ON (k, l)-KERNELS IN *D*-JOIN OF DIGRAPHS

WALDEMAR SZUMNY, ANDRZEJ WŁOCH AND IWONA WŁOCH

Faculty of Mathematics and Applied Physics Rzeszów University of Technology
W. Pola 2, 35–959 Rzeszów, Poland
e-mail: awloch@prz.edu.pl
e-mail: iwloch@prz.edu.pl

Abstract

In [5] the necessary and sufficient conditions for the existence of (k, l)-kernels in a D-join of digraphs were given if the digraph D is without circuits of length less than k. In this paper we generalize these results for an arbitrary digraph D. Moreover, we give the total number of (k, l)-kernels, k-independent sets and l-dominating sets in a D-join of digraphs.

Keywords: (k, l)-kernel, k-independent set, l-dominating set, D-join, counting.

2000 Mathematics Subject Classification: 05C20.

1. INTRODUCTION

For concepts not defined here see [2]. Let D be a finite, directed graph (for short: a digraph) without loops and multiple arcs, where V(D) is the set of vertices and A(D) is the set of arcs of D. By a path from a vertex x_1 to a vertex x_n , $n \ge 2$, we mean a sequence of vertices x_1, \ldots, x_n and arcs $(x_i, x_{i+1}) \in A(D)$ for $i = 1, 2, \ldots, n-1$ and for simplicity we denote it by $x_1 \ldots x_n$. A circuit is a path with $x_1 = x_n$. By $d_D(x_i, x_j)$ we denote the length of the shortest path from x_i to x_j in D. If there does not exist a path from x_i to x_j in D, then we put $d_D(x_i, x_j) = \infty$. For any $X \subseteq V(D)$ and $x \in (V(D) \setminus X)$ we put $d_D(x, X) = \min_{y \in X} d_D(x, y)$. By $\mathcal{C}_D^{\eta \leq d \leq \mu}(x_i)$ we denote the family of all circuits in D containing the vertex x_i of length d, where $\eta \leq d \leq \mu$.

We say that a subset $J \subset V(D)$ is a (k, l)-kernel of D if

- (1) for each $x_i, x_j \in J$ and $i \neq j, d_D(x_i, x_j) \ge k$ and
- (2) for each $x_i \notin J$ there exists $x_j \in J$ such that $d_D(x_i, x_j) \leq l$.

If the set J satisfies the condition in (1) or in (2), then we shall call it a k-independent set of D (also called a k-stable set of D) or an l-dominating set of D, respectively. We notice that a 2-independent set is an independent set and a 1-dominating set is a dominating set of D. In addition, we assume that a subset containing only one vertex and an empty set is also meant as a k-independent set. The set V(D) is an l-dominating set of D. If an l-dominating set of D has exactly one vertex, then this vertex we shall call an *l*-dominating vertex of *D*. Moreover, the *l*-dominating vertex of D is also a (k, l)-kernel of D for every $k \ge 2$. A digraph D whose every induced subdigraph has a (k, l)-kernel is called a (k, l)-kernel perfect digraph. Sufficient conditions for the existence of kernels and (k, l)-kernels in digraphs have been investigated, for instance in [1, 3, 4, 5]. By NkI(D), NlD(D) and NklK(D) we mean the number of all k-independent sets, l-dominating sets and (k, l)-kernels of the digraph D, respectively. Moreover, by Nld(D) we will denote the number of all l-dominating vertices of D. The total number of k-independent sets and (k, l)-kernels in graphs and in some their products were studied in [6] and [8].

Let *D* be a digraph with $V(D) = \{x_1, \ldots, x_n\}, n \ge 2$ and $\alpha = (D_i)_{i \in \{1,\ldots,n\}}$ be a sequence of vertex disjoint digraphs on $V(D_i) = \{y_1^i, \ldots, y_{p_i}^i\}, p_i \ge 1, i = 1, \ldots, n$. The *D*-join of the digraph *D* and the sequence α is a digraph $\sigma(\alpha, D)$ such that $V(\sigma(\alpha, D)) = \bigcup_{i=1}^n (\{x_i\} \times V(D_i))$ and $A(\sigma(\alpha, D)) = \{((x_s, y_j^s), (x_q, y_t^q)) : x_s = x_q \text{ and } (y_j^s, y_t^s) \in A(D_s) \text{ or } (x_s, x_q) \in A(D)\}$. By D_i^c we mean a copy of the digraph D_i in $\sigma(\alpha, D)$.

It may be noted that if all digraphs from the sequence α have the same vertex set, then from the *D*-join we obtain the generalized lexicographic product of the digraph *D* and the sequence of the digraphs D_i , i.e., $\sigma(\alpha, D) = D[D_1, \ldots, D_n]$. If all digraphs from the sequence α are isomorphic to the same digraph *H*, then from the *D*-join we obtain the composition D[H] of the digraphs *D* and *H*.

The existence of (k, l)-kernels in the lexicographic product $D[D_1, \ldots, D_n]$ was studied in [7]. Moreover, in [8] the total number of k-independent sets of a lexicographic product of graphs were determined using the concept of the Fibonacci polynomial of graphs. In [5] the necessary and sufficient conditions for the existence of (k, l)-kernels in *D*-join were given, where *D* is a digraph without circuits of length less than *k*. It was proved:

Theorem 1 [5]. Let D be a digraph without circuits of length less than k. A subset $S^* \subset V(\sigma(\alpha, D))$ is a k-independent set of $\sigma(\alpha, D)$ if and only if there exists a k-independent set $S \subset V(D)$ such that $S^* = \bigcup_{i \in \mathcal{I}} S_i$, where $\mathcal{I} = \{i; x_i \in S\}, S_i \subseteq V(D_i^c)$ and S_i is a k-independent set of D_i^c for every $i \in \mathcal{I}$.

