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Abstract

It is proved that if G is multigraph with maximum degree 3, and
every submultigraph of G has average degree at most 2 1

2
and is different

from one forbidden configuration C+

4 with average degree exactly 2 1

2
,

then G is totally 4-choosable; that is, if every element (vertex or edge)
of G is assigned a list of 4 colours, then every element can be coloured
with a colour from its own list in such a way that no two adjacent
or incident elements are coloured with the same colour. This shows
that the List-Total-Colouring Conjecture, that ch′′(G) = χ′′(G) for
every multigraph G, is true for all multigraphs of this type. As a
consequence, if G is a graph with maximum degree 3 and girth at least
10 that can be embedded in the plane, projective plane, torus or Klein
bottle, then ch′′(G) = χ′′(G) = 4. Some further total choosability
results are discussed for planar graphs with sufficiently large maximum
degree and girth.
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1. Introduction

We use standard terminology, as defined in the references: for example, [2]
or [10]. A multigraph may have multiple edges but not loops. If G is a
multigraph, then χ′(G), χ′′(G), ch′(G), ch′′(G) and ∆(G) denote the edge
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chromatic number (or chromatic index), total (vertex-edge) chromatic num-
ber, edge choosability (or list edge chromatic number), total choosability,
and maximum degree of G, respectively. So ch′′(G) is the smallest k for
which G is totally k-choosable. Note that ch′(G) and ch′′(G) are the same
as what were called χ′

list(G) and χ′′

list(G) in [2]. The maximum average de-

gree mad(G) of G is the maximum value of 2|E(H)|/|V (H)| taken over all
submultigraphs H of G.

Clearly ch′(G) > χ′(G) > ∆(G) and ch′′(G) > χ′′(G) > ∆(G) + 1, for
every multigraph G. Part of ([2], Theorem 7) can be summarized in tabular
form as follows.

Theorem 1 [2]. Let G be a multigraph with maximum degree ∆ such that

if ∆ = 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .
then mad(G) 6 21

2 3 31
3 32

3 4 41
4 41

2 43
4 5 51

5 52
5 53

5 54
5 6 . . .

respectively. Then ch′(G) = χ′(G) = ∆, and if ∆ > 6 then ch′′(G) =
χ′′(G) = ∆ + 1.

It is conjectured in [2] that the final statement holds even if ∆ < 6. This
conjecture now remains open only for ∆ = 5. For ∆ = 4, the truth of this
conjecture follows from a slight rewording of the proof in [2], or alternatively
by arguments given in [3]; the case when mad(G) = 3 also needs a result
from [6] (see the next section). For ∆ = 3, this conjecture is false as stated.
For, let C+

4 consist of a 4-cycle in which one edge has been replaced by two
parallel edges. Then mad(C+

4 ) = 21
2 , and it is easy to see that C+

4 is not
totally 4-colourable and hence not totally 4-choosable. In the present paper
we will prove the result for ∆ = 3 subject to the extra condition that G
does not contain a copy of C+

4 . Specifically, we will prove the following two
results, the second of which follows immediately from the first.

Theorem 2. Let G be a multigraph with maximum degree 3 such that

mad(G) 6 21
2 . Suppose that Λ is an assignment of a list of four colours

to every element (vertex and edge) of G, and suppose that if H is any sub-

multigraph of G that is isomorphic to C+
4 then Λ does not assign the same

list to every element of H. Then G is totally Λ-colourable.

Corollary 2.1. Let G be a multigraph with maximum degree 3 such that

mad(G) 6 21
2 and G does not have C+

4 as a submultigraph. Then ch′′(G) =
χ′′(G) = 4.
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There is no suggestion that Theorem 1 is sharp, even for multigraphs, and it
is even less likely to be sharp for (simple) graphs. In particular, Chetwynd [4]
lists all the minimal non-totally-4-colourable graphs with maximum degree 3
on up to ten vertices. They include two (one with six vertices, one with nine)
with mad(G) = 22

3 , but none with smaller mad(G), and the same may well
be true for non-totally-4-choosable graphs of all orders. But to prove this
would probably need new ideas.

In the next section we will discuss some related results involving planar
graphs. We will prove Theorem 2 for mad(G) < 21

2 in Section 3, and we
will extend the result to mad(G) = 21

2 in Section 4. For brevity, when
considering total colourings of a multigraph G, we will sometimes say that
a vertex and an edge incident to it are adjacent or neighbours, since they
correspond to adjacent or neighbouring vertices of the total graph T (G) of
G. An element is a vertex or an edge. A k-vertex is a vertex with degree k.

2. Planar Graphs with Large Degree and Girth

If G is a (simple) graph with girth (i.e., length of shortest circuit) g that can
be embedded in a surface S with characteristic ǫ, and if G has n vertices, m
edges and r regions (faces), then 2m > gr, and Euler’s formula n−m+r > ǫ
implies that

gn − (g − 2)m > gn − (g − 2)m − 2m + gr = g(n − m + r) > gǫ.

Thus if ǫ > 0 (i.e., S is the plane or projective plane) then gn > (g−2)m and
m
n

< g
g−2 , which (applied to all subgraphs of G) shows that mad(G) < 2g

g−2 .
And if ǫ > 0 (i.e., S is the plane, projective plane, torus or Klein bottle)
then mad(G) 6

2g
g−2 . Thus the following result follows immediately from

Corollary 2.1, with no need for further proof.

Corollary 2.2. Let G be a graph with maximum degree 3 and girth at least

10 that can be embedded in a surface of nonnegative characteristic. Then

ch′′(G) = χ′′(G) = 4.

The current state of knowledge about the total colourability and total choos-
ability of planar (simple) graphs with large maximum degree and girth can
be summarized as follows.
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Theorem 3. Let G be a planar graph with maximum degree ∆ and girth g.
Then

(i) χ′′(G) = ∆ + 1 if (ii) ch′′(G) = ∆ + 1 if

(a) ∆ > 10; (a) ∆ > 12;
(b) ∆ > 7 and g > 4; (b) ∆ > 7 and g > 4;
(c) ∆ > 5 and g > 5; (c) ∆ > 5 and g > 5;
(d) ∆ > 4 and g > 6; (d) ∆ > 4 and g > 6;
(e) ∆ > 3 and g > 10; (e) ∆ > 3 and g > 10.

Moreover, with the possible exception of (i)(a) and (ii)(c), all these results

hold if G is not planar but can be embedded in a surface of nonnegative

characteristic.

Part (i)(a) of Theorem 3 is proved in [9], and part (ii)(a) in [2]. These results
are better than the condition ∆ > 16 that can be deduced from Theorem 1
with mad(G) 6 6 (which holds since g > 3).

Part (ii)(b), which implies part (i)(b), is proved in [2] as a corollary of
Theorem 1 with ∆ > 7.

Parts (i)(c) and (i)(d) are proved in [3]. However, the proofs work
equally well for (ii)(c) and (ii)(d), with only minor changes such as replacing
‘we can totally colour . . . with ∆ + 1 colours’ by ‘we can totally colour . . .
from its lists’. One also needs to find a different way around the following
difficulty: if G is a minimal counterexample to the theorem, and H is a
proper subgraph of G, one wants to be sure that H is totally (∆ + 1)-
colourable; however, the fact that G is a minimal counterexample does not
ensure this when ∆(H) < ∆. We avoided this difficulty in [3] by quoting
the known result that χ′′(H) 6 ∆(H) + 2 if ∆(H) < 5. For list colourings,
this works when ∆ = 4, since Juvan, Mohar and Škrekovski [6] proved
that ch′′(H) 6 ∆(H) + 2 if ∆(H) < 4; but it is not known whether this
holds whenever ∆(H) < 5. Another way of avoiding this difficulty, which
does work for list colourings, is to prove the theorem for all graphs with
maximum degree at most ∆; then there is no need to refer to any other
results in order to deduce that H is totally (∆ + 1)-colourable, or totally
(∆ + 1)-choosable in the list-colouring version of the theorem. But then
one cannot assume that G contains a vertex with degree ∆, which we used
in order to contradict the possibility that n − m + r = 0. Thus, with the
minor modifications just mentioned, the proofs of (i)(c) and (i)(d) in [3]
work equally well for list colourings, and prove (ii)(c) and (ii)(d) in surfaces
of positive characteristic, and (ii)(d) (only) in surfaces of characteristic zero.
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The results in (c) and (d) are what one could deduce from the conjectured
results for ∆ = 4 and 5 in Theorem 1. The proof of (c) uses the embedding
and girth of G in an intrinsic way and so does not prove this conjecture. In
contrast, the proof of (d) uses the embedding and girth of G only to prove
that mad(G) 6 3, and so (with the minor modifications mentioned above)
it proves the conjecture, that ch′′(G) = 5 for every multigraph G such that
∆(G) = 4 and mad(G) 6 3.

