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Abstract

A dominating set S of a graph G is called efficient if |N [v]∩S| = 1
for every vertex v ∈ V (G). That is, a dominating set S is efficient
if and only if every vertex is dominated exactly once. In this paper,
we investigate efficient multiple domination. There are several types
of multiple domination defined in the literature: k-tuple domination,
{k}-domination, and k-domination. We investigate efficient versions
of the first two as well as a new type of multiple domination.

Keywords: efficient domination, multiple domination.

2000 Mathematics Subject Classification: 05C69.

1. Introduction

A vertex v in V (G) has open neighborhood N(v) in the graph G = (V,E)
consisting of the set of vertices adjacent to v, and the closed neighborhood
of v is N [v] = N(v)∪ {v}. Vertex v is said to dominate each vertex in N [v],
including itself, and S ⊆ V (G) is a dominating set if ∪s∈SN [s] = V (G),
that is, if every vertex in V (G) is dominated by at least one vertex in S.
A dominating set S of a graph G with the smallest cardinality is called
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a minimum dominating set and its size, the domination number, is denoted
by γ(G).

If every vertex is dominated exactly once by S ⊆ V (G), that is, for every
vertex w ∈ V (G) we have |N [w] ∩ S| = 1, then S is called a perfect code
in Biggs [5] or an efficient dominating set in Bange, Barkauskas, and Slater
[1, 2, 3, 4]. Most graphs do not have an efficient dominating set (for example,
the four-cycle), and Bange et al. [1, 2] introduced the following efficiency
measure for a graph G. The efficient domination number of a graph, denoted
F (G), is the maximum number of vertices that can be dominated by a set
S that dominates each vertex at most once. A graph G of order n = |V (G)|
has an efficient dominating set if and only if F (G) = n. For the tree T1

of order n = 5 in Figure 1, we have F (T1) = 4. Note that the cardinality
of S does not matter, so we can use S1 = {v3} or S2 = {v1, v4} to achieve
F (T1) = 4.
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Figure 1. Tree T1 with F (T1) = 4

A vertex v of degree deg v = |N(v)| dominates |N [v]| = 1 + deg v vertices.
Grinstead and Slater [12] defined the influence of a set of vertices S to be
I(S) =

∑
s∈S(1 + deg v), the total amount of domination being done by S.

Because S does not dominate any vertex more than once if and only if any
two vertices in S are at distance at least three (that is, S is a packing), we
have F (G) = max{I(S) : S is a packing}. On the other hand, if every vertex
must be dominated at least once, the redundance R(G) defined in [12] equals
the minimum possible amount of domination possible, R(G) = min{I(S) :
S is a dominating set}.

As introduced by Harary and Haynes [13], a k-tuple dominating set
D is a set D ⊆ V (G) for which |N [w] ∩ D| ≥ k for every w ∈ V (G).
Note that we must have the minimum degree δ(G) ≥ k − 1 for a k-tuple
dominating set to exist. The k-tuple domination number γ×k is the minimum
cardinality of a k-tuple dominating set. We define a graph G to be efficiently

k-tuple dominatable if it has a vertex set D with |N [w] ∩ D| = k for every
w ∈ V (G). The k-tuple efficient domination number is F1,k(G) = max{I(S) :
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|N [w] ∩ S| ≤ k for all w ∈ V (G)}, the maximum amount of domination
done by a set S that dominates no vertex more than k times, and the k-tuple
redundance number is R1,k(G) = min{I(D) : D is a k-tuple dominating set}.

For k = 2, efficient double-dominatable graphs have been studied by
Chellali, Khelladi, and Maffray [6]. A set S is a double dominating set if
|N [u] ∩ S| ≥ 2 for each u ∈ V (G). A graph G has an efficient double-
dominating set S if and only if for each u ∈ V (G) we have |N [u] ∩ S| = 2.
We define the efficient double-domination number F1,2(G) = max{I(S) :
|N [u] ∩ S| ≤ 2 for each u ∈ V (G)}, the maximum possible amount of
domination done by a set S that does not dominate any vertex more than
twice. Likewise, we define the 2-redundance number R1,2(G) = min{I(S) :
S is a double dominating set}.

