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Abstract

We investigate which switching classes do not contain a bipartite
graph. Our final aim is a characterization by means of a set of critically
non-bipartite graphs: they do not have a bipartite switch, but every
induced proper subgraph does. In addition to the odd cycles, we list a
number of exceptional cases and prove that these are indeed critically
non-bipartite. Finally, we give a number of structural results towards
proving the fact that we have indeed found them all. The search for
critically non-bipartite graphs was done using software written in C and
Scheme. We report on our experiences in coping with the combinatorial
explosion.
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1. INTRODUCTION

For a finite undirected graph G = (V,E) and a set o C V, the switch of
G by o is defined as the graph G° = (V, E’), which is obtained from G by
removing all edges between ¢ and its complement & and adding as edges
all nonedges between o and @. The switching class [G] determined by G
consists of all switches G for subsets o C V.

A switching class is an equivalence class of graphs under switching. The
initiators of the theory of switching classes of graphs were Van Lint and Sei-
del [9]. They used the model in their investigation of elliptic geometry. The
book on 2-structures by Ehrenfeucht, Harju and Rozenberg has a number of
chapters on switching classes of graphs and their generalizations [2]. A book
completely devoted to the subject of switching is the first author’s thesis [3].
Part of the motivation for the general model treated in the latter two books
is that they constitute a way in which to model the semantics of a certain
type of networks of processors. Switching classes have also been found useful
in the fields of psychosociology, and in the investigation of Ising models in
statistical physics. For more information on applications of switching classes
consult the preface of the dynamic bibliography of signed and gain graphs
and allied areas, compiled by Zaslavsky [10].

A graph G = (V, E) is bipartite if V' can be partitioned into two sets A
and V — A, such that all edges in F are between A and V — A. An equivalent
characterization is to say that G is bipartite if it contains no cycles of odd
length. Deciding whether a graph is bipartite is easily done by visiting each
node at most once.

The bipartiteness problem for switching classes is to determine, given
the generator G of the switching class, whether this class contains a bipartite
graph:

B(G) iff there exists H € [G] such that H is bipartite.

Easy examples are when G is complete bipartite (this includes the discrete
graph), since all graphs in [G] are (complete) bipartite. If G is K3, then
the class contains a non-bipartite graph, K3, but all other graphs in this
switching class are bipartite. A last example here is when G is K5: then
[G] contains no bipartite graphs (since this class contains only K3, and the
disjoint unions K4 U K7 and K3 U Ks). Hage, Harju and Welzl give an
algorithm to decide B in time quadratic in the number of vertices in the
graph [6]. In this paper, we try to characterize the switching classes that
do not contain a bipartite graph by means of a set of forbidden subgraphs.
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In other words, we intend to find a minimal set of graphs F such that
B(G) iff for all F € F, F is not an induced subgraph of any H € [G].

Obviously, if F; € [F], then at most one of F; and F5 need be in the
family F. Furthermore, we can restrict F to so-called critically non-bipartite
graphs: they do not have a bipartite switch, but every induced subgraph
does.

For the case that the predicate B is ’acyclic’ instead of ’bipartite’, Hage
and Harju showed that besides the infinite family of simple cycles C,, with
n > 7, there are only finitely many of such critically cyclic graphs [5] (a
computer program discovered 905 such graphs, divided into 24 switching
classes). They proved that among the graphs of order at least 10 there are
no more exceptional cases: only simple cycles.

By means of a computer program, we have managed to find six excep-
tional critically non-bipartite switching classes, besides the ones generated
by the simple cycles C,, of odd order n > 7. We suspect that these are all
of them, but we have not managed to prove that fact. What we do show
in this paper is that the graphs we found are indeed critically non-bipartite
graphs. In addition, we give a number of results about switching classes
that do contain bipartite graphs in Section 3, and structural properties of
the critically non-bipartite graphs. The first of these properties help show
that a graph has no bipartite switches, the latter restricts us in what kind
of critically non-bipartite we may expect to find in the future. In the final
section, we explain how we tackled the computational problem of finding
the critically non-bipartite graph, especially how to deal with the combina-
torial explosion in such a search. There is quite a bit of programming effort
and computer time involved here, and the fact that we have performed this
search (completely up to 12 and partly for 13 vertices) and report on the
outcomes, is one of the contributions of this paper.