Part (i)(e) of Theorem 3 is also proved in [3], but the proof involves
recolouring arguments that do not work for list colourings. In the present
paper we use alternative arguments that do work for list colourings. We
claimed in [3] that we had used the embedding only to prove that mad(G) 6

21
2 , and that our proof therefore showed that χ′′(G) = ∆+1 for every graph

G with maximum degree ∆ > 3 such that mad(G) 6 21
2 . But we overlooked

the fact that we had made implicit (and in one place explicit) use of the
lower bound on the girth, so that in fact we had proved the result only
when ∆ > 3, mad(G) 6 21

2 and g > 10. It is not difficult to fill in the
missing case g < 10, but in any case it follows from Corollary 2.1.

3. The Proof for mad(G) < 21
2

It is well known that every multigraph with maximum degree 2 is totally 4-
choosable, but there is no need for us to assume this result. Throughout the
proof of Theorem 2, Gmin will denote a multigraph with maximum degree
at most 3, and Λ will denote an assignment of a list of four colours to every
element of Gmin that is not constant on any copy of C+

4 in Gmin and such
that Gmin has no total Λ-colouring, but every proper submultigraph of Gmin

has a total Λ-colouring. We will prove in this section that mad(Gmin) > 21
2

and in the next section that mad(Gmin) 6= 21
2 , and this will suffice to prove

Theorem 2. If Gmin consists of two vertices joined by three parallel edges
then certainly mad(Gmin) > 21

2 , and so we may suppose that this is not
the case. Then it is easy to see that every vertex of Gmin has at least two
distinct neighbours. We will prove various further statements about Gmin.
It will be convenient to prove the following basic lemma first.

Lemma 1. Suppose that three pairwise adjacent elements x, y and z are

given lists L(x), L(y) and L(z) of colours such that |L(x)| = |L(y)| =
|L(z)| = 2, and the lists are not all equal. Then there are two different
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colourings λx, λy, λz and µx, µy, µz of x, y, z from these lists such that one

of the following holds :

(i) λx = µx and λy 6= µy;

(ii) λy = µy and λx 6= µx;

(iii) λx = µy and λy = µx;

(iv) λx = µy and λy 6= µx.

Proof. It is well known, and easy to see, that there is a colouring λx, λy, λz

of x, y, z from these lists: start by assigning a colour c that is not in the list
of every element, and end by colouring an element that does not have c in its
list. If two of the three lists are equal, then we can obtain another colouring
µx, µy, µz by interchanging the colours of two elements; then (i), (ii) or (iii)
holds, according as the two elements with equal lists are y and z, or x and
z, or x and y. So assume that no two lists are equal. If |L(x) ∩ L(y)| = 1,
say L(x) = {a, b} and L(y) = {a, c}, then L(z) 6= {a, b} or {a, c}, and so
the colourings (a, c) and (b, a) for x, y both extend to z and are related as in
(iv). Finally, if L(x) ∩ L(y) = ∅, say L(x) = {a, b} and L(y) = {c, d}, then
at least three of the four possible colourings (a, c), (a, d), (b, c) and (b, d) for
x, y can be extended to z, and among any three of these there are two that
are related as in (i). This completes the proof of Lemma 1.

Lemma 2. (a) No triangle in Gmin contains two 2-vertices.
(b) No 2-vertex in Gmin is adjacent to two 2-vertices.

(c) There is no path uvwx in Gmin such that u, v and x are all 2-vertices.

Proof. (a) Suppose uvw is a triangle and u, v are 2-vertices. By hypothesis,
Gmin−{u, v} has a total colouring from its lists. For each uncoloured element
z of Gmin, let L(z) denote the subset of colours from Λ(z) that are not used
on any neighbour of z. Then |L(z)| > 2 if z = uw or vw, |L(z)| > 3 if z = u
or v, and |L(uv)| = 4. If we try to colour the elements in the order

uw, vw, v, u, uv,(1)

then it is only with uv that we may fail. If we can give the same colour
to uw and v, then we will succeed even with uv. But if L(uw) ∩ L(v) = ∅
then either L(uw) or L(v) contains a colour not in L(uv); so colour the
elements in the order (1), using a colour not in L(uv) at the first available
opportunity. Then in all cases the elements can be coloured. This gives
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a total Λ-colouring of Gmin, which contradicts the definition of Gmin, and
this contradiction proves (a).

(b) Suppose u, v,w are 2-vertices forming a path uvw. We can totally
colour Gmin − uv from its lists and then erase the colours on u and v. Now
there are two colours available for each of u, uv and v, and the only problem
arises if they are the same two colours in each case. But the edge vw has
only two restrictions on its colour, and it has a list of four colours, and so
by recolouring vw if necessary we can complete the colouring and obtain the
required contradiction.

(c) Suppose there is such a path uvwx in Gmin. Totally colour Gmin − v
from its lists and then erase the colours on all the elements in the path. For
each uncoloured element z, let L(z) denote the subset of colours from Λ(z)
that are not used on any neighbour of z. Then the uncoloured elements
are u, uv, v, vw,w,wx, x, and they have lists of size at least 2, 3, 4, 3, 2, 2, 2
respectively. Moreover, the lists of w, wx and x are not all equal, since these
elements were coloured in the colouring of Gmin − v, and so by Lemma 1
there are two different colourings λw, λwx, λx and µw, µwx, µx of w,wx, x such
that the ordered pairs (λw, λwx) and (µw, µwx) are different. Choose colours
λvw ∈ L(vw) \ {λw, λwx} and µvw ∈ L(vw) \ {µw, µwx}. If we assign colours
λvw, λw, λwx, λx to vw,w,wx, x, then there remain two possible colours for
each of u, uv and v, and the only problem is if they are the same two colours
in each case. For this to happen, it must be that

L(uv) \ L(u) = {λvw} and L(v) \ L(uv) = {λw}.(2)

If it is possible to change the colour of vw without changing any other colour,
then do so, and the problem is avoided. If not, then L(vw) = {λvw, λw, λwx}.
We may suppose by the same argument that (2) holds with λvw and λw

replaced by µvw and µw, and that L(vw) = {µvw, µw, µwx}. But then λvw =
µvw, λw = µw, and λwx = µwx. This contradiction completes the proof of
Lemma 2.

To progress further, we will need the powerful technique of Alon and Tarsi
[1]. By a subflow of a digraph D = (V,A) we will mean a subset of the arc-
set A that forms a subdigraph F of D in which every vertex v has indegree
d−F (v) equal to its outdegree d+

F (v). (This is what Alon and Tarsi call an
Eulerian subdigraph.) A subflow is even or odd according as it has an even
or an odd number of arcs; of course, the empty subset of A is an even
subflow. Alon and Tarsi [1] proved that if a graph G has an orientation that
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forms a digraph D in which the number of even subflows is different from
the number of odd subflows, and if every vertex v of G is given a list L(v) of
at least d+

D(v) + 1 colours, then the vertices can be properly coloured from
these lists. We will use this result in proving the following lemmas.

G1 G2 G3

•

•

• •

u

v

w x

2

2

3

3

4 4 2

•

•

• •

u

v

w x

2

2

3

3

4 3 3

•

•

• • •

u

v

w x x′

2

2

3

3

4 4 3 2

Figure 1

Lemma 3. If each element of the graphs in Figure 1 is given a list of colours

of the size indicated against it, then each graph can be totally coloured from

these lists. (In G3, the vertex x′ is not given a list and is not required to be

coloured.)

D1 D3

•

• •

• •

•

•

•

w

u

v

x
ȳ

ū

v̄

x̄

•

• •

• •

•

•

w

u

v

x

ū

v̄

x̄

Figure 2

Proof. The digraph D1 in Figure 2 is an orientation of the total graph T (G1)
of the multigraph G1 in Figure 1, with the edges wu,wv,wx represented by
vertices ū, v̄, x̄ respectively. Each vertex in D1 has outdegree less than the
number of colours available to it. It remains to prove that the number
of even subflows of D1 is different from the number of odd subflows. A
computer search shows that there are 6 even subflows and 5 odd subflows.
However, we can obtain the result without using a computer. Note that D1
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contains two arc-disjoint 3-cycles C1:wv̄vw and C2:wx̄xw. The subflows
that contain none of the arcs of C1 are in a natural 1 : 1 correspondence
with the subflows that contain all of these arcs, with each corresponding
pair comprising one even and one odd subflow; thus it suffices to consider
the subflows that contain either one or two arcs of C1. Of these, the ones
that contain none of the arcs of C2 pair off in a similar way with those
that contain all of these arcs, and so it suffices to consider the subflows that
contain either one or two arcs of C1 and either one or two arcs of C2. It is
not difficult to see that there is exactly one such subflow, forming a 4-cycle
wx̄v̄vw. Since the number of even subflows is different from the number of
odd subflows, it follows from the theorem of Alon and Tarsi that the vertices
of D1 can be properly coloured from their lists, so that the elements of G1

can be totally coloured from their lists.