One can consider the characteristic function fS associated with each
S ⊆ V (G), where fS(v) = 1 if v ∈ S and fS(v) = 0 if v ∈ V (G) − S. For
example, Farber [8] investigated the problem of determining when the lin-
ear programming formulation of the domination problem would provide an
integer solution. Let f : V (G) → [0, 1], then the weight of f is w(f) =
f(V (G)) =

∑
v∈V (G) f(v), and f is a fractional dominating function if

f(N [w]) =
∑

x∈N [w] f(x) ≥ 1 for every w ∈ V (G). The fractional domina-
tion number γf (G) is the minimum weight of a fractional dominating func-
tion. For another example (see [7]), a function g : V (G) → {0, 1, 2, . . . , k} is
called a {k}-dominating function if for every v ∈ V (G) we have g(N [v]) ≥ k.
The minimum weight of such a function is denoted by γ{k}(G). Note that
{k}-dominating functions dominate each vertex at least k times, while tak-
ing on integer values from 0 to k, as opposed to k-dominating functions,
which take only the values of 0 or 1. In k-domination, introduced by Fink
and Jacobson [9], only the vertices w ∈ V (G)−D must be dominated at least
k times, however, in this paper, we do not focus on this type of domination
and instead focus on all vertices being dominated k times.

Bange, Barkauskas, Host and Slater [4] and Goddard and Henning [10]
extended the study of dominating functions to functions with values in an
arbitrary subset Y of the real numbers R. In general, if f : V (G) → Y ⊆ R

then the weight of f is w(f) =
∑

v∈V (G) f(v), and f is called a Y -valued
dominating function if

∑
x∈N [w] f(x) ≥ 1 for every w ∈ V (G). As defined

by Bange, et al. [4], a dominating function f : V (G) → Y is an efficient
Y -valued dominating function if

∑
v∈N [w] f(v) = 1 for every w ∈ V (G).

As noted in Bange et al. [4], for the tree Tk in Figure 2 there is a unique
efficient dominating function, namely, f(v1) = f(v2) = . . . = f(vk) = 1,
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f(vk+3) = 0, f(vk+2) = 1 − k, and f(vk+1) = k. Letting Yt = {1 − t, 2 − t,
3−t, . . . , t−1, t}, note that Tk has an efficient Yk-valued dominating function
but not an efficient Yk−1-valued dominating function. In particular, the class
of efficiently Yk-valued dominatable graphs properly contains the class of
efficiently Yk−1-valued dominatable graphs. See [4] for examples of graphs
that are not efficiently R-valued dominatable.

vk+3
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v
2

v
1

vk

Figure 2. Efficiently Yk-valued dominatable tree Tk

Here we define a graph G to be efficiently Y -valued k-tuple dominatable if
there is a function f : V (G) → Y such that

∑
v∈N [w] f(v) = k for every

w ∈ V (G). The efficient Y -valued k-tuple domination number is FY,k(G) =
max{I(f)| f(N [w]) ≤ k for all w ∈ V (G), where f : V (G) → Y }, where
the influence of f is I(f) =

∑
v∈V (G)(1 + deg v) · f(v). Note that G is

efficiently Y -valued k-tuple dominatable if and only if FY,k(G) = k|V (G)|,
and we always have FY,k(G) ≤ k|V (G)|. Likewise, RY,k(G) = min{I(f) : f
is a Y -valued, k-tuple dominating function}, and RY,k(G) ≥ k|V (G)|.

In this paper, we introduce a new type of domination, (j, k)-domination.
There is a natural connection between k-tuple and {k}-domination (or {0, 1,
. . . , k}-valued k-tuple domination). If we require every vertex to be dom-
inated at least k times (that is, f(N [v]) ≥ k for all v ∈ V ), and let the
function f take on values in the set {1, 2, . . . , j} where 1 ≤ j ≤ k, then f is
a (j, k)-dominating function. The minimum weight of such a function is the
(j, k)-domination number, denoted by γj,k(G). If we let j = 1, then (1, k)-
domination is k-tuple domination, thus for any graph G, γ1,k(G) = γ×k(G).
If we let j = k, then (k, k)-domination is {k}-domination, thus for any
graph G, γk,k(G) = γ{k}(G). Ordinary domination can be obtained by
letting k = 1 (γ1,1(G) = γ(G)). As mentioned above, for (j, k) = (1, 2),
we have double domination and for (j, k) = (2, 2), we have {2}-domination.
We must take k ≥ 3 for new variations on the theme of multiple domination.
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Figure 3a-c depicts minimum (1, 3), (2, 3), and (3, 3)-dominating functions,
respectively, of the wheel graph on seven vertices, W7.
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Figure 3. γ1,3(W7) = 5 γ2,3(W7) = 4 γ3,3(W7) = 3