Theorem 2 [5]. Let $Q \subseteq V(D)$, $\mathcal{I} = \{i : x_i \in Q\}$ and $Q_i \subseteq V(D_i)$. If Q is an *l*-dominating set of D and Q_i is an *l*-dominating set of D_i^c for every $i \in \mathcal{I}$, then $Q^* = \bigcup_{i \in \mathcal{I}} Q_i$ is an *l*-dominating set of $\sigma(\alpha, D)$.

Theorem 3 [5]. Let $k \ge 2$, $l \le k-1$ be integers. Let D be a digraph without circuits of length less than k. The subset J^* is a (k,l)-kernel of the $\sigma(\alpha, D)$ if and only if there exists a (k,l)-kernel $J \subseteq V(D)$ of the digraph D such that $J^* = \bigcup_{i \in \mathcal{I}} J_i$, where $\mathcal{I} = \{i : x_i \in J\}$, $J_i \subseteq V(D_i^c)$ and J_i is a (k,l)-kernel of D_i^c for every $i \in \mathcal{I}$.

In this paper, we generalize these results for an arbitrary digraph D. Moreover, we determine the total number of k-independent sets, l-dominating sets and (k, l)-kernels in $\sigma(\alpha, D)$.

2. The Existence of (k, l)-Kernels in D-Join

In this section, we give the necessary and sufficient conditions for the existence of (k, l)-kernels in *D*-join if *D* is an arbitrary digraph on $n, n \ge 2$ vertices and $\alpha = (D_i)_{i \in \{1, \dots, n\}}$ is an arbitrary sequence of vertex disjoint digraphs on $p_i, p_i \ge 1$ vertices.

Theorem 4. Let $(x_i, y_p^i), (x_j, y_q^j) \in V(\sigma(\alpha, D))$. Then

$$d_{\sigma(\alpha,D)}((x_i, y_p^i), (x_j, y_q^j)) = \begin{cases} d_D(x_i, x_j) & \text{for } i \neq j, \\ \min\{d_{D_i}(y_p^i, y_q^i), d_D(x_i)\} & \text{for } i = j, \end{cases}$$

where $d_D(x_i)$ denotes the length of the shortest circuit containing the vertex x_i in D.

Proof. Assume that $(x_i, y_p^i), (x_j, y_q^j)$ are two different vertices of $V(\sigma(\alpha, D))$ and distinguish two possible cases:

1. $i \neq j$. Then the theorem follows immediately from the definition of $\sigma(\alpha, D).$

2. i = j. Using the definition of $\sigma(\alpha, D)$ we have that there exists a path from (x_i, y_p^i) to (x_i, y_q^i) in $\sigma(\alpha, D)$ of the same length as the path from y_p to y_q in D_i . Moreover, if there exists a circuit in D which includes a vertex x_i , then by the definition of $\sigma(\alpha, D)$ it follows that there also exists a path from (x_i, y_p^i) to (x_i, y_q^i) of length $d_D(x_i)$ equal to the length of the shortest circuit in D, which includes a vertex x_i . Otherwise, if there does not exist a circuit in D which includes a vertex x_i , then we put $d_D(x_i) = \infty$. Evidently $d_{\sigma(\alpha,D)}((x_i, y_p^i), (x_j, y_q^j)) = \min\{d_{D_i}(y_p, y_q), d_D(x_i)\}.$

Thus the theorem is proved.

Theorem 5. A subset $S^* \subset V(\sigma(\alpha, D))$ is a k-independent set of $\sigma(\alpha, D)$ if and only if $S \subset V(D)$ is a k-independent set of D such that $S^* = \bigcup_{i \in \mathcal{T}} S_i$, where $\mathcal{I} = \{i : x_i \in S\}, S_i \subseteq V(D_i^c)$ and for every $i \in \mathcal{I}$

- (a) S_i is a k-independent set of D_i^c if $\mathcal{C}_D^{d \leq k-1}(x_i) = \emptyset$ or
- (b) S_i is 1-element set containing an arbitrary vertex from $V(D_i^c)$, otherwise.

Proof. I. Let S^* be a k-independent set of the D-join $\sigma(\alpha, D)$. Denote $S = \{x_i \in V(D) : S^* \cap V(D_i^c) \neq \emptyset\}$. First, we shall prove that S is a k-independent set of D. Let $x_i, x_j \in S$ be two different vertices. Then by the definition of the set S there exist $1 \leq r \leq p_i$ and $1 \leq s \leq p_j$ such that $(x_i, y_r^i), (x_j, y_s^j) \in S^*$. By Theorem 4 and from the assumption of the set S^* we obtain that $d_D(x_i, x_j) = d_{\sigma(\alpha, D)}((x_i, y_r^i), (x_j, y_s^j)) \ge k$. The definition of the set S implies that $S^* = \bigcup_{i \in \mathcal{I}} S_i$, where $\mathcal{I} = \{i : x_i \in S\}$. We consider the following cases.

I.1. Let $C_D^{d \leqslant k-1}(x_i) = \emptyset$. Because S^* is k-independent so by the definition of $\sigma(\alpha, D)$ and by assumption it follows immediately that S_i is a k-independent set of D_i^c .

I.2. Let
$$\mathcal{C}_D^{d \leq k-1}(x_i) \neq \emptyset$$
.

We shall prove that S_i contains exactly one arbitrary vertex from $V(D_i^c)$. By Theorem 4 we obtain that for arbitrary two vertices from $V(D_i^c)$ the distance between them in $\sigma(\alpha, D)$ is less than k. Consequently, S_i must contain exactly one arbitrary vertex from $V(D_i^c)$.