Let D2 := D3 − ȳ, where D3 is shown in Figure 2. Then D2 is an
orientation of T (G2), where G2 is shown in Figure 1, and each vertex in D2

has outdegree less than the number of colours available to it. The computer
finds that there are again 6 even subflows and 5 odd subflows; however, we
can again obtain the result without using a computer. There are two arc-
disjoint 3-cycles C1:wūuw and C2:wv̄vw. As in the proof for D1, it suffices
to consider subflows that contain either one or two arcs of C1 and either one
or two arcs of C2. It is not difficult to see that there is exactly one such
subflow, forming a 4-cycle wūv̄vw. Since the number of even subflows is
different from the number of odd subflows, it follows that the elements of
G2 can be totally coloured from their lists.

Finally, D3 is an orientation of T (G3) with the vertex x′ removed, and
with the edge xx′ represented by the vertex ȳ, and each vertex has outdegree
less than the number of colours available to it. This time the computer finds
that there are 14 even subflows and 13 odd subflows; however, once again,
we can obtain the result without using a computer. There are three arc-
disjoint 3-cycles, C1 and C2 as in D2, and C3:xx̄ȳx. The only subflow that
contains either one or two arcs of each of these three 3-cycles is the union of
the two 4-cycles wūv̄vw and wx̄ȳxw. It follows as before that the elements
of G3 (other than x′) can be totally coloured from their lists.

Lemma 4. If each element of the graph G4 in Figure 3 is given a list of

colours of the size indicated against it, then the elements can be totally

coloured from these lists. (The vertices x and y are not given lists and

are not required to be coloured.)
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G4 : D4 :

•

• •

• •

u

v w

x y

4

4 4

4
3 3

2 2

•

• •

•

••

• •

u

v w

ū

v̄w̄

x̄ ȳ

Figure 3

Proof. The digraph D4 in Figure 3 is an orientation of the total graph
T (G4) with the vertices x and y removed, and with the edges uv, uw, vw,
vx,wy represented by vertices w̄, v̄, ū, x̄, ȳ respectively. Each vertex in D4

has outdegree one less than the number of colours available to it. It remains
to prove that the number of even subflows of D4 is different from the number
of odd subflows. The computer finds that there are 64 even subflows and 62
odd subflows. Unfortunately, I cannot find a convincing way of demonstrat-
ing this difference without using a computer. There are four edge-disjoint
directed triangles in D4, namely uvwu, ūv̄w̄ū, vūx̄v and wūȳw, and the
computer finds that there are 14 subflows that contain either one or two
arcs of each of these four 3-cycles, 8 of which are even and 6 odd. Replacing
the cycle uvwu by uv̄wu gives 12 relevant subflows, of which 7 are even and
5 odd; but this is still too many to check reliably without using a computer.
We rely on the computer result.

Lemma 5. Gmin does not contain a chordless cycle C:u1v1u2v2 . . . ukvku1

of even length such that v1, v2, . . . , vk all have degree 2.

Proof. Suppose it does. Then k > 2, since, as we observed at the start
of the proof, every vertex of Gmin has at least two distinct neighbours. For
i = 1, ..., k, denote the edge vi−1ui by ei and the edge uivi by fi. (Subscripts
should be interpreted modulo k throughout this proof.) Choose a total
colouring of Gmin − v1 from its lists, uncolour all the elements in the cycle,
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and for each uncoloured element z of Gmin let L(z) denote the set of colours
from Λ(z) that are not used on any neighbour of z. Then, for each i,
|L(ui)| > 2, |L(z)| > 3 if z = ei or fi, and |L(vi)| = 4. Let D be the
orientation of T (C) in which the arcs are, for each i, −−→eiui,

−−→
uifi,

−−→
fivi, −−−→viei+1,

−−→viui, −−−−→viui+1,
−−→
eifi and

−−−→
fiei+1 (see Figure 4 for the case k = 3). Note that

each vertex z has outdegree one less than the lower bound given above for
the number of colours available to z. We distinguish two subflows: for each
i, F1 contains the arcs eifi, fivi and viei+1, and F2 contains the arcs eiui,
uifi and fiei+1. Clearly F1 and F2 have the same parity, which is the same
as that of k. We will show that all the other subflows pair off, each pair
comprising one even and one odd.

•

•

•

•

•

•

•

•

•

•

•

•

e1

u1

f1

v1

e2

u2

f2

v2

e3

u3

f3

v3

Figure 4

There are k arc-disjoint 3-cycles of the form uifiviui. By an argument
introduced in Lemma 3, the subflows that contain all or none of the arcs of
any of these 3-cycles all pair off, and so it suffices to consider subflows that
contain one or two arcs of each 3-cycle. The arcs viui cannot occur in any
such subflow, and can now be ignored. So for each i, the subflows that we
are considering must contain at least one of the arcs uifi and fivi.

For each i, the subflows that contain the arc vi−1ui (and, therefore,
neither of the arcs vi−1ei and eiui) pair off with those containing the arcs
vi−1ei and eiui (and, therefore, not containing vi−1ui). So it suffices to
consider subflows that contain exactly one of the arcs vi−1ei and eiui, and
hence exactly one of the arcs fi−1ei and eifi, and that do not contain vi−1ui.
Note that such a subflow cannot contain both of the arcs ei−1fi−1 and fi−1ei;
for if it did, and given that it contains at least one of the arcs ui−1fi−1 and
fi−1vi−1 by the previous paragraph, then it must contain fi−1vi−1 and hence
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either vi−1ui or both of vi−1ei and eiui, both of which we have already ruled
out of consideration.

It follows from the previous paragraph that it suffices to consider sub-
flows that contain either all the arcs eifi (and no arc fiei+1), or all the arcs
fiei+1 (and no arc eifi). But there is exactly one subflow of each type,
namely F1 and F2 respectively. Since these have the same parity, the num-
ber of even subflows is not equal to the number of odd subflows. It follows
from the theorem of Alon and Tarsi that all the uncoloured elements of Gmin

can be coloured from their lists, and this contradiction completes the proof
of Lemma 5.

Lemma 6. Gmin does not contain a cycle C:u1v1u2v2 . . . ukvku1 of even

length such that v1, v2, . . . , vk all have degree 2.

Proof. Suppose it does. By Lemma 5 we may assume that C has a chord,
say u1uh, and we may choose this chord so that there is no chord uiuj 6= u1uh

such that 1 6 i < j 6 h. Choose a total colouring of Gmin − u1uh from its
lists, and uncolour all elements in the segment vku1 . . . uhvh of C; let the
graph formed by the uncoloured elements of Gmin be H. If h = 2 and
we recolour vk and vh with the colours they had before, then regardless of
whether k = 2 (when vk = vh) or k > 3 (when vk 6= vh), this colouring
can be extended to the whole of H, and hence to the whole of Gmin, by
Lemma 4. This contradiction shows that h > 3. By the same argument we
may also assume that C has no chord of the form uhuh+1, so that vk 6= vh.

Let g denote the chord u1uh, and let the edges of C be labelled as in
Lemma 5, so that in particular vku1 = e1, u1v1 = f1, vh−1uh = eh, and
uhvh = fh (see Figure 5(a) for the case h = 3). For each uncoloured element
z of Gmin, let L(z) denote the set of colours from Λ(z) that are not used
on any neighbour of z. Then |L(z)| > 2 if z ∈ {vk, vh}, |L(z)| > 3 if
z ∈ {e1, fh}, |L(z)| > 4 if z ∈ {g, u1, f1, eh, uh}, and for each element z in
the segment v1 . . . vh−1 of C, |L(z)| is at least as large as the lower bound
given in Lemma 5. Let D be the orientation of T (H) in which the arcs with
both endvertices in the set {vk, e1, u1, f1, g, eh, uh, fh, vh} are oriented as in
Figure 5(b), and all other arcs are oriented in the same way as in Lemma 5
(Figure 5(b) shows the case h = 3). Note that each vertex has outdegree
less than the number of colours available to it.

We wish to prove that the number of even subflows of D is different from
the number of odd subflows. In doing this, it suffices to consider subflows
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F with the following four properties, which follow from arguments used in
the previous lemma.

(a) (b)
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Figure 5

P1. For each i (2 6 i 6 h− 1), F does not contain either of the arcs vi−1ui

and viui, it contains exactly one of the arcs vi−1ei and eiui, and it
contains at least one of the arcs uifi and fivi.

P2. F contains exactly one or two of the arcs u1f1, f1v1 and v1u1.