In this paper we also introduce the notion of efficiently {0, 1, . . . , j}-valued k-
tuple dominatable graphs. The efficient (j, k)-domination number, Fj,k(G) =
max{I(f)| f(N [w]) ≤ k for all w ∈ V (G), where f : V (G) → {0, 1, 2, . . . , j}}.
A graph G is efficiently (j, k)-dominatable if and only if Fj,k(G) = k ·
|V (G)| = k · n, and we always have Fj,k(G) ≤ k · n. Likewise, Rj,k(G) =
min{I(f) : f is a (j, k)-dominating function}, and Rj,k(G) ≥ k|V (G)|. Note,
that F3,3(W7) = 21 = 3 · 7 = R3,3(W7), thus the (3, 3)-dominating function
depicted in Figure 3c is efficient.

2. Observations

As indicated in Figure 4, the graph G3 has an efficient double dominating
set, F1,2(G3) = 2n, but it does not have an efficient dominating set. In fact,
F (G3) = F1,1(G3) = 14 < 15. Note that the star K1,t of order n = 1 + t
with t ≥ 2 has an efficient dominating set, but does not have an efficient
double dominating set. In fact, F1,2(K1,t) = t + 3 < 2n.

For r ≥ 1, the open r neighborhood of a vertex v ∈ V (G), Nr(v) is the
set of vertices in V (G) different from v at distance at most r from v ∈ V (G),
that is, Nr(v) = {u ∈ V (G) − v : d(u, v) ≤ r}.

Observation 1. If f : V (G) → {0, 1, . . . , k} is an efficient (k, k)-dominating

function, and for some vertex v, we have f(v) = k, then for every vertex

z ∈ N2(v), f(z) = 0.
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Figure 4. The unicyclic, bipartite graph G3 with an efficient double dominating set
and no efficient dominating set.

Generalizing results in [4, 16], we get the following obvious results. As usual,
δ(G) denotes the minimum degree of a vertex in G.

Observation 2. For Y ⊆ R, graph G has a (Y, k)-dominating function

f : V (G) → Y if and only if there is an x ∈ Y with x ≥ k/(1 + δ(G)).

Henceforth, we assume Y ∩ ( k
1+δ(G) ,∞) 6= ∅.

Proposition 3. If G is efficiently (j, k)-dominatable, then k ≤ j(1 + δ(G)).

Proposition 4. If Y1 ⊆ Y2 ⊆ R, then γY1,k(G) ≥ γY2,k(G), FY1,k(G) ≤
FY2,k(G) and RY1,k(G) ≥ RY2,k(G).

In particular, if G is efficiently (Y1, k)-dominatable, then G is efficiently
(Y2, k)-dominatable.

Corollary 5. For any graph G, we have Fj,k(G) ≤ Fj+1,k(G) for 1 ≤ j < k.

If 1 ≤ j < k and j(1 + δ(G)) ≥ k, then γj,k(G) ≥ γj+1,k(G) and Rj,k(G) ≥
γj+1,k(G).

In particular, if G is efficiently (j, k)-dominatable, (with j < k) then G is
efficiently (j + 1, k)-dominatable, and hence efficiently (k, k)-dominatable.

Proposition 6. For every graph G, t · Fj,k(G) ≤ Fjt,kt(G).

P roof. Let f : V (G) → {0, 1, 2, . . . , j} be an Fj,k(G)-function, and define
g : V (G) → {0, 1, 2, . . . , jt} by g(v) = t · f(v). Then for each w ∈ V (G),
we have

∑
x∈N [w] g(x) = t ·

∑
x∈N [w] f(x) ≤ tk, and Fjt,kt(G) ≥ w(g) =∑

v∈V (G) g(v) = t ·
∑

v∈V (G) f(v) = t · Fj,k(G).
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Corollary 7. If there exists an efficient dominating set S on a graph G,

then there exists an efficient (k, k)-dominating function.