2. PRELIMINARIES

For a (finite) set V, let |V| be the cardinality of V. We shall often identify a
subset A C V with its characteristic function A : V' — Zj, where Zs = {0, 1}
is the cyclic group of order two. We use the convention that for x € V,
A(x) = 1 if and only if x € A. The restriction of a function f : V — W
to a subset A C V is denoted by f|4. We denote set difference by A — B.
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It contains the elements in A which are not in B. If B is a singleton {b},
then we may write A — b for brevity.

The set E(V) = {{z,y} | z,y € V, = # y} denotes the set of all un-
ordered pairs of distinct elements of V. We write xy or yx for the undirected
pair {z,y}. The graphs of this paper will be finite, undirected and simple,
i.e., they contain no loops or multiple edges. We use F(G) and V(G) to de-
note the set of edges F and the set of vertices V, respectively, and |V| and
|E| are called the order, respectively, size of G. Analogously to sets, a graph
G = (V, E) will be identified with the characteristic function G : E(V) — Zq
of its set of edges so that G(zxy) = 1 for zy € F, and G(zy) =0 for zy ¢ E.
Later we shall use both notations, G = (V,E) and G : E(V) — Zs, for
graphs.

Let G = (V,E) be a graph. A vertex x € V is adjacent to y € V if
xy € E. The degree of x in G is the number of vertices it is adjacent to. The
neighbours of u in G, denoted N¢g(u), or N(u) if G is clear from the context,
is the set of vertices adjacent to u in G. A vertex which is not adjacent to
any other vertex in a graph is called isolated.

For a graph G = (V, E) and X C V, let G|x denote the subgraph of G
induced by X. Hence, G|x : E(X) — Zs. For two graphs G and H on V
we define G + H to be the graph such that (G + H)(zy) = G(zy) + H(xy)
for all zy € E(V), i.e., G+ H is the symmetric difference of the graphs G
and H (since addition is performed modulo 2). The disjoint union of two
graphs G and H, is denoted G U H.

A graph G = (V, E) is bipartite if V can be partitioned into two sets
A and V — A, such that all edges in E are between A and V — A. An
equivalent characterization is to say that G is bipartite if and only if it
contains no cycles of odd length.

Some graphs we will encounter in the sequel are Ky, the clique on the
set of vertices V, and Ky, the complement of Ky which is the discrete graph
on V; the complete bipartite graph on A and V' — A is denoted by K4y _a.
If the choice of vertices is unimportant we can write K, K, and Konn—m
for n = |V| and m = |A].

We continue now with definitions for the switching of graphs.

A selector for G is a subset 0 C V(G), or alternatively a function o :
V(G) — Zy. We reserve lower case o for selectors (subsets). A switch of a
graph G by o is the graph G? such that for all zy € E(V),

G’ (zy) = o(z) + G(zy) + o (y).
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Clearly, this definition of switching is equivalent to the one given at the
beginning of the introduction. The set [G] = {G | 0 C V'} is called the
switching class of G. The set of graphs [G] is called a switching class, because
switching is a reflexive, symmetric and transitive operation: composition of
two selectors amounts to taking the symmetric difference. This result can
be used to prove the following.

Lemma 1. It holds that G* = G2 if and only if o1 = 0 or o1 = V(G)—o09.

A selector o is constant on X C V if X C 0, or X No = (). The name arises
from the fact that, in these cases, G|x = G%.

In this paper we are interested in characterizing the set of critically non-
bipartite graphs: a graph G is said to be critically non-bipartite, if it does
not have a switch that is bipartite, but every proper subgraph H # G of G
does have a bipartite switch.

We now give a few (standard) results from the literature that will be
used in this paper, see e.g. Hage [3].

Lemma 2. The switching class [Kv] equals the set of all complete bipartite
graphs on V.

From the observation that computing G? amounts to computing G+
K, v (a)-o we obtain the following result.

Lemma 3. It holds that G € [H] if and only if G + H € [Ky].

Lemma 4. Let G = (V, E) be a graph, u € V and A CV —{u}. There
exists a unique graph H € [G] such that the neighbours of u in H are the
vertices in A.

As a corollary we find that for every vertex x € V(G), there is a unique
graph in [G] where z is isolated.