P3. Either F contains arc u1e1 but neither of arcs e1vk and vku1, or else F
contains arcs e1vk and vku1 but not arc u1e1.

P4. Either F contains arc uhfh but neither of arcs fhvh and vhuh, or else
F contains arcs fhvh and vhuh but not arc uhfh.

It is not difficult to see that a subflow F that satisfies P1–P3 must satisfy
the following:

• If F contains both of the arcs f1v1 and f1e2, then F contains all five of
the arcs

gf1, f1v1, v1u1, u1e1, e1f1,(3)

and no other arc incident with u1, e1 or f1; in this case we say that F is of
type 0 at 2. If F is not of type 0 at 2, then F contains exactly one of the
arcs f1v1 and f1e2, and cannot contain arc v1u1.
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• For each i (2 6 i 6 h − 1), exactly one of the following holds:

(i) F contains all of the arcs fi−1ei, eiui and uifi and none of the arcs
fi−1vi−1, vi−1ei and eifi (we say that F is of type 1 at i);

(ii) F contains all of the arcs fi−1vi−1, vi−1ei and eifi and none of the
arcs fi−1ei, eiui and uifi (we say that F is of type 2 at i);

(iii) i = 2 and F is of type 0 at i, in which case F contains arcs f1e2, e2u2

and u2f2 (as in type 1), as well as the five arcs listed in (3).

• If F is of type 2 at i (2 6 i 6 h − 2) then F is of type 2 at i + 1.

It follows that F contains a path of 3(h − 2) edges from f1 to fh−1, and
there are h − 1 routes that this path can take: for some j (1 6 j 6 h − 1)
F is of type 0 or 1 at i for all i such that 2 6 i 6 j, and of type 2 at i for
all i such that j + 1 6 i 6 h − 1.

Suppose first that F is of type 1 at h − 1 and, therefore, of type 0 or 1
at 2. Then F enters fh−1 along arc uh−1fh−1. Since the subflows that contain
fh−1eh but not fh−1vh−1 or vh−1eh pair off with those that contain fh−1vh−1

and vh−1eh but not fh−1eh, we may assume that F contains fh−1vh−1 but
not vh−1eh. It follows that F cannot contain any arc entering or leaving eh,
and so by P4 it contains arcs vh−1uh, uhfh and fhg. By P2 and P3, we see
that if F is of type 1 at 2 then F is a directed cycle comprising the path
just described from f1 to g, with the addition of the path ge1vku1f1 of four
arcs, while if F is of type 0 at 2 then it consists of the same path from f1

to g with the addition of the five arcs listed in (3). These two possibilities
for F have different parities, and so cancel each other out.

Suppose now that F is of type 2 at h − 1; then there are h − 2 routes
that F can take between f1 and fh−1, but all of them enter fh−1 along arc
eh−1fh−1, so that, by P1, F must contain arc fh−1vh−1. Since the subflows
that contain vh−1uh but not vh−1eh or ehuh pair off with those that contain
vh−1eh and ehuh but not vh−1uh, we may suppose that F contains vh−1eh

but not ehuh. By P4 it must therefore contain arcs ehfh, fhvh and vhuh,
but not uhfh or, therefore, fhg or ehg. If it contains arc uhg then, as in the
previous paragraph, there is one possibility for F if it has type 0 at 2 and
one possibility if it has type 1 at 2, and these two possibilities have different
parities and so cancel each other out; if however F has type 2 at 2, then by
P2 and P3 F is a cycle comprising a path from f1 to g that is completed by
one of the paths gu1e1f1 and ge1vku1f1; and these two cycles have lengths
of different parities, and so cancel each other out. The only other possibility
is that F contains arc uhu1, in which case, by P2 and P3, F is of type 2 at 2
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and is a cycle that is completed by the path u1e1f1. Since there is only one
route that F can take between f1 and fh−1 if it is of type 2 at 2, it follows
that the number of subflows with the parity of this subflow F (which is the
same as the parity of h) is one more than the number of subflows with the
opposite parity, so that the numbers of even and odd subflows are not the
same. This gives a contradiction in the same way as in Lemma 5, and this
completes the proof of Lemma 6.

•

•

• • • •

u

v

w x x′ y

2

2

3

3

4 4 4 3 2 2 2

Figure 6

Lemma 7. Suppose w is a 3-vertex of Gmin with neighbours u, v, x, all of

degree 2, and let the other neighbours of u, v, x be u′, v′, x′ respectively, nec-

essarily of degree 3 by Lemma 2(c). Then none of u′, v′, x′ has another

neighbour of degree 2.

Proof. Suppose one of them does, say x′ has a neighbour y of degree 2, as
in Figure 6. Note that y 6= u or v by Lemma 6. Choose a total colouring
of Gmin − x from its lists, and erase the colours on all elements of the paths
uwv and wxx′y. For each uncoloured element z of Gmin, let L(z) comprise
those colours from Λ(z) that are not used on any neighbour of z. Then
|L(z)| is at least as large as indicated beside each element in Figure 6, and
there is no loss of generality in assuming that |L(z)| has exactly this size in
each case. Moreover, the lists of x′, x′y and y are not all equal, since these
elements were coloured in the colouring of Gmin − x, and so by Lemma 1
there are two different colourings λx′ , λx′y, λy and µx′ , µx′y, µy of these three
elements such that one of the following holds:

(i) λx′ = µx′ and λx′y 6= µx′y;

(ii) λx′y = µx′y and λx′ 6= µx′ ;

(iii) λx′ = µx′y and λx′y = µx′ ;

(iv) λx′ = µx′y and λx′y 6= µx′ .

We will consider each possibility in turn.
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Suppose first that (i) holds. Let us replace the lists of x and xx′ by L(x) \
{λx′} and L(xx′) \ {λx′} respectively. Then the sizes of the lists of all
elements except x′, x′y, y are at least as large as indicated on the graph G3

in Figure 1, and these elements can be coloured from their lists by Lemma 3.
This colouring can then be extended to the elements x′, x′y, y by using one
of the two possible colourings, since at least one of λx′y and µx′y is different
from the colour that has been given to xx′.

Before considering (ii)–(iv), note that if L(xx′) does not contain all the
(two or three) colours in the set {λx′ , λx′y, µx′ , µx′y}, then we can colour
x′, x′y, y first in such a way that at least one of x′ and x′y is given a colour
not in L(xx′); the task of extending this colouring to the remaining elements
is then that of colouring the graph G3 in Figure 1 from lists of the size
indicated, which can be done by Lemma 3. So we may suppose from now
on that L(xx′) contains all these colours.

Suppose now that (ii) holds. Then L(xx′) = {λx′ , µx′ , λx′y}. Replace
the list of x by L(x) \ {λx′ , µx′}. Then the sizes of the lists of all ele-
ments except xx′, x′, x′y, y are at least as large as indicated on the graph
G1 in Figure 1, and these elements can be coloured from their lists by
Lemma 3. This colouring can then be extended to the remaining elements
by giving xx′, x′, x′y, y the colours µx′ , λx′ , λx′y, λy if wx has colour λx′ , and
λx′ , µx′ , µx′y, µy otherwise.

Suppose next that (iii) holds. Then L(xx′) = {λx′ , µx′ , c}, for some
colour c. Replace the lists of wx and x by L(wx) \ {c} and L(x) \ {c}
respectively. Then the sizes of the lists of all elements except xx′, x′, x′y, y
are at least as large as indicated on the graph G2 in Figure 1, and these
elements can be coloured from their lists by Lemma 3. This colouring can
then be extended to the elements xx′, x′, x′y, y by colouring xx′ with c, and
choosing one of the two colourings for x′, x′y, y so that x′ does not have the
same colour as x.

Finally, suppose that (iv) holds. Then L(xx′) = {λx′ , µx′ , λx′y}. If
L(xx′) 6⊂ L(x), then give xx′, x′, x′y, y colours µx′ , λx′ , λx′y, λy if the colour
not in L(x) is λx′ or µx′ , and colours λx′y, µx′ , µx′y, µy if it is λx′y; the task
of colouring the remaining elements is then that of colouring the graph G2

in Figure 1 from lists of the size indicated, which can be done by Lemma 3.
So we may suppose that L(xx′) ⊂ L(x), say L(x) = L(xx′) ∪ {c}. Give w a
colour λw not in L(u)∪{c}, then colour v, vw, uw, u,wx in that order, which
is possible since each of these elements has a spare colour at the time it is
coloured. Now give x a colour λx ∈ L(x) \ {λw, λwx, µx′} (where λwx is the
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colour given to wx), choosing λx = c if λwx 6= c. This colouring can then
be extended to the remaining elements by giving xx′, x′, x′y, y the colours
µx′ , λx′ , λx′y, λy if whichever of λwx, λx is not c is equal to λx′y, and colours
λx′y, µx′ , µx′y, µy, otherwise.