Hence from the above cases we obtain that S_i is a k-independent set of D_i^c if there does not exist in D a circuit containing x_i of length less than k or S_i contains exactly one arbitrary vertex from $V(D_i^c)$, otherwise.

II. Let $S \subset V(D)$ be a k-independent set of the digraph D. Let $\mathcal{I} = \{i : x_i \in S\}$ and let S_i be as in the assumption. We shall prove that $S^* = \bigcup_{i \in \mathcal{I}} S_i$ is a k-independent set of the D-join $\sigma(\alpha, D)$. Let $(x_i, y_p^i), (x_j, y_q^i) \in S^*$ be two distinct vertices. Consider the possible cases:

II.1. $(x_i, y_p^i) \in S_i$ and $(x_j, y_q^j) \in S_j$, where $i \neq j$. Since S is k-independent in D, so by Theorem 4 it follows that $d_{\sigma(\alpha,D)}((x_i, y_p^i), (x_j, y_q^j)) = d_D(x_i, x_j) \geq k$.

II.2. $(x_i, y_p^i), (x_i, y_q^i) \in S_i$, where $p \neq q$ for some $i \in \mathcal{I}$.

Since S_i contains at least two vertices, so by the assumption, S_i is k-independent of D_i^c and $\mathcal{C}_D^{d\leqslant k-1}(x_i) = \emptyset$. To prove that S^* is a k-independent set of $\sigma(\alpha, D)$ assume on the contrary that $d_{\sigma(\alpha,D)}((x_i, y_p^i), (x_i, y_q^i)) < k$. If k = 2, then a contradiction with the independence of S_i in D_i^c . Let $k \ge 3$. This means that there exists a path $(x_i, y_p^i) \dots (x_i, y_q^i)$ in $\sigma(\alpha, D)$ of length less than k such that at least one inner vertex of this path does not belong to $V(D_i^c)$. Hence there exists in D a circuit containing the vertex x_i of length less than k, a contradiction to the assumption.

Taking the two above cases into considerations we obtain that for distinct $(x_i, y_p^i), (x_j, y_q^j) \in S^*$ there holds $d_{\sigma(\alpha, D)}((x_i, y_p^i), (x_j, y_q^j)) \ge k$, hence S^* is a k-independent set of $\sigma(\alpha, D)$.

Thus the theorem is proved.

If D is a digraph without circuits of length less than k, then we obtain Theorem 1.

Theorem 6. A subset $Q^* \subseteq V(\sigma(\alpha, D))$ is an *l*-dominating set of $\sigma(\alpha, D)$ if and only if $Q \subseteq V(D)$ is an *l*-dominating set of *D* such that $Q^* = \bigcup_{i \in \mathcal{I}} Q_i$, where $\mathcal{I} = \{i; x_i \in Q\}, Q_i \subseteq V(D_i^c)$ and for every $i \in \mathcal{I}$

- (a) Q_i is an *l*-dominating set of D_i^c if $\mathcal{C}_D^{d \leq l}(x_i) = \emptyset$ and for each $j \in \mathcal{I}$ and $j \neq i$, there holds $d_D(x_i, x_j) > l$ or
- (b) Q_i is an arbitrary nonempty subset of $V(D_i^c)$, otherwise.

Proof. I. Let Q^* be an *l*-dominating set of the *D*-join $\sigma(\alpha, D)$. Denote $Q = \{x_i \in V(D); Q^* \cap V(D_i^c) \neq \emptyset\}$. First, we shall prove that Q is an

l-dominating set of *D*. Let $x_j \notin Q$. By the definition of the set *Q* we have that for each $1 \leq r \leq p_j$ there holds $(x_j, y_r^j) \notin Q^*$. Since Q^* is *l*-dominating so there exists $(x_i, y_s^i) \in Q^*$, where $i \neq j$ such that $d_{\sigma(\alpha,D)}((x_j, y_r^j), (x_i, y_s^i)) \leq$ *l*. Evidently, $x_i \in Q$, so using Theorem 4 we obtain that $d_D(x_j, x_i) =$ $d_{\sigma(\alpha,D)}((x_j, y_r^j), (x_i, y_s^i)) \leq l$. The definition of the set *Q* implies that $Q^* = \bigcup_{i \in \mathcal{I}} Q_i$, where $\mathcal{I} = \{i; x_i \in Q\}$. Consider the following cases:

I.1. Assume that $\mathcal{C}_D^{d \leq l}(x_i) = \emptyset$ and for each $j \in \mathcal{I}$ and $j \neq i$ there holds $d_D(x_i, x_j) > l$.

Since Q^* is *l*-dominating so from the definition of $\sigma(\alpha, D)$ and by our assumptions immediately follows that Q_i is an *l*-dominating set of D_i^c .

I.2. Assume that case I.1 does not hold.

We shall prove that Q_i is an arbitrary nonempty subset of D_i^c . If $\mathcal{C}_D^{d \leqslant l}(x_i) \neq \emptyset$, then there exists in D a circuit which includes the vertex x_i of length less than or equal to l. So for arbitrary two vertices $(x_i, y_q^i), (x_i, y_p^i) \in V(D_i^c)$ there holds $d_{\sigma(\alpha,D)}((x_i, y_p^i), (x_i, y_q^i)) \leqslant l$. If there exists $j \in \mathcal{I}$ and $j \neq i$ such that there exists in D a path $x_i \dots x_j$ of length less than or equal to l, then for an arbitrary vertex $(x_i, y_p^i) \in V(D_i^c)$ holds $d_{\sigma(\alpha,D)}((x_i, y_p^i), Q_j) \leqslant l$. Hence $d_{\sigma(\alpha,D)}((x_i, y_p^i), Q^*) \leqslant l$. All this implies that Q_i is an arbitrary nonempty subset of $V(D_i^c)$.

