v) = dT (u, v).

Case 2. 2 ≤ a < b < c. Let G be the graph obtained from the path

P : u = u0, u1, . . . , uc = v(5)

of length c by (i) adding a new vertex w and joining w to ua−2 and v,
and (ii) adding the edge ub−1uc. Let T be the spanning tree of G obtained
from P by adding the edge wua−2. Then dG(u, v) = a, dG|T (u, v) = b, and
dT (u, v) = c.

Case 3. 1 ≤ a = b < c. Let G be the graph obtained from the path P
in (5) by adding the edge ua−1uc and let T = P be a spanning tree of G.
Then dG(u, v) = dG|T (u, v) = a and dT (u, v) = c.

Case 4. 2 ≤ a < b = c. Let G be the graph obtained from the path
P in (5) by adding a new vertex w and joining w to ua−2 and v. Let T
be the spanning tree of G obtained from P by adding the edge wv. Thus
dG(u, v) = a and dG|T (u, v) = dT (u, v) = c.

Let T be a spanning tree of a connected graph G. For v ∈ V (G), the T -

eccentricity eG|T (v) of v in G is defined as the T -distance from v to a vertex
farthest from v. Define the T -radius radT (G) of G as

radT (G) = min{eG|T (v) : v ∈ V (G)}

and the T -diameter diamT (G) of G as

diamT (G) = max{eG|T (v) : v ∈ V (G)}.

For example, consider the graph G of Figure 5 and the spanning tree T =
G − u3v − u5v of G. Since P : u0, u1, u2, . . . , u6 is a T -path of greatest
length in G, it follows that diamT (G) = eG|T (u0) = 6. On the other hand,
eG|T (v) = 2 and eG|T (ui) ≥ 3 for 0 ≤ i ≤ 6. Thus radT (G) = 2.

For the standard radius rad(G) and diameter diam(G) of a connected
graph G, it is well-known that

rad(G) ≤ diam(G) ≤ 2rad(G).
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As the example in Figure 5 illustrates, these same bounds do not hold for
T -radius and T -diameter. Indeed, there are no restrictions on radT (G) and
diamT (G) other than radT (G) ≤ diamT (G).
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Figure 5. A graph G and a spanning tree T of G for which radT (G) = 2 and

diamT (G) = 6.

Proposition 3.2. For each pair (r, d) of positive integers with r ≤ d, there

exist a connected graph G and a spanning tree T of G such that

radT (G) = r and diamT (G) = d.

P roof. We consider two cases.

Case 1. 1 ≤ r ≤ (d + 1)/2. Let G be the graph obtained from the u− v
path P : u = u0, u1, . . . , ud = v of length d by adding a new vertex w and
joining w to ui for every i with r− 1 ≤ i ≤ d. Let T be the spanning tree of
G obtained from P by adding the edge wur−1. Since r ≤ d+1

2 , it follows that
dG|T (ur−1, ud) = d − r + 1 ≥ r. Thus eG|T (w) = r, eG|T (u) = eG|T (v) = d,
and r ≤ eG|T (x) ≤ d for all x ∈ V (G). Therefore, radT (G) = r and
diamT (G) = d.

Case 2. r ≥ d/2. We consider two subcases, according to whether r = d
or r < d.

Subcase 2.1. r = d. Let Sr+1(P2r+1) be the (r + 1)-step graph of P2r+1

obtained from the path P2r+1 : x0, x1, . . . , x2r of order 2r + 1 by adding an
edge between every two vertices of P2r+1 whose distance is r + 1 in P2r+1,
and let T = P2r+1. Observe that eG|T (v) = r for every vertex v of G. Thus
radT (G) = diamT (G) = r. In the case where r = d = 4, the graph S5(P9) is
shown in Figure 6.

Subcase 2.2. d/2 ≤ r < d. Let d = r + k, where 0 < k ≤ r. Let G
be the graph obtained from the graph Sr+1(P2r+1) of Subcase 2.1 and the
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path P ′
k : y1, y2, . . . , yk of order k by adding the edge x2ry1. Let T be the

spanning path x0, x1, . . ., x2r, y1, y2, . . ., yk in G.

Since r ≥ d/2, it follows that eG|T (x2r) = r, eG|T (yk) = r + k = d, and
r ≤ eG|T (z) ≤ d for all z ∈ V (G). Therefore, radT (G) = r and diamT (G) =
d, as desired.
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Figure 6. The graph S5(P9) and a spanning tree T of S5(P9) with radT (S5(P9)) =

diamT (S5(P9)) = 4 in Subcase 2.1.