In every case, the colouring can be extended to all elements of Gmin,
and this contradiction completes the proof of Lemma 7.

The following result proves Theorem 2 when mad(Gmin) < 21
2 .

Theorem 4. Define Gmin as in the first paragraph of Section 3. Then

mad(Gmin) > 21
2 . Moreover, if mad(Gmin) = 21

2 then Gmin has the following

form: the submultigraph G3 of Gmin induced by its 3-vertices is a union of

disjoint cycles—call them D-cycles—and the vertices of G3 are connected

in pairs by paths of three edges lying outside G3—call them D-paths—whose

internal vertices both have degree 2.

Proof. Let G23 be the bipartite subgraph of Gmin comprising V (Gmin) and
all edges of Gmin that join a 2-vertex to a 3-vertex. By Lemma 6, G23 is a
forest. By Lemma 2(b), no 2-vertex of Gmin is an isolated vertex in G23. By
parts (a) and (c) of Lemma 2, a component of G23 that is a nontrivial path
either consists of a single edge joining a 2-vertex and a 3-vertex of Gmin, or
else ends in two 3-vertices of Gmin. In view of Lemma 7, there are thus three
different types of component in G23:

(i) a component containing three 2-vertices and four 3-vertices of Gmin,
consisting of a 3-vertex adjacent to three 2-vertices which in turn are
adjacent to three more 3-vertices, necessarily distinct by Lemma 6;

(ii) a component that is a path of even length, say 2k, possibly trivial (i.e.,
k = 0), containing k 2-vertices and k + 1 3-vertices of Gmin;

(iii) a component consisting of a single edge joining a 2-vertex and a 3-vertex
of Gmin.

It follows that Gmin has at least as many 3-vertices as 2-vertices, and so
mad(Gmin) > 21

2 . Moreover, if mad(Gmin) = 21
2 then there are no compo-

nents of types (i) and (ii), and so Gmin\E(G23) consists of the disjoint union
of a 2-regular multigraph induced by the 3-vertices of Gmin and a 1-regular
graph induced by the 2-vertices of Gmin; thus Gmin has the form described
in the theorem.

Corollary 4.1. Let G be a multigraph with maximum degree 3 such that

mad(G) < 21
2 . Then G is totally 4-choosable.
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Proof. If not, then G has a minimal non-totally-4-choosable submultigraph
Gmin with maximum degree at most 3, and Gmin contains no copy of C+

4 since
mad(G) < 21

2 . By Theorem 4, mad(Gmin) > 21
2 , which is a contradiction.

4. Extension to mad(G) = 21
2

We start by examining a D-path.

Lemma 8. Let P :uxyv be a path, and suppose that every element z of P is

given a list L(z) of four colours, and that u, ux, vy, v are then coloured with

colours λu, λux, λvy, λv from their lists, where λu 6= λux and λvy 6= λv. Then

this colouring can be extended to a total L-colouring of P unless the lists of

x, xy, y, and the colours assigned to u, ux, vy, v, match one of the rows in

Table 1.

Type L(x) L(xy) L(y)
Bad colourings
of u, ux, vy, v

1 {a, b, c, d} {a, b, c, d} {a, b, c, d} µ, ν, µ, ν (µ, ν ∈ {a, b, c, d}, µ 6= ν)
2 {a, b, c, d} {a, b, c, d} {a, b, d, e} µ, c, µ, e (µ ∈ {a, b, d})
3 {a, b, c, e} {a, b, c, d} {a, b, c, d} e, ν, d, ν (ν ∈ {a, b, c})
4 {a, b, c, e} {a, b, c, d} {a, b, d, e} e, c, d, e
5 {a, b, c, e} {a, b, c, d} {a, b, d, f} e, c, d, f

Table 1

Proof. Let L′(x) := L(x) \ {λu, λux}, L′(xy) := L(xy) \ {λux, λvy} and
L′(y) := L(y) \ {λvy , λv}. Then x, xy, y can be coloured from these lists
unless they are identical lists of two colours, say L′(x) = L′(xy) = L′(y) =
{a, b}, which implies λux 6= λvy , say λux = c and λvy = d, and L(x) =
{a, b, c, λu}, L(xy) = {a, b, c, d}, and L(y) = {a, b, d, λv}. Evidently λu /∈
{a, b, c} and λv /∈ {a, b, d}. So the essentially different possibilities for
(λu, λv) are then (d, c), (d, e), (e, c), (e, e) and (e, f), where distinct let-
ters represent distinct colours, giving the lists shown in Table 1. In each
case, if an assignment of colours µu, µux, µvy , µv to u, ux, vy, v cannot be
extended to x, xy and y, that is,

L(x) \ {µu, µux} = L(xy) \ {µux, µvy} = L(y) \ {µvy , µv} = X, say,
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where |X| = 2, then this ‘bad colouring’ must match the pattern shown in
the last column of Table 1.

In what follows, if we say, for example, that an element w is given the
unique colour in L(uv)\L(u), then this implies that there is a unique colour
in L(uv) \ L(u), and this colour is given to w. But if we say that w is not

given the unique colour in L(uv) \ L(u), then this should not be taken to
imply that there is such a unique colour, but only that if there is one then
it is not used to colour w.

Lemma 9. Suppose that each element of the graph in Figure 7(a) is given a

list of colours of the size indicated against it, and f1, f2 is a pair of distinct

‘forbidden’ colours. Then the graph can be totally coloured from these lists

in such a way that if vw is coloured with f1 then w is not coloured with f2.

(a) (b)
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• •
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Figure 7

Proof. We will carry out the colouring in the following way. We will
first colour vw and w (or in one case just vw) so that the colouring can be
extended to u, uv and v; colouring ux and vy is now trivial, after which we
will colour x, xy and y. The possible problems arise in colouring u, uv, v and
in colouring x, xy, y. Colouring u, uv, v is not difficult in itself: the only time
it cannot be done is if we have given vw the unique colour in L(uv) \ L(u)
and w the unique colour in L(v)\L(uv), since then, and only then, the three
elements u, uv, v must all be coloured with the same two colours; this can
only happen if L(u) ⊂ L(uv) ⊂ L(v), and it is easily avoided by recolouring
vw or w. However, the problem is not just to colour u, uv and v, but to
colour them in such a way that the resulting colouring of u, ux, vy and v
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can be extended to x, xy and y. This is automatically possible unless L(x),
L(xy) and L(y) match one of the rows in Table 1. There are two cases to
consider.

Case 1. L(x) = L(xy) = L(y).
Then the bad colourings for u, ux, vy, v are of the form µ, ν, µ, ν, as in row 1
of Table 1. Let L(x) = {a∗, b∗, c∗, d∗}, say, so that we can use the unstarred
letters a, b, c, d to denote colours without implying that they belong to L(x).
Colour vw and w with colours d ∈ L(vw) \ {f1} and e ∈ L(w) \ {d} in such
a way that this colouring can be extended to u, uv and v. (This will hold
if d is not the unique colour in L(uv) \ L(u) or e is not the unique colour
in L(v) \L(uv).) For each uncoloured element z, let L′(z) denote the set of
colours that are now available for use on z. Then L′(u), L′(uv) and L′(v)
are not identical sets of two colours. If there is a colour λ in one of these
sets that is not in L′(vy), then u, uv, v can be coloured so that λ is used on
one of them. If λ is used on u then vy cannot be given the same colour as
u, and if λ is used on uv or v then there is a choice of at least two colours
for vy and we can colour vy differently from u; in either case the colouring
will extend to x, xy and y. A similar remark applies with L(ux) in place of
L′(vy). We may also suppose that |L′(vy)| = 3, since if |L′(vy)| = 4 then
after colouring u, uv, v we can colour vy differently from u. Thus if this
colouring of vw and w does not extend to the other elements, then

L(u) ∪ L′(uv) ∪ L′(v) = L(ux) = L′(vy) = {a, b, c},

say, where possibly d or e ∈ {a, b, c}. However, this means that L(vy) =
{a, b, c, d}, so that these four colours are all distinct, and d is the unique
colour in L(vy) \ L(ux). Without loss of generality, L(u) = {a, b}, where
possibly f1 = b but f1 6= a.

If L(vw) contains a colour d′ that is neither f1 nor d nor the unique
colour in L(uv) \ L(u), then we can colour vw with d′ and w with any colour
e′ ∈ L(w) \ {d′}, and this colouring will extend to u, uv, v, then to ux, vy,
and then to x, xy, y, since d′ is not the unique colour in L(vy) \ L(ux). We
may therefore assume that L(uv) = {a, b, c} and L(vw) = {c, d, f1}. Thus
f1 /∈ {c, d}.