II. Let $Q \subseteq V(D)$ be an *l*-dominating set of the digraph D, where $\mathcal{I} = \{i : x_i \in Q\}$ and let Q_i be as in the theorem. We shall prove that $Q^* = \bigcup_{i \in \mathcal{I}} Q_i$ is an *l*-dominating set of the *D*-join. We distinguish the following cases:

II.1. Let $(x_j, y_p^j) \notin Q^*$ and $j \notin \mathcal{I}$.

Then by the definition of the set Q we have that $x_j \notin Q$. Since Q is an *l*-dominating set of D, so there exists $i \in \mathcal{I}$ such that $x_i \in Q$ and $d_D(x_j, x_i) \leq l$. Hence there is $1 \leq q \leq p_i$ such that $(x_i, y_q^i) \in Q^*$. By Theorem 4 we obtain that $d_{\sigma(\alpha, D)}((x_j, y_p^j), Q^*) \leq l$.

II.2. Let $(x_j, y_p^j) \notin Q^*$ and $j \in \mathcal{I}$.

If Q_j is an *l*-dominating set of D_j^c , then $d_{D_i^c}((x_j, y_p^j), Q_j) \leq l$. So $d_{\sigma(\alpha,D)}((x_j, y_p^j), Q^*) \leq l$. If Q_j is a nonempty subset of $V(D_j^c)$, then from the assumption of the theorem we have that there exists $t \in \mathcal{I}$ and $t \neq j$ such that there exists a path $x_j \dots x_t$ in D of length less than or equal to l or $\mathcal{C}_D^{d \leq l}(x_j) \neq \emptyset$. Consequently, $d_{\sigma(\alpha,D)}((x_j, y_p^j), Q_t) \leq l$ or

 $d_{\sigma(\alpha,D)}((x_j, y_p^j), Q_j) \leq l$, respectively. Hence $d_{\sigma(\alpha,D)}((x_j, y_p^j), Q^*) \leq l$, so Q^* is an *l*-dominating set of $\sigma(\alpha, D)$.

Thus the theorem is proved.

Theorem 7. Let $k \ge 2$, $1 \le l \le k-1$ be integers. The subset $J^* \subset V(\sigma(\alpha, D))$ is a (k, l)-kernel of the D-join $\sigma(\alpha, D)$ if and only if there exists a (k, l)-kernel $J \subset V(D)$ such that $J^* = \bigcup_{i \in \mathcal{I}} J_i$, where $\mathcal{I} = \{i : x_i \in J\}$, $J_i \subseteq V(D_i^c)$ and for every $i \in \mathcal{I}$

- (a) J_i is a (k,l)-kernel of D_i^c if $\mathcal{C}_D^{d\leqslant k-1}(x_i) = \emptyset$ or
- (b) J_i is 1-element set containing an arbitrary vertex of $V(D_i^c)$ if $\mathcal{C}_D^{d \leq l}(x_i) \neq \emptyset$ or
- (c) J_i is 1-element set containing an l-dominating vertex of D_i^c , otherwise.

Proof. I. Let $k \ge 2, 1 \le l \le k - 1$ be integers. Let J^* be a (k, l)-kernel of the *D*-join $\sigma(\alpha, D)$. Denote $J = \{x_i \in V(D); J^* \cap V(D_i^c) \ne \emptyset\}$. First, we shall prove that *J* is a (k, l)-kernel of *D*. Let $x_i, x_j \in J$ and $i \ne j$. Then from the definition of the set *J* we have that there exists $1 \le p \le p_i$ and $1 \le q \le p_j$ such that $(x_i, y_p^i), (x_j, y_q^j) \in J^*$. By Theorem 4 we have that $d_D(x_i, x_j) = d_{\sigma(\alpha, D)}((x_i, y_p^i), (x_j, y_q^i)) \ge k$. So, *J* is a *k*-independent set of *D*. Now, we will show that *J* is an *l*-dominating set of *D*. Let $x_j \notin J$. Using the definition of the set *J* for each $1 \le r \le p_j$ holds $(x_j, y_r^j) \notin J^*$. Since J^* is *l*-dominating, hence there exists $(x_i, y_s^i) \in J^*$, where $j \ne i$ such that $d_{\sigma(\alpha, D)}((x_j, y_r^j), (x_i, y_s^i)) \le l$.

From the definition of the set J we have that $x_i \in J$, so by Theorem 4 there holds $d_D(x_j, x_i) = d_{\sigma(\alpha, D)}((x_j, y_r^j), (x_i, y_s^i)) \leq l$. Consequently, J is an l-dominating set of D, hence J is a (k, l)-kernel of D. The definition of the set J implies that $J^* = \bigcup_{i \in \mathcal{I}} J_i$, where $\mathcal{I} = \{i : x_i \in J\}$. Consider the possible cases:

I.1. Let $\mathcal{C}_D^{d \leq k-1}(x_i) = \emptyset$.

We shall prove that J_i is a (k, l)-kernel of D_i^c in this case. From Theorem 5(a) we obtain that J_i is a k-independent set of D_i^c . Next we shall show that J_i is *l*-dominating. Since J is a k-independent set of D and $l \leq k-1$, then for each $j \in \mathcal{I}$ and $j \neq i$ there holds $d_D(x_i, x_j) \geq k \geq l+1$. So, there does not exist in D a path $x_i \dots x_j$ of length less than or equal to l. Moreover, $\mathcal{C}_D^{d \leq k-1}(x_i) = \emptyset$ and $l \leq k-1$, hence $\mathcal{C}_D^{d \leq l}(x_i) = \emptyset$.