Let G be a connected graph and T a spanning tree of G. For a vertex v of
G, it follows by (4) that

dG(v, x) ≤ dG|T (v, x) ≤ dT (v, x)

for all x ∈ V (G). Thus

eG(v) ≤ eG|T (v) ≤ eT (v)

for every vertex v of G. Therefore,

rad(G) ≤ radT (G) ≤ rad(T )

and

diam(G) ≤ diamT (G) ≤ diam(T ).

Next, we determine all positive integers a, b, c with a ≤ b ≤ c that are
realizable as rad(G), radT (G), and rad(T ) (and diam(G), diamT (G), and
diam(T )), respectively, for some connected graph G and a spanning tree T
of G.

Theorem 3.3. For every three positive integers a, b, c with a ≤ b ≤ c, there

exists a connected graph G and a spanning tree T of G such that

rad(G) = a, radT (G) = b, and rad(T ) = c.
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P roof. We consider four cases.

Case 1. a = b = c. Let G = T = P2a+1. Then rad(G) = radT (G) =
rad(T ) = a.

Case 2. a = b < c. Let T be the tree obtained by adding the edge ww1

to the two paths Pa : w1, w2, . . . , wa and

P2c+1: uc, uc−1, . . ., u1, w, v1, v2, . . ., vc.

Let G be the graph obtained by adding the edges uiw and viw to T for
i ≥ a + 1. Then eG(w) = a and eG(x) ≥ a for all x ∈ V (G), implying that
rad(G) = a. Then rad(T ) = c. Since eG|T (w) = a and eG|T (x) ≥ a for all
x ∈ V (G), it follows that radT (G) = a.

Case 3. a < b = c. Let k = b − a ≥ 1. Consider the graph H =
P2k+1 + K1, where P2k+1 : u0, u1, . . . , u2k and V (K1) = {v}. Let G be the
graph obtained from H by subdividing each edge uiv a total of a− 1 times.
Suppose that we insert a − 1 vertices ui,1, ui,2, . . ., ui,a−1 of degree 2 into
each edge uiv for 0 ≤ i ≤ 2k such that ui, ui,1, ui,2, . . ., ui,a−1, v is a path
for each i (0 ≤ i ≤ 2k). Then T = G− {ui,a−1v : 1 ≤ i ≤ 2k} is a spanning
tree of G. The graph G and the spanning path T of G are shown in Figure 7
for a = 3 and b = 5 (where k = 2).
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Figure 7. The graph G and a spanning tree T of G with rad(G) = 3 and radT (G) =

rad(T ) = 5 in Case 3.

Since eG(v) = a and eG(x) ≥ a for all x ∈ V (G), it follows that rad(G) = a.
Since eG|T (uk) = k+(a−1)+1 = k+a = b and eG|T (x) ≥ b for all x ∈ V (G),
it follows that radT (G) = b. Furthermore, eT (uk) = b and e(x) ≥ b for all
x ∈ V (T ), it follows that rad(T ) = b.
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Case 4. a < b < c. Let b − a = k. We start with the graph G in
Case 3. Let G′ be the graph obtained from G by replacing the vertex uk by
the complete graph K2c+1 and joining each vertex of K2c+1 to every vertex
in the neighborhood NG(uk) of uk in G. Let

V (K2c+1) = {yc, yc−1, . . . , y1, x, z1, z2, . . . , zc}

and let T ′ be the spanning tree obtained from the spanning tree T of G and
the path

P : yc, yc−1, . . . , y1, x, z1, z2, . . . , zc

by identifying uk in T and x in P . Observe that eG′(v) = a and eG′(u) ≥ a
for all u ∈ V (G), implying that rad(G′) = a. Since eG′|T ′(zi) = k +a = b for
1 ≤ i ≤ ℓ+1 and eG′|T ′(u) ≥ a for all u ∈ V (G), it follows that radT ′(G′) = b.
Furthermore, eT ′(x) = c and eT ′(u) ≥ c for all u ∈ V (T ′), implying that
rad(T ′) = c.

Theorem 3.4. For every three positive integers a, b, c with a ≤ b ≤ c, there

exists a connected graph G and a spanning tree T of G such that

diam(G) = a, diamT (G) = b, and diam(T ) = c

if and only if a 6= 1 or b = 1.

P roof. Let G be a connected graph and let T be a spanning tree of G such
that diam(G) = a, diamT (G) = b, and diam(T ) = c. Then 1 ≤ a ≤ b ≤ c.
If a = 1, then G is complete and so diamT (G) = 1 for every spanning tree
T of G. Thus b = 1.

For the converse, let a, b, c be positive integers with a ≤ b ≤ c. Suppose
first that b = 1. Let G = Kn for some integer n ≥ c + 1. Then diam(G) =
diamT (G) = 1 for every spanning tree T of G. Since n ≥ c + 1, there exists
a tree of order n with diameter c and so G contains a spanning tree with
diameter c. Therefore, G = Kn has the desired property. Hence we may
assume that a 6= 1. Thus 2 ≤ a ≤ b ≤ c. We consider four cases.