If L(w) \ {c} contains a colour µ that is not the unique colour in
L(v)\L(uv) then we can colour vw,w with c, µ and this colouring will extend
to all the remaining elements. Thus we may assume that L(v) = {a, b, c, g}
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and L(w) = {c, g}, where possibly g = d or e. Now we can colour ux, u, uv
with c, b, a and vy, v, vw,w with

b, g, d, c if g 6= d,
c, d, f1, c if g = d and c 6= f2,
d, c, f1, d if g = d and c = f2.

In each case either vy or v has a colour that is not in {a, b, c} and so is
different from the colour of u or ux respectively, and so this colouring can
be extended to the remaining elements.

Case 2. The lists of x, xy and y are not all equal.

Suppose first that there is a colour λ ∈ L(vw) \ L(w) such that λ 6= f1.
Colour vw with λ and define L′(z) := L(z) \ {λ} if z ∈ {uv, v, vy} and
L′(z) := L(z) for all other uncoloured elements. Then u, uv and v now have
lists of sizes (at least) 2, 2 and 3. For each of the two colours in L(u), we can
colour u with that colour, then colour uv and v, followed by ux, vy and w.
The two colourings so obtained differ on u, and so at least one of them can be
extended to x, xy and y unless the lists of those three vertices conform to the
pattern in row 2 of Table 1. In that case, if no colouring extends, then it must
be the case that L′(u) = L′(uv) = {a, b}, say (where a, b are not necessarily
the same as in Table 1), and L′(ux) = {a, b, c} and L′(v) = {a, b, e} where
c, e is the forbidden pair of colours on ux and v (as in row 2 of Table 1), and
L′(vy) = {a, b, e}, so that vy has to have the same colour as u in both of
these colourings. Then L(v) = L(vy) = {a, b, λ, e} and L(uv) = {a, b, λ}, so
that λ is the unique element in L(uv) \ L(u), and λ /∈ {a, b, e} but possibly
λ = c. There is a colour a′ ∈ L(vw) \ {λ, f1}, where (by interchanging a
and b if necessary) we may suppose that a′ 6= b, but possibly a′ ∈ {a, c, e}.
Colour vw with a′ and w with a colour b′ ∈ L(w)\{a′}. If a′ = e then colour
u, uv, v with a, b, λ if b′ = b and with a, λ, b otherwise; this colouring can be
extended to the remaining elements since v does not have colour e. If a′ 6= e
then colour ux, u, uv with b, a, λ, and vy, v with b, e if b′ = b or with e, b
otherwise; this colouring can be extended to the remaining elements since
ux does not have colour c.

In view of this, we may assume that f1 is the unique colour in L(vw) \
L(w), say L(vw) = {a, b, c} and L(w) = {a, b}, where (f1, f2) = (c, a) (and
a, b, c have no connection with Table 1). Then the non-forbidden colourings
available for vw,w are (g1, g2) = (b, a), (a, b) and (c, b). At least one of
these has the property that g1 is not the unique colour in L(uv) \L(u) and
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g2 is not the unique colour in L(v) \L(uv) (since if b is the unique colour in
L(v) \L(uv) then b cannot also be the unique colour in L(uv) \L(u)). If we
colour vw and w with that pair, then each of u, uv and v has a usable list
of at least two colours, and u and uv do not have equal lists of two colours,
and uv and v do not have equal lists of two colours. Thus not all the ways
of colouring u, uv, v from these lists use the same colour on v, and not all
of them use the same colour on u, and so whatever type the lists of x, xy, y
conform to in Table 1 (apart from type 1, which was dealt with in Case 1), at
least one of these colourings can be extended to all the remaining elements.

From now on we assume that mad(Gmin) = 21
2 , so that Gmin has the struc-

ture described in Theorem 4.

Lemma 10. Gmin does not contain a D-path uxyv such that u and v are

joined by exactly one edge.

Proof. Suppose it does. Let w be the vertex (other than u) that is adjacent
to v in the D-cycle containing the edge uv, and let the D-path incident with
w be wx′y′w′. By hypothesis, Gmin − x has a total colouring from its lists.
Uncolour every element shown in Figure 7(b), and for every uncoloured
element z let L(z) be the set of colours from Λ(z) that can now be used on
z. Then |L(z)| is at least as large as indicated beside each element z in Figure
7(b), and there is no loss of generality in supposing that |L(z)| has exactly
this size, in each case. Let f3 be the unique colour in L(x′y′) \L(y′) if there
is one, otherwise (if |L(x′y′) \ L(y′)| > 1) let f3 be an arbitrary colour. Let
f2 be the unique colour in L(x′) \L(x′y′) if there is one, otherwise let f2 be
an arbitrary colour. Let f1 be the unique colour in L(wx′) \ {f2, f3} if there
is one, otherwise let f1 be an arbitrary colour. By Lemma 9, all elements in
Figure 7(a) (regarded as a subgraph of Figure 7(b)) can be coloured from
their lists in such a way that if w is coloured with f2 then vw is not coloured
with f1. Colour them thus, and then colour wx′ in such a way that if w
is coloured with f2 then wx′ is not coloured with f3, which is possible by
the definition of f1. Now there are at least two colours available to each
of x′, x′y′ and y′, and by the definition of f2 and f3, it is not exactly the
same two colours in each case. Thus the colouring can be extended to these
elements. So all elements of Gmin can be totally coloured from their lists,
and this contradiction completes the proof of Lemma 10.

We will complete the proof of Theorem 2 by describing how to colour Gmin.
Let the D-cycles of Gmin be D1, . . . ,Dt. A D-path that connects vertices in
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Dr and Ds will be called forwards from Dr and backwards from Ds if r < s,
while a D-path connecting two vertices in Dr will be called internal to Dr.
The vertices of Dr that are connected by internal D-paths of type 1 (i.e.,
with type-1 lists as shown in Table 1) will be called essential vertices, and
all other vertices of Dr are inessential vertices.

For each D-cycle Dr (r = 1, . . . , t) in turn, we will carry out the following
four steps:

Step 1. Colour the essential vertices of Dr in such a way that the colouring
can be extended to all elements of the type-1 internal D-paths.

Step 2. Colour the inessential vertices of Dr.

Step 3. Colour the edges of Dr.

Step 4. Colour all remaining uncoloured elements of any D-paths that are
internal to Dr or backwards from Dr, and colour the first edge of every
D-path that is forwards from Dr.

If Step 1 is carried out appropriately then the other steps are straightfor-
ward, as we now describe. In Step 2, we must colour the inessential vertices
of the cycle Dr, each of which has a list of four colours; for reasons we are
about to explain, there may be one colour in each list that we must not use,
but this causes no problem, since a cycle is clearly 3-choosable. To ensure
that the middle three elements of an internal D-path P :uxyv, not of type
1, can be coloured in Step 4, we will colour the inessential vertices u and
v so that v does not have colour e if P is of type 2 in Table 1, and u does
not have colour e if P is of type 3, 4 or 5. (If P does not have any of the
five types, then there is no need for any restriction on the colours of u and
v.) If P :uxyv is a backwards D-path with u ∈ Dr, then at this point v and
vy are already coloured; to ensure that the middle three elements of P can
be coloured in Step 4, there is at most one colour that we must avoid for u,
which is the colour of vy if P has type 1 or 2, and colour e if P has type
3, 4 or 5. If u is the endvertex of a forwards D-path, then no restriction
is needed on the colour of u. In every case there is at most one colour in
the list of each inessential vertex that we cannot use, and so Step 2 is easily
completed.

In Step 3 we must colour the edges of Dr, each of which now has a
usable list of at least two colours. The only problem is if Dr has odd length
and every edge has the same list of two colours. In carrying out Steps 1 and
2, we must ensure that there is enough flexibility to change the colouring so
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that this does not happen; it suffices if we can change the colours of some
of the vertices of Dr while leaving unchanged the colours of the endvertices
of at least one edge of Dr. Assuming that Step 3 can be completed, Step 4
is now straightforward: every edge not in Dr but incident with a vertex
of Dr can be coloured with a colour from its list that is different from the
colours of its three coloured neighbours, and the three middle elements of
every internal and backwards D-path can now be coloured because of the
way the endvertices were coloured in Steps 1 and 2.

If there are no essential vertices in Dr, then Step 1 is unnecessary and
we proceed immediately to Step 2. In this case every vertex of Dr has
an effective list of at least three colours. If the vertices are v1, . . . , vn in
order around Dr, then they are easily coloured in this order, with colours
c1, . . . , cn, say. If Step 3 fails because n is odd and every edge now has
the same usable list of two colours, then uncolour vn, recolour vn−1 with
a colour different from cn−1, and then recolour vn. This will change the
usable lists of some but not all of the edges of Dr, and so avoid the problem,
except possibly when n = 3, when all three edge-lists may have changed.
But the usable list of v2v3 will not change if we have merely interchanged the
colours of v2 and v3, and if we cannot interchange these two colours then at
least one of these vertices has list different from {c1, c2, c3}, and then we can
change the colour of that vertex without changing the colour of either of its
neighbours. Thus in every case the vertices can be coloured in such a way
that the edges can be coloured in Step 3, and Step 4 is then straightforward
as we described above. Thus from now on we may assume that Dr has at
least one pair of essential vertices.