From the above and by Theorem 6(a) we obtain that J_i is an *l*-dominating set of D_i^c . Consequently, J_i is a (k, l)-kernel of D_i^c in this case.

I.2. Let $\mathcal{C}_D^{d \leq k-1}(x_i) \neq \emptyset$.

Then by Theorem 5(b) the set J_i contains exactly one arbitrary vertex from $V(D_i^c)$. So J_i is a k-independent set of D_i^c . Because $l \leq k-1$, then for each $j \in \mathcal{I}$ and $j \neq i$ there holds $d_D(x_i, x_j) \ge k \ge l+1$. Hence there does not exists in D a path $x_i \dots x_j$ of length $d_D(x_i, x_j) \leq l$. From the assumption there exists in D a circuit containing the vertex x_i of length less than k. We distinguish the following possibilities:

I.2.1. $C_D^{d \leq l}(x_i) \neq \emptyset$. Then by Theorem 6(b) it follows immediately that J_i is a 1-element set containing an arbitrary vertex of $V(D_i^c)$.

I.2.2. $\mathcal{C}_D^{d \leqslant l}(x_i) = \emptyset$ and $\mathcal{C}_D^{l+1 \leqslant d \leqslant k-1}(x_i) \neq \emptyset$.

We will show that J_i is a 1-element set containing an *l*-dominating vertex of D_i^c . Using Theorem 6(a) we obtain that J_i is an *l*-dominating set of D_i^c . Because J_i contains exactly one vertex, so $J_i = \{(x_i, y_t^i)\}$, where (x_i, y_t^i) is an *l*-dominating vertex of D_i^c .

II. Let $J \subset V(D)$ be a (k,l)-kernel of the digraph D. Let $\mathcal{I} = \{i : x_i \in \mathcal{I} : x_i \in \mathcal{I}\}$ J and J_i be as in the statements of the theorem. We shall prove that $J^* = \bigcup_{i \in \mathcal{I}} J_i$ is a (k, l)-kernel of $\sigma(\alpha, D)$. Firstly we will prove that J^* is a k-independent set of the D-join $\sigma(\alpha, D)$. Let $(x_i, y_p^i), (x_j, y_q^j) \in J^*$ be two different vertices. Consider the following cases:

II.1. $(x_i, y_p^i) \in J_i$ and $(x_i, y_q^j) \in J_j$, where $i \neq j$. Evidently, $x_i, x_j \in J$ and because J is k-independent so by Theorem 4 we have that $d_D(x_i, x_j) = d_{\sigma(\alpha, D)}((x_i, y_p^i), (x_j, y_q^j)) \ge k$.

II.2. $(x_i, y_p^i), (x_i, y_q^i) \in J_i$ for some $i \in \mathcal{I}$.

Since J_i contains at least two vertices, so by assumption J_i is a (k, l)kernel of D_i^c . Hence $d_{D_i^c}((x_i, y_p^i), (x_i, y_q^i)) \ge k$. Assume on the contrary that $d_{\sigma(\alpha,D)}((x_i, y_p^i), (x_i, y_q^i)) < k$. If k = 2, then there is a contradiction with the independence of J_i in D_i^c . Let $k \ge 3$. This means that there exists a path $(x_i, y_p^i) \dots (x_i, y_q^i)$ in $\sigma(\alpha, D)$ of length less than k such that at least one inner vertex of this path does not belong to $V(D_i^c)$. Hence there exists in D a circuit containing the vertex x_i of length less than k and by Theorem 5(b) the set J_i contains exactly one vertex from $V(D_i^c)$, a contradiction to $(x_i, y_p^i), (x_i, y_q^i) \in J_i.$

Taking the two above cases into consideration we obtain that for distinct $(x_i, y_p^i), (x_j, y_q^j) \in J^*$ there holds $d_{\sigma(\alpha, D)}((x_i, y_p^i), (x_j, y_q^j)) \ge k$. Hence J^* is a k-independent set of $\sigma(\alpha, D)$.

464

Now we shall prove that $J^* = \bigcup_{i \in \mathcal{I}} J_i$, where $\mathcal{I} = \{i : x_i \in J\}$, is an *l*-dominating set of the *D*-join $\sigma(\alpha, D)$. Consider the possible cases:

II.3. Let $(x_i, y_p^j) \notin J^*$ and $j \notin \mathcal{I}$.

Then by the definition of the set J we have that $x_j \notin J$. Since J is ldominating in D, so there exists $i \in \mathcal{I}$ such that $x_i \in J$ and $d_D(x_j, x_i) \leq l$. Consequently, there exists $1 \leq q \leq p_i$ such that $(x_i, y_q^i) \in J^*$ and by Theorem 4 we obtain that $d_{\sigma(\alpha, D)}((x_j, y_p^j), (x_i, y_q^i)) \leq l$.

II.4. Let $(x_j, y_p^j) \notin J^*$ and $j \in \mathcal{I}$.

If J_j is a (k,l)-kernel of D_j^c , then J_j is an l-dominating set of D_j^c , so $d_{D_j^c}((x_j, y_q^j), J_j) \leq l$. Hence $d_{\sigma(\alpha,D)}((x_j, y_q^j), J^*) \leq l$. If J_j contains exactly one arbitrary vertex of $V(D_j^c)$, then by assumption of the theorem there exists in D a circuit containing the vertex x_j of length less than or equal to l. So there exists in $\sigma(\alpha, D)$ a path from (x_j, y_p^j) to J_j and $d_{\sigma(\alpha,D)}((x_j, y_p^j), J_j) \leq l$. Hence $d_{\sigma(\alpha,D)}((x_j, y_p^j), J_j) \leq l$. If J_j is a 1-element set containing an l-dominating vertex of D_j^c , then by the definition of the l-dominating vertex $d_{D_j^c}((x_j, y_p^j), J_j) \leq l$. Hence $d_{\sigma(\alpha,D)}((x_j, y_p^j), J^*) \leq l$. Thus it follows that J^* is an l-dominating set of $\sigma(\alpha, D)$.