P roof. Let fS be the characteristic function of the efficient dominating
set which has the value of 1 at any vertex in the set S and the value of 0
otherwise. Then the function g which assigns g(v) = k · fS(v) is an efficient
(k, k)-dominating function.

The graph G4 of order n = 20 has the efficient (2, 2)-dominating function as
indicated in Figure 5, so F2,2(G4) = 40 = 2n. However, F (G4) = F1,1(G4) =
19 < n, thus G4 does not have an efficient dominating set. Also F1,2(G4) =
37 < 2n, thus G4 does not have an efficient double dominating set.

Figure 5. The graph G4 has an efficient (2, 2)-dominating function and no efficient
dominating set or efficient double dominating set.

As with the example in Figure 5, the converse to Corollary 7 does not
hold in general. However, if the graph is a tree or union of trees, then the
converse to Corollary 7 does hold.

Theorem 8. If a forest T of order n has Fj,k(T ) = k · n using f : V (T ) →
{0, 1, . . . , j} for some j ≤ k, k ≥ 2, that is, T is efficiently (j, k)-dominatable,

then T has an efficient dominating set S where S ⊆ {z ∈ V (T ) | f(z) ≥ 1}.

P roof. Consider the cases where T is a tree of diameter at most three.
The theorem is easily seen to hold affirmatively for paths P1, P2, P3, and
P4, and for stars K1,t for t ≥ 3, and the double-stars Sa,b with 1 ≤ a ≤ b
and b ≥ 2 have Fk,k(Sa,b) < k · n = k(a + b + 2) for all k ≥ 1. We can prove
the theorem by induction on the order n of the forest T , and by the above
we can assume that each component of T has diameter at least four.

Select vertices u and y in the same component of T such that the dis-
tance d(u, y) is maximized, and let u, v,w, x, . . . y be the u − y path in T .
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Case 1. Assume f(u) = k. Then f(v) = 0, and if z ∈ N(v) − u, then
f(z) = 0 (that is, if z ∈ N2(u) then f(z) = 0). Let T ∗ = T − {u, v}, and
let f∗ : V (T ∗) → {0, 1, . . . , k} be the restriction of f to T ∗ (that is, f∗ =
f |T ∗), so f∗(z) = f(z) for all z ∈ V (T ∗). Because f∗ is an efficient (k, k)-
dominating function for T ∗, by induction T ∗ has an efficient dominating set
S∗ ⊆ {z ∈ V (T ∗) | f∗(z) ≥ 1}. In particular, S∗ ∩N(v) = ∅. Thus S∗ ∪ {u}
is an efficient dominating set for T with S∗ ∪ {u} ⊆ {z ∈ V (T ) | f(z) ≥ 1}.

Case 2. Assume f(u) = 0. Then f(v) = k, and if z ∈ N2(v) then
f(z) = 0. In particular, if z ∈ N [w] − v, then f(z) = 0. Consider the
forest T ∗ = T − N [v] and f∗ = f |T ∗ . Because f∗ is an efficient (j, k)-
dominating function for T ∗, by induction T ∗ has an efficient dominating set
S∗ ⊆ {z ∈ V (T ∗) | f∗(z) ≥ 1}. Now, S∗ ∩ N(w) = ∅, and S∗ ∪ {v} is an
efficient dominating set for T with S∗ ∪ {v} ⊆ {z ∈ V (T ) | f(z) ≥ 1}.

Case 3. Assume 1 ≤ f(u) = h ≤ k − 1. In this case we consider T
to be rooted at y. Because f(N [u]) = f(N [v]) = k we have f(v) = k − h
and f(w) = 0. Also, we must have deg (v) = 2, that is, u is the only
child of v. Let the children of w be v = v1, . . . , vp. It is easy to see that
each vi must have exactly one child, say ui (with u1 = u, as in Figure 6).

v
2

v=v
1

vp

up

w x

y

2
u=u

1
u

Figure 6. A rooted tree

Let f(ui) = hi (and note that hi 6= 0 or else f(vi) = k and f(N [w]) ≥ 2k −
h > k). We have f(vi) = k−hi, for 1 ≤ i ≤ p, and f(x) = k−