Case 1. a = b = c. Let G = T = Pa+1. Then diam(G) = diamT (G) =
diam(T ) = a.

Case 2. 2 ≤ a = b < c. Let G be the graph obtained from the path Pc+1:
v0, v1, . . ., vc of order c + 1 by adding all edges vivj with a − 1 ≤ i < j ≤ c
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and let T = Pc+1. Then diam(G) = a and diam(T ) = c. Since eG|T (v0) = a
and eG|T (x) ≤ a for all x ∈ V (G), it follows that diamT (G) = a.

Case 3. 2 ≤ a < b = c. Let k = b − a ≥ 1. We start with the wheel
Ck+4 + K1, where Ck+4 : u0, u1, . . . , uk+3, u0 and V (K1) = {w}. The graph
G = Ck+4 + K1 if a = 2, while if a ≥ 3, then G is obtained from Ck+4 + K1

and the path Pa−1 : v0, v1, . . . , va−2 of order a−1 by identifying the vertices
u0 and v0. Let

T = G − ({wui : 0 ≤ i ≤ k + 2} ∪ {uk+2uk+3})

be a spanning tree of G. The graph G and the spanning tree T of G are
shown in Figure 8 for a = 5 and b = 9 (for k = 4).
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Figure 8. The graph G and a spanning tree T of G with diam(G) = 5 and

diamT (G) = diam(T ) = 9.

Since eG(va−2) = a and eG(x) ≤ a for all x ∈ V (G), it follows that
diam(G) = a. Because eG|T (va−2) = (a − 2) + (k + 2) = a + k = b and
eG|T (x) ≤ b for all x ∈ V (G), it follows that diamT (G) = b. Furthermore,
eT (va−2) = b and eT (x) ≤ b for all x ∈ V (T ). Thus diam(T ) = b.

Case 4. 2 ≤ a < b < c. Let b − a = k and c − b = ℓ. We consider two
subcases.

Subcase 4.1. a = 2. We construct the graph G from the wheel Ck+4+K1,
where Ck+4 : u0, u1, . . . , uk+3, u0 and V (K1) = {w}, by replacing u0 by the
complete graph Kℓ+1 and joining each vertex of Kℓ+1 to every vertex in the
neighborhood of u0 in Ck+4 + K1. Let V (Kℓ+1) = {z1, z2, . . . , zℓ+1} and let
T be the spanning tree of G obtained from the path

z1, z2, . . . , zℓ+1, u1, u2, . . . , uk+2, w
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by adding the edge zℓ+1uk+3. Then diam(G) = 2. Since eG|T (zi) = k+2 = b
(1 ≤ i ≤ ℓ+1) and eG|T (x) ≤ b for all x ∈ V (G), it follows that diamT (G) =
b. Furthermore, eT (z1) = b + ℓ = c and eT (x) ≤ c for all x ∈ V (T ). Thus
diam(T ) = c.

Subcase 4.2. a ≥ 3. In this case, we start with the graph G in Case 3 and
construct the graph G′ from G by replacing the vertex va−2 by the complete
graph Kℓ+1 and joining each vertex of Kℓ+1 to the vertex in NG(va−2) (see
Figure 9 for ℓ = 3, a = 5, and b = 9).
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Figure 9. The graph G′ and a spanning tree T ′ of G′ with diam(G′) = 5,

diamT ′(G′) = 9, and diam(T ′) = 12.

Let V (Kℓ+1) = {z1, z2, . . . , zℓ+1} and let T ′ be the spanning tree of G′

obtained from the spanning tree T (with va−2 being relabeled as zℓ+1) of G
in Case 3 and the path P : z1, z2, . . . , zℓ by adding the edge zℓzℓ+1. Then
eG′(zi) = a (1 ≤ i ≤ ℓ + 1) and eG′(x) ≤ a for all x ∈ V (G′), implying
that diam(G′) = a. Since eG′|T ′(zℓ+1) = b and eG′|T ′(x) ≤ b, it follows that
diamT ′(G′) = b. Furthermore, eT ′(z1) = b + ℓ = c and eT ′(x) ≤ c for all
x ∈ V (T ′), implying that diam(T ′) = c.

A vertex v of a connected graph G with a spanning tree T is a T -central

vertex of G if eG|T (v) = radT (G). By the T -center CenT (G) of G, we mean
the subgraph of G induced by its T -central vertices. Harary and Norman [4]
proved, for standard distance in graphs, that the center of every connected
graph G lies in a single block of G. This is true for T -distance as well.