Taking the above cases into consideration we obtain that J^* is a (k, l)-kernel of $\sigma(\alpha, D)$.

Thus the theorem is proved.

If the digraph D is without circuits of length less than k, then we obtain Theorem 3.

Theorem 8. Let $k \ge 2$, $l \ge k$ be integers. The subset $J^* \subset V(\sigma(\alpha, D))$ is a (k, l)-kernel of the D-join $\sigma(\alpha, D)$ if and only if there exists a (k, l)-kernel $J \subset V(D)$ such that $J^* = \bigcup_{i \in \mathcal{I}} J_i$, where $\mathcal{I} = \{i : x_i \in J\}$, $J_i \subseteq V(D_i^c)$ and for every $i \in \mathcal{I}$

- (a) J_i is a (k,l)-kernel of D_i^c if $\mathcal{C}_D^{d \leq l}(x_i) = \emptyset$ and for each $j \in \mathcal{I}$ and $j \neq i$ there holds $d_D(x_i, x_j) > l$ or
- (b) J_i is a 1-element set containing an arbitrary vertex from $V(D_i^c)$ if $\mathcal{C}_D^{d \leq k-1}(x_i) \neq \emptyset$ or
- (c) J_i is an arbitrary nonempty k-independent set of D_i^c , otherwise.

Proof. I. Let $k \ge 2$, $l \ge k$ be integers. Let J^* be a (k, l)-kernel of the *D*-join $\sigma(\alpha, D)$. Denote $J = \{x_i \in V(D) : J^* \cap V(D_i^c) \ne \emptyset\}$. Proving analogously as in Theorem 7 we obtain that J is a (k, l)-kernel of the

digraph D. Of course, the definition of the set J implies that $J^* = \bigcup_{i \in \mathcal{I}} J_i$, where $\mathcal{I} = \{i : x_i \in J\}$. Consider the following cases:

I.1. Let $\mathcal{C}_D^{d \leq l}(x_i) = \emptyset$.

Since $l \ge k$, so there does not exist in D a circuit containing the vertex x_i of length less than k. Then from Theorem 5(a) we obtain that J_i is a k-independent set of D_i^c . By our assumption $l \ge k$, so to establish sets J_i we consider the following possibilities:

I.1.1. There exists $j \in \mathcal{I}$ and $j \neq i$ such that $d_D(x_i, x_j) \leq l$. By Theorem 6 (b) an arbitrary nonempty subset of $V(D_i^c)$ is *l*-dominating in D_i^c , so J_i is an arbitrary *k*-independent set of D_i^c .

I.1.2. For each $j \in \mathcal{I}$ and $j \neq i$ there holds $d_D(x_i, x_j) > l$. Then by Theorem 6(a) we obtain that J_i is an *l*-dominating set of D_i^c . Consequently, J_i is a (k, l)-kernel in this case.

I.2. Let $C_D^{d \leq l}(x_i) \neq \emptyset$. Because $l \geq k$, we consider the following possibilities:

I.2.1. $\mathcal{C}_D^{k \leq d \leq l}(x_i) \neq \emptyset$ and $\mathcal{C}_D^{d \leq k-1}(x_i) = \emptyset$. Then by Theorem 5(a) and Theorem 6(b) we obtain that the set J_i is an arbitrary k-independent set of $V(D_i^c)$.

I.2.2. $\mathcal{C}_D^{d \leqslant k-1}(x_i) \neq \emptyset$.

3.

We shall prove that J_i is a 1-element set containing an arbitrary vertex from $V(D_i^c)$. By Theorem 5(b) the set J_i contains exactly one vertex from $V(D_i^c)$. Because $l \ge k$, so there exists in D a circuit containing the vertex x_i of length less than or equal to l. Hence by Theorem 6(b) we obtain that J_i contains exactly one arbitrary vertex from $V(D_i^c)$.

II. Let $J \subset V(D)$ be a (k, l)-kernel of the digraph D and let $\mathcal{I} = \{i : x_i \in J\}$. Proving analogously as in Theorem 7 we can show that $J^* = \bigcup_{i \in \mathcal{I}} J_i$ is a (k, l)-kernel of the D-join $\sigma(\alpha, D)$ where $J_i, i \in \mathcal{I}$ satisfy the assumption of the theorem.

Thus the theorem is proved.

On (k, l)-Kernel Perfectness of the D-Join

From the definition of the $\sigma(\alpha, D)$ it follows immediately:

Proposition 1. Every induced subdigraph of $\sigma(\alpha, D)$ is

- (a) a digraph of the form $\sigma(\tilde{\alpha}, \tilde{D})$, where \tilde{D} is an induced subdigraph of Dwith $V(\tilde{D}) = \{x_t : t \in \tilde{I}\}, |\tilde{I}| > 1, \tilde{I} \subseteq \{1, \ldots, n\}$ and $\tilde{\alpha}$ is a family of induced subdigraphs of D_t , where $t \in \tilde{I}$ or
- (b) an induced subdigraph of D_i for some $1 \leq i \leq n$ or
- (c) the union of the digraphs from (a) and (b).