3. SWITCHING CLASSES THAT DO CONTAIN A BIPARTITE GRAPH

The first important thing to realize is that if a switching class contains a
bipartite graph, with partition (A,V — A) say, and if we switch according
to an arbitrary selector o, then we obtain a graph of the form shown in
Figure 1(a).
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In other words, each switch of a bipartite graph has a spanning subgraph
which is the disjoint union of two complete bipartite induced graphs with
bipartitions (¢ N A, A — o) and (0 — A,V — o — A). One or both of these
subgraphs may just be an independent set, as shown in Figure 1(b). (This
switch is obtained from Figure 1(a) by switching along o — A.) Thus a
switch of a bipartite graph consists of four independent sets, which come in
two completely connected pairs. In the following we shall call each of these
independent sets a block.
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Figure 1. Partitioned into (a) four and (b) three blocks.

The fact that a bipartite graph switches into a 4-colourable graph is an
instance of a more general property, which says that if G has chromatic
number x, then every graph in [G] has a chromatic number between y/2
and 2y [3].

If three of the blocks are empty, then the graph is discrete, and its
switching class contains exactly all complete bipartite graphs (of the
same order). If exactly two are empty, then the graph itself is bipar-
tite. Note that by Lemma 4 we can turn a four-partition into a three-
partition by making the set of neighbours of one of the vertices empty, as in
Figure 1(b).

The following result was already proved in Hage, Harju, Welzl [6]. We
give a proof in a different style, here.

Lemma 5. If G contains (induced) Copiq for k > 3, then every H € [G]
contains an induced odd cycle.
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Proof. It suffices to prove the result for G = Cy; 1. Every graph has an
induced odd cycle unless it is bipartite, so we must prove that Cory1 does
not have a bipartite switch.

The largest complete bipartite subgraph of Coyq is either an indepen-
dent set of cardinality k, or a path of length two on three vertices (K ).
Since k > 3, any complete bipartite subgraph has cardinality at most k, so
two such graphs cannot form a spanning subgraph of Coy1. Hence, Cor11q
does not have a bipartite switch. [ |

Since omitting any vertex from Co4 1 gives a bipartite graph, we have the
following.

Corollary 1. The graphs Copy1 are for k > 3 all critically non-bipartite.

Lemma 2 showed that there is a switching class consisting of all complete
bipartite graphs. The following result shows that there is only one switching
class containing only bipartite graphs.

Theorem 1. The switching class [G] contains only bipartite graphs if and
only if [G] consists of the complete bipartite graphs on the domain of G.

Proof. The if-part is clear. Now, let H € [G] be a bipartite graph on
A and V — A; if both sets contain at most one node, then H is complete
bipartite.

Since H is not discrete there is an edge uv in H. If H is not connected
we can switch a node x in another component and get a triangle {u,v,z}.
If H is connected, then let uw € A and v € V — A be such that they are
not adjacent in H (they exist because H is not complete bipartite). But
since the graph is connected, u has a neighbour, say x. Clearly, z € V — A
and thus z and v are not adjacent. Again {u,v,x} can be switched into a
triangle. [ |

The above result can also be viewed as an example of characterizing the
switching classes that contain only bipartite graphs by means of forbidden
subgraphs, the forbidden graphs in this case being K3 and K1 U K.

Corollary 2. If a graph in a switching class avoids both Ks and K U Ko,
then the switching class contains only bipartite graphs.

A similar result was obtained by Hertz [7] for switching classes that contain
only perfect graphs.
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4. THE KNOWN EXCEPTIONAL CASES

In addition to the cycles Cox11, we have found a small number of critically
non-bipartite switching classes. Representatives of these are given in Fig-
ure 2 (we shall refer to these graphs by (n) where n is the order of the
graph). Thus we have graphs (5) for the K3, (6) for C5 U Ky, (7) for GU K},
where G is the “antenna graph”, and (8) (which switches to co-C7 U K),
(9) and (11) for the others. The only graph among in the set which is not
part of the set of critically cyclic graphs of [5] is (11).

ﬁ

|

Figure 2. The exceptional critically non-bipartite graphs.

Lemma 6. Fach of the graphs in Figure 2 is critically non-bipartite.

Proof. We have to prove for each graph that all their switches are non-
bipartite, and if we remove a vertex, then the resulting graph can be switched
to a bipartite graph. The latter follows if for every vertex, we can find a
switch so that all odd cycles go through that single vertex.