Theorem 3.5. Let T be a spanning tree of a nontrivial connected graph G.

Then the T -center of G lies in a single block of G.

P roof. Assume, to the contrary, that there exists a nontrivial connected
graph G and a spanning tree T of G such that two T -central vertices of G
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lies in distinct blocks of G. Then G contains a cut-vertex v such that two
T -central vertices of G lies in distinct components of G − v. Let u be a
vertex of G such that dG|T (u, v) = eG|T (v) and let P ′′ be a u− v T -geodesic
in G. Then some component G′ of G − v contains a T -central vertex w
but contains no vertices of P ′′. Let P ′ be a w − v T -geodesic in G. By
Lemma 2.7, the path P obtained from P ′ followed by P ′′ is a T -geodesic in
G. Thus eG|T (v) > eG|T (w), producing a contradiction.

Hedetniemi (see [2]) showed that every graph is the center of some connected
graph. This result is now extended to T -centers.

Theorem 3.6. For every graph G, there exists a connected graph H and a

spanning tree T of H such that Cen(H) = CenT (H) = G.

P roof. First, add two new vertices u and v to G and join them to every
vertex of G but not to each other. Next, we add two additional vertices
u1 and v1, where we join u1 to u and join v1 to v. The resulting graph
is denoted by H, as shown in Figure 10. By the proof of the Hedetniemi
theorem, Cen(H) = G. Let T be the spanning tree of H shown in Figure 10
whose edges are indicated in bold. Since eH|T (u1) = eH|T (v1) = 4, eH|T (u) =
eH|T (v) = 3, and eH|T (x) = 2 for every vertex x in G, it follows that V (G)
is the set of T -central vertices of H and so CenT (H) = G as well.
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Figure 10. The graph H in the proof of Proposition 3.6.

A vertex v of a connected graph G with a spanning tree T is a T -peripheral

vertex of G if eG|T (v) = diamT (G). By the T -periphery PerT (G) of G, we
mean the subgraph of G induced by its T -peripheral vertices. Bielak and
Sys lo [1] showed that a nontrivial graph G is the periphery of some connected
graph if and only if every vertex of G has eccentricity 1 or no vertex of G
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has eccentricity 1. We next show that this theorem can be extended to
T -peripheries.

Theorem 3.7. Let G be a nontrivial graph. Then the following statements

are equivalent:

(1) Every vertex of G has eccentricity 1 or no vertex of G has eccentricity 1.

(2) There exists a connected graph F such that Per(F ) = G.

(3) There exists a connected graph H and a spanning tree T of H such that

Per(H) = PerT (H) = G.

P roof. That (1) and (2) are equivalent is a restatement of the theorem of
Bielak and Sys lo. We show that (1) and (3) are equivalent.

Assume first that every vertex of G has eccentricity 1 or no vertex of G
has eccentricity 1. If every vertex of G has eccentricity 1, then G is complete
and Per(G) = G. Furthermore, PerT (G) = G for every spanning tree T of
G. Now assume that no vertex of G has eccentricity 1. This implies that for
every vertex u of G, there is a vertex v in G that is not adjacent to u. Let
H be the graph obtained by adding a new vertex w and joining w to every
vertex of G. It is a consequence of the proof of the Bielak-Sys lo theorem
that Per(H) = G. Let T be the spanning tree of H that is the star with
central vertex w. Then eH|T (w) = 1. Since eH|T (x) = 2 for every vertex x
of G, it follows that every vertex of G is a T -peripheral vertex of H and so
PerT (H) = G as well. Hence (1) implies (3).

We now show that (3) implies (1). Let G be a graph that contains
some vertices of eccentricity 1 and some vertices whose eccentricity is not
1. It is a consequence of Bielak-Sys lo theorem that Per(H∗) 6= G for every
connected graph H∗. It remains to show that for every connected graph H ′

and every spanning tree T ′ of H ′, PerT ′(H ′) 6= G. Assume, to the contrary,
that there exists a connected graph H and a spanning tree T of H such that
PerT (H) = G. Necessarily, G is an induced subgraph of H. Furthermore, G
is a proper subgraph of H since for every vertex y of G, eH|T (y) = 1 if and
only if eG(y) = 1. Thus there exists an integer k ≥ 2 such that eH|T (v) = k
for every vertex v of G; while eH|T (v) < k for every vertex v of H that is
not in G. Let x be a vertex of G such that eG(x) = 1 and let w be a vertex
of H such that dH|T (x,w) = eH|T (x) = k ≥ 2. Since w is not adjacent to x,
it follows that w is not in G. However, dH|T (w, x) = k and so eH|T (w) ≥ k,
which implies that eH|T (w) = k. This, however, contradicts the fact that w
is not in the T -periphery of H.
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