From the definition of the (k, l)-kernel perfect digraph and by Proposition 1 it follows immediately:

Proposition 2. If $\sigma(\alpha, D)$ is (k, l)-kernel perfect, then D and D_i , $i = 1, \ldots, n$ are (k, l)-kernel perfect.

In [5] it has been proved:

Theorem 9 [5]. Let D be a digraph without circuits of length less than k and let $\alpha = (D_i)_{i \in \{1,...,n\}}$ be a sequence of vertex disjoint digraphs. The D-join $\sigma(\alpha, D)$ is a (k, l)-kernel perfect digraph if and only if the digraph D and the digraphs D_i , i = 1, ..., n are (k, l)-kernel perfect digraphs.

In this section, we generalize this result for an arbitrary digraph D.

Theorem 10. Let D be a (k,l)-kernel perfect digraph. Let D_i , i = 1, ..., n be a (k,l)-kernel perfect digraph if $C_D^{d \leq k-1}(x_i) = \emptyset$ or every subdigraph of D_i has an l-dominating vertex, otherwise. Then $\sigma(\alpha, D)$ is a (k,l)-kernel perfect digraph.

Proof. Assume that D and D_i , $i = 1, \ldots, n$ are as in the statements of the theorem. We shall show that $\sigma(\alpha, D)$ is a (k, l)-kernel perfect digraph. From Proposition 1 it follows that we need only to prove that $\sigma(\alpha, D)$ has a (k, l)-kernel. By Theorem 7, Theorem 8 and from our assumptions there exists a (k, l)-kernel $J \subset V(D)$ such that $J^* = \bigcup_{i \in \mathcal{I}} J_i$ is a (k, l)-kernel of the D-join, where $\mathcal{I} = \{i; x_i \in J\}, J_i \subseteq V(D_i^c)$ and J_i is a (k, l)-kernel of D_i^c if $\mathcal{C}_D^{d \leqslant k-1}(x_i) = \emptyset$ or J_i is a 1-element set containing an l-dominating vertex of D_i^c .

Thus the theorem is proved.

4. The Total Number of (k, l)-Kernels of the D-Join

In this section, we calculate the number of all k-independent sets, l-dominating sets and (k, l)-kernels of the D-join $\sigma(\alpha, D)$.

Theorem 11. Let $k \ge 2$, $n \ge 2$ be integers. Let $\sigma(\alpha, D)$ be a *D*-join of the digraph *D* on *n* vertices and α be a sequence of vertex disjoint digraphs $(D_i)_{i\in\{1,\ldots,n\}}$ on p_i vertices, $p_i \ge 1$. Let $S = \{S_1,\ldots,S_j\}$, $j \ge 1$ be a family of all nonempty k-independent sets of the digraph *D* and let $S \ni S_r =$ $\{x_i : i \in \mathcal{I}_r\}$, where $\mathcal{I}_r \subset \{1,\ldots,n\}$. Then $NkI(\sigma(\alpha,D)) = 1 + \sum_{r=1}^j \prod_{i\in\mathcal{I}_r} \varphi(D_i)$, where

$$\varphi(D_i) = \begin{cases} NkI(D_i) - 1 & \text{if } \mathcal{C}_D^{d \leqslant k-1}(x_i) = \emptyset, \\ p_i & \text{otherwise.} \end{cases}$$

Proof. Let D be a given digraph on n-vertices, $n \ge 2$. Theorem 4 implies that to obtain a k-independent set of $\sigma(\alpha, D)$ first we have to choose a k-independent set of D. Let $S = \{S_1, \ldots, S_j\}, j \ge 1$ be a family of all nonempty k-independent sets of the digraph D. Assume that $S \ni S_r = \{x_i : i \in \mathcal{I}_r\}$, where $\mathcal{I}_r \subset \{1, \ldots, n\}$. Next by Theorem 5 in each of the D_i^c , $i \in \mathcal{I}_r$ we have to choose an nonempty k-independent set if there does not exist in D a circuit containing the vertex x_i of length less than k or we choose an arbitrary vertex from $V(D_i^c)$, otherwise. Evidently we can do it on $NkI(D_i)-1$ or p_i ways, respectively. Hence from the fundamental combinatorial statement we have $\sum_{r=1}^j \prod_{i \in \mathcal{I}_r} \varphi(D_i)$ sets being k-independent, where

$$\varphi(D_i) = \begin{cases} NkI(D_i) - 1 & \text{if } \mathcal{C}_D^{d \leqslant k-1}(x_i) = \emptyset, \\ p_i & \text{otherwise.} \end{cases}$$

Moreover, the empty set also is a k-independent set of $\sigma(\alpha, D)$. Consequently, $NkI(\sigma(\alpha, D)) = 1 + \sum_{r=1}^{j} \prod_{i \in \mathcal{I}_r} \varphi(D_i)$.

Thus the theorem is proved.

Theorem 12. Let $l \ge 1$, $n \ge 2$ be integers. Let $\sigma(\alpha, D)$ be a *D*-join of the digraph *D* on *n* vertices and α be a sequence of vertex disjoint digraphs $(D_i)_{i \in \{1,...,n\}}$ on p_i vertices, $p_i \ge 1$. Let $\mathcal{Q} = \{Q_1, \ldots, Q_j\}$, $j \ge 1$ be a family of all *l*-dominating sets of the digraph *D* and let $\mathcal{Q} \ni Q_r = \{x_i : i \in \mathcal{I}_r\}$, where $\mathcal{I}_r \subseteq \{1, \ldots, n\}$. Then $NlD(\sigma(\alpha, D)) = \sum_{r=1}^j \prod_{i \in \mathcal{I}_r} \psi(D_i)$, where

$$\psi(D_i) = \begin{cases} NlD(D_i) & \text{if } \mathcal{C}_D^{d \leqslant l}(x_i) = \emptyset \text{ and for each } \mathcal{I} \ni j \neq i \\ & \text{holds } d_D(x_i, x_j) > l, \\ 2^{p_i} - 1 & \text{otherwise.} \end{cases}$$