The graph K5 switches only to K4 U K1 and K3 U Ks, and omitting
from the latter one of the vertices of the K3 gives the bipartite Ko U Ko.
We consider next (6), the C5 U K;. Omitting any vertex on the Cs which
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is part of (6), removes the odd cycle. Switching a single vertex on the Cj
yields the net (a K3 with an edge attached to each vertex of the triangle).
The isolated vertex is now one of the vertices of the K3. The other graphs
can be handled similarly, and these cases will be omitted here.

Proving that a graph has no bipartite switches can be done in two ways:
compute all switches and verify that none of them is bipartite, or show that
the graph cannot be embedded in Figure 1(a) (or Figure 1(b) if it has an
isolated vertex). We illustrate the latter using (7) as an example. Since
(7) has an isolated node, we use Figure 1(b). Each of the vertices of the
triangle goes into a different part of the partition, so one of them ends up
in the same class as the isolated vertex. There are two cases: 1 goes with 3
or 1 goes with 4 (5 is exactly the same). In the first case, 2 has to go with
either 4 or 5, but then it must be connected to the other, which it is not. In
the second case, we cannot put 6 anywhere: it cannot go with 5 since it is
not connected to 3, it cannot go with 3 since it is not connected to 5, and
it cannot go with 4, since it is connected to 4. [ |

5. PROPERTIES OF CRITICALLY NON-BIPARTITE GRAPHS

Some simple but essential properties of critically non-bipartite graphs are
the following.

Lemma 7. Let G be critically non-bipartite and let v € V(G).

(i) If G has an isolated vertex and is not Cs U K1, then the largest induced
odd cycle of G is (.

(ii) There is a selector o on V- — {v} such that (G —v)? is bipartite.

(iii) [G] contains a graph H in which all odd cycles go through v, and there
is at least one such cycle. Furthermore, the same holds for H{}.

Proof. For the first case, it suffices to observe that Cs U K7, and Cogy1
for k > 3 are already critically non-bipartite. The second case follows from
the definition of critically non-bipartite. The final case follows from the
second case: if (G — v)? is bipartite, then if we set o(v) = 0, then (G7) —v
is bipartite, so all odd cycles in G? go through v and there is at least one
such cycle since G is critically non-bipartite. The same holds if we take
o(v) =1. ]

Because every graph can be switched to a graph with an isolated vertex, the
following bound is as tight as possible.
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Lemma 8. FEwvery critically non-bipartite graph has at most one isolated
verter.

Proof. Let G be a critically non-bipartite graph with isolated vertices I =
{v1,..., v} and assume m > 2. First of all, because G has isolated vertices
and G is not bipartite, there is at least one induced C5 by Lemma 7(i), say
on U = {uy,us,us}.

Let o be the selector of Lemma 7(ii) such that H = (G—wv1)? is bipartite.
Then o is not constant on U. Assume without loss of generality that o(u;) =
1 and o(ug) = o(ug) = 0. Then o(ve) = ... = o(vy,) = 0, because if
o(v;) =1 for 2 <i <m, then {v;,us,us} is a triangle in H.

We extend o to V(G) by o(vy) = 0, and we prove that G is bipartite
or H is not bipartite. By Lemma 7(iii) all odd cycles go through vy in G7,
and there is at least one such cycle. Because v; and v9 have the exact same
set of neighbours, every cycle that goes through v, gives rise to a cycle that
goes through vy (this could be the same cycle, if the cycle contains both v;
and vy). If there is an odd cycle through vy, that does not go through vy,
then we are done, because replacing v; with vy in that cycle gives rise to
an odd cycle in H. We now show that if we have a cycle that goes through
both v; and ve, then we also have a cycle that does not go through vy, again
leading to a contradiction, because H is bipartite.

Consider an odd cycle C' in G? that goes through vy and vs. In C,
exactly one of the paths between vy and v9 has an odd length of at least

three (remember that v; and vy are not adjacent), say (vi,wi,...,wp, v2)
where p > 2 is even. But w; is also adjacent to vo, giving rise to the odd
cycle (va,wy, ..., wp,v2). [

This leads to the following corollary which restricts us somewhat in our
search for new critically non-bipartite graphs.

Corollary 3. Every critically non-bipartite graph G of order at least siz has
at most two components. If G has two components, then one of these is a
single vertex and if G contains an induced cycle, then this cycle is a Cs.