In particular, we may assume that Dr has at least three vertices, since
otherwise Gmin consists of a type-1 D-path whose endvertices are connected
by two parallel edges, i.e., Gmin

∼= C+
4 . In this case it is straightforward

to prove (using Table 1) that Gmin is totally Λ-colourable unless every
element of Gmin has the same list, which is explicitly disallowed in the
definition of Λ.

Before describing how to carry out Step 1, we need some notation. Let
H+ be the subgraph of Gmin induced by the vertices of Dr and all type-1 D-
paths that are internal to Dr; by the previous paragraph, H+ is a (simple)
graph. Form H from H+ by suppressing all the inessential vertices; that is,
each segment u1u2, . . . , uk of Dr such that u1 and uk are essential vertices
and {u2, . . . , uk−1} is a nonempty set of inessential vertices is replaced by a
single edge u1uk, which we call a virtual edge of H; every other edge of H
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is a real edge. Finally, form K from H by contracting the edges of all the
D-paths in H. Then K is a 4-regular pseudograph, that is, it may contain
loops as well as parallel edges. (A loop can arise if a virtual edge of H
joins the endvertices of a D-path.) So every vertex u of K corresponds to a
D-path P (u) :u(1)x(1)x(2)u(2) of H. The three lists Λ(x(1)), Λ(x(1)x(2)) and
Λ(x(2)) are all equal, since P (u) is a type-1 D-path by construction; let Λ̌(u)
denote this common list. We must ensure that, for each vertex u ∈ V (K),
either u(1) and u(2) are coloured with the same colour, or else one of them is
given a colour not in Λ̌(u); then this colouring can be extended to the three
middle elements of P (u), no matter how the end edges of P (u) are coloured.
Let k := |V (K)|. There are several cases to consider.

Case 1. For some vertex u of K, either Λ(u(1)) or Λ(u(2)), w.l.o.g.
Λ(u(1)), is different from Λ̌(u).
Colour u(1) with a colour in Λ(u(1))\ Λ̌(u), and form K ′ from K by deleting
the two edges corresponding to edges incident with u(1) in H; clearly K ′ is
connected, since H+ is 2-connected and so H −u(1) is connected. Order the
vertices of K ′ as u1, . . . , uk, where uk = u, in such a way that, for each j,
the subgraph of K ′ induced by uj, . . . , uk is connected. (For example, let
T1 be a spanning tree of K ′. For i = 1, 2, . . . , k − 1 let ui be an endvertex
of Ti that is different from u, and set Ti+1 := Ti − ui.) For i = 1, . . . , k − 1

in turn, we will colour the two vertices u
(1)
i and u

(2)
i of H. When we come

to colour these vertices, they are together adjacent to at most three vertices
that have already been coloured, since at least one of them is adjacent to

u
(1)
j or u

(2)
j for some j ∈ {i + 1, . . . , k − 1}, or to u

(2)
k

. Say u
(1)
i has at most

one coloured neighbour and u
(2)
i has at most two coloured neighbours, so

that if X
(1)
i and X

(2)
i are the sets of colours that we can use on u

(1)
i and

u
(2)
i respectively, then |X

(1)
i | > 3 and |X

(2)
i | > 2. If X

(1)
i or X

(2)
i contains a

colour not in Λ̌(ui), colour one of u
(1)
i and u

(2)
i with such a colour, and colour

the other one with any colour from its list. If however X
(1)
i and X

(2)
i are

both subsets of Λ̌(ui), then they have a colour in common, and so we colour

u
(1)
i and u

(2)
i the same. In all cases, the remaining elements of P (ui) can be

coloured in Step 4, whatever colours are used in Steps 2 and 3. Finally, u
(2)
k

can be coloured with any colour from its list that is not used on either of its

neighbours in Dr. The choice of colour for u
(2)
k can thus be left until after

Step 2 is completed, in order to ensure that not every edge of Dr has the
same list of two colours. This completes the discussion of Case 1.
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In view of Case 1, we may assume from now on that Λ(u(1)) = Λ(u(2)) =
Λ̌(u), for every vertex u of K. The problem thus reduces to that of colouring
the vertices of K properly from their lists, the colour assigned to a vertex
u in K then being given to both u(1) and u(2) in Dr. Thus effectively we
need the choosability analogue of Brooks’s theorem, which was proved by
both Vizing [8] and Erdős, Rubin and Taylor [5]. However, we must proceed
with caution because of the need to find two different colourings in case the
edge-lists in Step 3 are all equal. If there are no virtual edges in H, hence no
inessential vertices in Dr, then this last problem does not arise, since then
Dr has even length and it does not matter if its edge-lists are all equal; thus
we need only one vertex-colouring of K in this case. Note that if there are
two vertices of K that are joined only by a virtual edge, and not by a real
edge as well, then they can be coloured with the same colour, since they do
not correspond to adjacent vertices in Dr.

Case 2. Case 1 does not arise, and either |V (K)| 6 4 or K is not a
(simple) graph.

In this case we carry out Steps 1 and 2 simultaneously. Recall that ev-
ery inessential vertex has an effective list of at least three colours, while
the essential vertices, which correspond to vertices of K, have lists of four
colours. Let the vertices of K be u1, . . . , uk. In what follows it is to be
assumed that whenever we colour a vertex ui of K, then we automatically

and simultaneously give the colour of ui to the vertices u
(1)
i and u

(2)
i of H.

Suppose first that K has a loop, which is necessarily a virtual edge, by
Lemma 10. Choose a loop, based at uk, say, and let L be the corresponding

subpath of Dr between u
(1)
k

and u
(2)
k

; that is, L is the segment of Dr that
is replaced in H by the virtual edge that becomes a loop in K. First colour
the vertices of K; this can be done in such a way that the subgraph induced
by the uncoloured vertices remains connected and uk is coloured last (using
a spanning tree, as in Case 1). Then colour all the inessential vertices of Dr

except those in L; now at least one edge of Dr has two coloured endvertices,
since there must be at least one vertex of Dr that is not in (or an endvertex
of) L. Finally, colour the inessential vertices in L. There is a choice of
colours for the first of these to be coloured, since if it has two coloured

neighbours then they are u
(1)
k

and u
(2)
k

, which have the same colour. Thus
there are least two different possible colourings of this type, and at least one
of these will work in Step 3.

Suppose now that K has no loop and k 6 4; then 2 6 k 6 4. If there
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are no virtual edges in H then we need only one vertex-colouring of K and
we simply colour u1, . . . , uk in order. So suppose there is at least one virtual

edge. Label the vertices of H and K so that u
(1)
1 and u

(1)
2 are the endvertices

of a virtual edge of H, corresponding to a subpath P of Dr. Colour first the

inessential vertices in P , then colour u1 (and u
(1)
1 and u

(2)
1 ) differently from

the neighbour v1 of u
(1)
1 in P , and u2 (and u

(1)
2 and u

(2)
2 ) differently from

both u1 and the neighbour of u
(1)
2 in P , before colouring u3 and u4 if they

exist, followed by any remaining inessential vertices. Note that there are
two choices of colour for u2, and so the colour of u2 can be changed without

changing the colour of either endvertex of the edge u
(1)
1 v1; thus at least one

colouring constructed in this way will work in Step 3.
Finally, suppose that k > 5 and K has a pair of parallel edges, between

uk−1 and uk, say. First colour u1, . . . , uk−2, then colour all inessential ver-
tices that are not in virtual edges between uk−1 and uk. Since k > 5, at
least one edge of Dr now has two coloured endvertices. Now uk−1 and uk

each have at least two possible colours, since each has only two edges going
to vertices different from the other; thus the colouring of these two vertices
can be completed in two different ways, and at least one of these will work
in Step 3. This completes the discussion of Case 2.

In view of Case 2, we may assume from now on that K is a 4-regular
(simple) graph. We say that Λ̌ is constant on a set X ⊆ V (K) if Λ̌(u) = Λ̌(v)
for all u, v ∈ X.

Case 3. Cases 1 and 2 do not arise, and K is not 2-connected.

From the way in which K is constructed, it is clear that if u is a cutvertex
of K then K − u has two components, and u is joined by two edges to
each of them. Let B0 be an endblock of K with cutvertex z0, and let
A0 := K− (B0− z0), so that K = A0 ∪B0 and A0∩B0 = {z0}. We consider
two subcases.