Proof. Let D be a given digraph on n vertices, $n \ge 2$. By Theorem 4 we have that to obtain an l-dominating set of $\sigma(\alpha, D)$ first we have to choose an l-dominating set of D. Let $\mathcal{Q} = \{Q_1, \ldots, Q_j\}, j \ge 1$ be a family o all l-dominating sets of the digraph D. Assume that $\mathcal{Q} \ni Q_r = \{x_i : i \in \mathcal{I}_r\}$ and $\mathcal{I}_r \subseteq \{1, \ldots, n\}$. Next by Theorem 6 in each of the D_i^c , $i \in \mathcal{I}_r$ we have to choose an l-dominating set if for each $j \in \mathcal{I}_r$ and $j \neq i$ there does not exist a path $x_i \ldots x_j$ of length less than or equal to l and there does not exist in D a circuit containing the vertex x_i of length less than or equal to l or we have to choose in D_i^c an arbitrary nonempty subset of $V(D_i^c)$. Evidently, we can do it on $NlD(D_i)$ or $2^{p_i} - 1$ ways, respectively. Hence from the fundamental combinatorial statement we have $\sum_{r=1}^{j} \prod_{i \in \mathcal{I}_r} \psi(D_i)$ sets being l-dominating sets of $\sigma(\alpha, D)$, where

$$\psi(D_i) = \begin{cases} NlD(D_i) & \text{if } \mathcal{C}_D^{d \leqslant l}(x_i) = \emptyset \text{ and for each } \mathcal{I} \ni j \neq i \\ & \text{holds } d_D(x_i, x_j) > l, \\ 2^{p_i} - 1 & \text{otherwise.} \end{cases}$$

Thus the theorem is proved.

Using the same method as in Theorems 11 and 12 we can prove:

Theorem 13. Let $k \ge 2$, $1 \le l \le k-1$, $n \ge 2$ be integers. Let $\sigma(\alpha, D)$ be a D-join of the digraph D on n vertices and α be a sequence of vertex disjoint digraphs $(D_i)_{i \in \{1,...,n\}}$ on p_i vertices, $p_i \ge 1$. Let $\mathcal{J} = \{J_1, \ldots, J_j\}, j \ge 1$ be a family of all (k, l)-kernels of the digraph D and let $\mathcal{J} \ni J_r = \{x_i : i \in \mathcal{I}_r\},$ where $\mathcal{I}_r \subseteq \{1, \ldots, n\}$. Then $NklK(\sigma(\alpha, D)) = \sum_{r=1}^j \prod_{i \in \mathcal{I}_r} \mu(D_i)$, where

 $\mu(D_i) = \begin{cases} NklK(D_i) & \text{if } \mathcal{C}_D^{d \leqslant k-1}(x_i) = \emptyset, \\ p_i & \text{if } \mathcal{C}_D^{d \leqslant l}(x_i) \neq \emptyset, \\ Nld(D_i) & otherwise. \end{cases}$

Theorem 14. Let $k \ge 2$, $l \ge k$, $n \ge 2$ be integers. Let $\sigma(\alpha, D)$ be a D-join of the digraph D on n vertices and α be a sequence of vertex disjoint digraphs

 $(D_i)_{i \in \{1,...,n\}}$ on p_i vertices, $p_i \ge 1$. Let $\mathcal{J} = \{J_1, \ldots, J_j\}$, $j \ge 1$ be a family of all (k, l)-kernels of the digraph D and let $\mathcal{J} \ni J_r = \{x_i : i \in \mathcal{I}_r\}$, where $\mathcal{I}_r \subseteq \{1, \ldots, n\}$. Then $NklK(\sigma(\alpha, D)) = \sum_{r=1}^j \prod_{i \in \mathcal{I}_r} \eta(D_i)$, where $\eta(D_i) =$

$$\begin{cases} NklK(D_i) & \text{if } \mathcal{C}_D^{d\leqslant l}(x_i) = \emptyset \text{ and for each } \mathcal{I} \ni j \neq i \text{ holds } d_D(x_i, x_j) > l, \\ p_i & \text{if } \mathcal{C}_D^{d\leqslant k-1}(x_i) \neq \emptyset, \\ NkI(D_i) - 1 \text{ otherwise.} \end{cases}$$

References

- M. Blidia, P. Duchet, H. Jacob and F. Maffray, Some operations preserving the existence of kernels, Discrete Math. 205 (1999) 211–216.
- [2] R. Diestel, Graph Theory (Springer-Verlag, Heidelberg, New-York, Inc., 2005).
- [3] H. Galeana-Sanchez, On the existence of kernels and h-kernels in directed graphs, Discrete Math. 110 (1992) 251-225.
- [4] M. Kucharska, On (k, l)-kernels of orientations of special graphs, Ars Combin. 60 (2001) 137–147.
- [5] M. Kucharska, On (k, l)-kernel perfectness of special classes of digraphs, Discuss. Math. Graph Theory 25 (2005) 103–119.
- [6] M. Kwaśnik and I. Włoch, The total number of generalized stable sets and kernels of graphs, Ars Combin. 55 (2000) 139–146.
- [7] A. Włoch and I. Włoch, On (k, l)-kernels in generalized products, Discrete Math. 164 (1997) 295–301.
- [8] I. Włoch, Generalized Fibonacci polynomial of graphs, Ars Combin. 68 (2003) 49–55.

Received 29 April 2006 Revised 18 May 2007 Accepted 18 May 2007