6. CONJECTURES

Although we have investigated the matter at some length, we have not been
able to prove the following result which we leave as conjecture:
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Conjecture 1. Besides the odd simple cycles Cox11 for k£ > 6, there are no
critically non-bipartite graphs of order at least 12.

We leave the reader with some observations that might lead to such a proof.
The main problem we have compared to the situation of [5] is that we do not
have the equivalent of Lemma 5.7 of that paper. It basically gives a normal
form for critically cyclic graphs which implies that we have a subgraph of a
limited number of types. The brunt of the work was to consider these one
by one, but it was this lemma that reduced the work to a finite amount of
cases.

What we have observed is that each of the special critically non-bipartite
graphs we found has a switch in which there is a single C3. For K35 this is
K3 U K, for C5U K7 this is C'5 with an edge attached to each of its vertices
(the net in the naming of ISCGI), and the others are given in Figure 2.
Although these are not all connected, most of them are. In the case of (7),
it does have a connected switch with a single induced cycle, but it is a Cj
(of which two adjacent vertices have a edge attached to them).

Some conjectures that might be useful towards proving the main con-
jecture:

(i) Every critically non-bipartite graph has a switch that has a single odd
cycle which is a C}.

(ii) Such a graph is unique in its switching class (up to isomorphism).

(iii) Such a graph is planar.

The program that we used in our search for critically non-bipartite graphs
has been applied fully up to 12 vertices. About one third of the switching
classes on 13 vertices have been considered. Among these we found quite a
few critically non-bipartite graphs, all switchable to the cycle Ci3.

7. THE SOFTWARE

To determine the critically non-bipartite graphs, we used a program written
in C++. As the number of vertices n increases, the number of switching
classes increases as n(®~1)(=2)/2 in the worst case (depending on how well
we can avoid looking at isomorphic switching classes). Given a number n the
program will generate a list of non-bipartite graphs of order n, from which
graphs can be omitted which have certain induced subgraphs (i.e., a critically
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non-bipartite graph on fewer vertices). Thus we obtain the critically non-
bipartite graphs on n vertices. There is a separate program that can remove
from such a list all isomorphic graphs, and if need be, all graphs that switch
to isomorphic graphs. This is an important tool, because the brute force
algorithm is not guaranteed to generate only non-isomorphic graphs.

This approach is not particularly fast for small numbers of vertices,
because the number of isomorphic graphs is relatively high. We used here
the files from Spence [8] which list representatives for the switching classes
up to isomorphism and up to complementation for up to 10 vertices. This
means that up to that number of vertices, we shall (almost) never generate
duplicates. The only exceptional cases are those in which the complement
of a graph G has a switch isomorphic to G.

In general, it is impossible to extend beyond ten vertices without doing
a lot of duplicate work. The reason is that starting from 11 vertices, the sizes
of the file in the line of Spence’s are simply too large. However, if we are
investigating a fixed predicate, such as bipartite, and we already have quite
a few graphs that we can forbid, then it may be worthwhile to compute a list
of switching classes on a given number of vertices that already exclude the
known critical non-bipartite graphs. For instance, for the case of critically
non-bipartite, this reduces the file of graphs on 10 vertices by a factor of 16.

The trustworthiness of our results is enhanced by the existence of a
program written in Scheme with similar, but limited functionality. Com-
putation in Scheme is too slow to perform a brute force search, but it can
verify that the graphs found by the C++ program are indeed critically non-
bipartite. The added trustworthiness is a consequence of the fact that the
two implementations differ markedly in their approach to the problem.

Efficiency was improved through a number of improvements on the naive
algorithm: forbidding K5 and Cs U K as soon as possible using tailor-
made embedding algorithms, improving the efficiency of switching using the
technique described in [4] based on the Game of Hanoi, and finally the use of
profiling to determine bottlenecks in computation. One such optimization
was the use of integers to encode edges and not booleans. It turned out
booleans were handled inefficiently by the compiler.

8. CLOSING REMARKS

We have used a computer program to search for critically non-bipartite
switching classes. Besides those generated by the simple odd cycles Cox 1,
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k > 3, we found six exceptional ones. We have some preliminary results to-
ward proving that we have in fact found them all, but a proof still eludes us.
We have applied the same method to other types of graphs, such as chordal
graphs, but in those cases, the number of critical graphs soon explodes.
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