Subcase 3.1. Λ̌ is constant on B0.

Colour the vertices of A0, by keeping the graph induced by the uncoloured
vertices connected as before, ending with z0. Independently, colour the
vertices of a copy of B0, ending with z0. Since Λ̌ is constant on B0, the
colours in this second colouring can be permuted (in more than one way)
so as to agree with the colour previously assigned to z0. Thus there are at
least two different colourings of K, which agree on all vertices of A0 but are
different on B0 − z0, and at least one of these must work in Step 3.
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Subcase 3.2. Λ̌ is not constant on B0.

Let u, v be adjacent vertices of B0 that have different lists, where u 6= z0,
and colour u with a colour in Λ̌(u) \ Λ̌(v). Note that B0 − u is connected,
since B0 is 2-connected. Colour the vertices of A0−z0 (as in Subcase 3.1, but
leaving z0 uncoloured), and then colour all vertices of B0 −u (including z0),
keeping the graph induced by the uncoloured vertices connected and ending
with v; this is possible because although v has four coloured neighbours at
the time we colour it, one of them, u, has a colour not in Λ̌(v). There is
a choice of colours for the first vertex of B0 − {u, z0} to be coloured, since
it has at most two coloured neighbours at the time it is coloured. Thus we
can obtain two different colourings in this way, which agree on all vertices
of A0 − z0 but diverge thereafter, and at least one of these must work in
Step 3. This completes the discussion of Case 3.

Case 4. Cases 1–3 do not arise, and Λ̌ is not constant on K.

By Case 3, K is now 2-connected. Let u, v be adjacent vertices such that
Λ̌(u) 6= Λ̌(v). Note that K − u and K − v are connected. If there are no
virtual edges then we need only one vertex-colouring of K, which we can
construct by giving u a colour in Λ̌(u)\Λ̌(v) and then colouring all remaining
vertices, ending with v. So assume there is at least one virtual edge. Note
that K has no cut-edges, and so every edge belongs to a cycle, and a cycle
containing edge uv must contain another edge u′v′ such that Λ̌(u′) 6= Λ̌(v′);
thus by relabelling u′, v′ as u, v if necessary, we may assume that uv is not
the unique virtual edge in K. Let P :u0, . . . , ul be a shortest path in K
such that u0u1 is the edge uv and ul−1ul is a virtual edge different from uv.
Colour u0 with a colour in Λ̌(u0)\Λ̌(u1), then colour all the vertices of K−P
(for example, by extending P − u0 to a spanning tree of K − u0 and using
the same idea as in Case 1), and then colour ul, . . . , u1 in turn. When ul−1 is
coloured, there are at least two different possible colours for it, since there is
no real edge between ul−1 and ul and so these two vertices can be given the
same colour if necessary, and ul−2 is either uncoloured or (if l = 2) has been
given a colour not in Λ̌(ul−1); thus we can obtain two different colourings in
this way, which differ only on some or all of the vertices u1, . . . , ul−1. Note
that ul is adjacent to at most two of these vertices (ul−1 and possibly ul−2),
since otherwise P would not be a shortest path, and so there is an edge (in
fact, at least two edges) each of whose endvertices has the same colour in
both of these colourings. Thus at least one of these colourings must work in
Step 3.
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Case 5. Cases 1–4 do not arise, and K is not isomorphic to K5.

By Case 4, Λ̌ is now assumed to be constant on K. Following [7], the idea
is to find a path uvw of three vertices such that u and w are nonadjacent
and K − {u,w} is connected; to colour u and w with the same colour;
and then to colour all remaining vertices, keeping the graph induced by the
uncoloured vertices connected as usual, and ending with v, which can be
coloured because it has two neighbours with the same colour. If there are
no virtual edges in K, hence no inessential vertices in Dr, then one such
colouring suffices, and we have just shown how to construct it (assuming
that the path uvw can be found, which we prove below). So assume that
there is at least one virtual edge. In this case we will prove below that the
path uvw can be chosen in such a way that there is a virtual edge different
from both uv and vw. So let P : u1, . . . , ul be a shortest path in K −{u,w}
such that u1 is adjacent to both u and w and there is a virtual edge ulul+1

different from both u1u and u1w; then ul+1 /∈ {u1, . . . , ul}, but possibly
ul+1 ∈ {u,w} when l 6= 1. If l > 3 then u2 is not adjacent to both u and
w, since otherwise P would not be a shortest such path, and so u2 has a
neighbour z /∈ V (P ) ∪ {u,w}. But if l 6 2 then there is certainly a vertex
z of K such that z /∈ V (P ) ∪ {u,w}, since |V (K)| > 5. Either way, z has
at most three neighbours in P , since otherwise P would not be a shortest
path, and so there is an edge yz of K that has neither end in P .

Colour u and w with the same colour, then colour all remaining vertices
not in P (using the same idea as in Case 4), and then colour ul, . . . , u1 in
turn. When we come to colour ul, the endvertices of the edge yz have both
already been coloured, and there is a choice of at least two possible colours
for ul. (This is true even if l = 1, when u1 has two neighbours with the
same colour and can also be given the same colour as u2.) Thus we obtain
two different colourings, at least one of which must work in Step 3.

It remains to show how we can find the path uvw. Let pq be a virtual
edge if there is one, or any edge otherwise, and let x be any vertex of K
different from p, q. Let y and z be two nonadjacent neighbours of x, which
must exist since K is 4-regular and not K5, and suppose without loss of
generality that z /∈ {p, q}. If K − z is 2-connected, then K − {y, z} is
connected, and yxz will do for uvw. If however K − z is not 2-connected,
then let B1, B2 be two endblocks of K−z, with cutvertices z1, z2 respectively,
and note that z is adjacent to at least one vertex v1 ∈ B1−z1 and to at least
one vertex v2 ∈ B2−z2; then v1zv2 will do for uvw. In each case, K−{u,w}
is connected, and the edge pq (which is virtual if any edge is) is not equal
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to uv or vw, and so K can be coloured as described in the previous two
paragraphs.

Case 6. Cases 1–5 do not arise.

Then K ∼= K5 and Λ̌ is constant on K. If there is a virtual edge in K, then
colour the vertices of K with different colours except that the endvertices of
some virtual edge are given the same colour. In Dr, the inessential vertex
or vertices in this virtual edge can then be coloured in at least two different
ways, at least one of which will work in Step 3. So we may assume that
there are no virtual edges in K, and hence no inessential vertices in Dr.

Colour four of the vertices of K, leaving the fifth vertex, u, uncoloured.
This corresponds to colouring eight of the ten vertices of Dr. In Dr, u(1)

is adjacent to vertices with two different colours, say a and b, and u(2) is
adjacent to vertices with the other two colours, say c and d, where Λ(u(1)) =
Λ(u(2)) = Λ̌(u) = {a, b, c, d}. So colour u(1) with c and u(2) with a, then
colour the ten edges of Dr, and then colour the edges u(1)x(1) and u(2)x(2).
We can extend this colouring to the three internal elements of P (u) (and then
extend it to the other internal D-paths, each of which joins two vertices of
the same colour) unless u(1)x(1) has the same colour, a, as u(2), and u(2)x(2)

has the same colour, c, as u(1). Suppose this happens. Let the vertices of Dr

be u0, . . . , u9 in order, where u1 = u(1), and relabel x(1) as x1. Let u0, u1, u2

have colours a, c, b respectively. Note that a ∈ Λ(u1x1). If b /∈ Λ(u1x1) then
we could have avoided the problem altogether by colouring u(2) initially
with b instead of a; so we may assume that b ∈ Λ(u1x1). If we cannot
now avoid the problem by changing the colour of u1x1 to b, then u0u1 must
have colour b. If we cannot avoid the problem by changing the colour of
u1 to d, then u1u2 must have colour d. If we cannot avoid the problem by
changing the colour of u1x1 to anything other than a, then Λ(u1x1) must
equal {a, b, c, d}. If we cannot avoid the problem by changing the colour of
u1u2 and then colouring u1x1 with d, then Λ(u1u2) must equal {a′, b, c, d},
where a′ (which could equal a, but is evidently not equal to c) is the colour of
u2u3. But then we can avoid the problem by interchanging the colours of u1

and u1u2, colouring u1 with d and u1u2 with c. Now this colouring extends
to all elements of the D-path P (u), and of course it extends to all the other
D-paths as well since we have not changed the colours of any vertices of Dr

other than u1.

We have thus shown that, in all cases, Gmin can be totally Λ-coloured,
which contradicts the definition of Gmin and Λ. We have obtained this
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contradiction by assuming that mad(Gmin) = 21
2 and Gmin has the structure

described in the statement of Theorem 4, and so this contradiction completes
the proof of Theorem 2.
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