∑p
i=1 f(vi). Let

T ∗ = T − {w, u1, . . . , up, v1, . . . , vp}, and again let f∗ = f |T ∗ . Because f∗ is
an efficient (j, k)-dominating function for T ∗, we have an efficient dominating
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set S∗ ⊆ {z ∈ V (T ∗) | f∗(z) ≥ 1}. If x ∈ S∗, let S = S∗ ∪ {u1, . . . , up},
and if x /∈ S∗ then let S = S∗ ∪ {v1, u2, . . . , up}. Then S is an efficient
dominating set for T with S ⊆ {z ∈ V (T ) | f(z) ≥ 1}.

Corollary 9. Every efficiently (j, k)-dominatable tree has an efficient dom-

inating set. If there exists one t ≥ 1 such that the tree T is (t, t)-efficiently

dominatable, then T is efficiently (k, k)-dominatable for every k ≥ 1.

3. Regular graphs

For the 7-regular graph J in Figure 7, note that {v1, v2, v3, v4} = S is an
efficient double dominating set and that V (G) − S is an efficient 6-tuple
dominating set. This graph J has diameter two, so F1,1(J) = 8 < 16, and
J is not efficiently dominatable. It follows from the next theorem, that J is
not efficiently 7-tuple dominatable.
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Figure 7. The 7-regular Jesse graph

Theorem 10. For an r-regular graph G and 1 ≤ k ≤ r, G is efficiently

(1, k)-dominatable (that is, F1,k(G) = kn) if and only if there exists a set

S ⊆ V (G) such that the induced subgraph 〈S〉 is regular of degree k − 1
and the induced subgraph 〈V (G) − S〉 is regular of degree r − k. Also, an r-
regular graph G is efficiently (1, k)-dominatable if and only if G is efficiently

(1, r − k + 1)-dominatable.
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P roof. Let S be an efficient (1, k)-dominating set. Then 〈S〉 is regular of
degree k − 1, and each vertex in V (G) − S is adjacent to exactly k vertices
in S. Thus, 〈V (G) − S〉 is regular of degree r − k, and each vertex in S is
adjacent to exactly r−(k−1) vertices in V (G)−S. It follows that V (G)−S
is an efficient (1, r − k + 1)-dominating set.

4. Minimum Efficient (j, k)-Dominating Functions

Theorem 11 (Bange, Barkauskas, Slater [3]). If G has an efficient dom-

inating set S ⊆ V , then |S| = γ(G). In particular, all efficient dominating

sets have the same cardinality.

We first generalize Theorem 11 to vertex sets S that dominate every vertex
exactly k times, graphs with F1,k(G) = k · n.

Theorem 12. If G has an efficient k-tuple dominating set S ⊆ V , then

|S| = γ1,k(G). In particular, all efficient k-tuple dominating sets have the

same cardinality.

P roof. Let S ⊆ V (G) be an efficient k-tuple dominating set. By definition,
we have γ1,k(G) ≤ |S|. Let D ⊆ V (G) be a minimum cardinality k-tuple
dominating set (a γ1,k(G)-set). Each v ∈ S has |N(v)∩S| = k−1, and each
v ∈ V (G)−S has |N(v)∩S| = k. In particular, each v ∈ D− S has exactly

k edges connecting it to S.

Let x ∈ S − D, and let d1(x) = |N(x) ∩ (S − D)| and d2(x) = |N(x) ∩
(S ∩ D)|. Then d1(x) + d2(x) = k − 1. Because |N(x) ∩ D| ≥ k we have
|N(x)∩(D−S)| ≥ 1+d1(x). For each y ∈ D∩S let d2(y) = |N(y)∩(S−D)|,
and then we have |N(y)∩(D−S)| ≥ d2(y). Thus, letting (D−S, S) be the set
of edges between D−S and S, we have |(D−S, S)| ≥

∑
x∈S−D(1+d1(x))+∑

y∈S∩D d2(y) =
∑

x∈S−D(1+d1(x))+
∑

x∈S∩D d2(x) =
∑

x∈S−D(1+d1(x)+
d2(x)) = k·|S−D|. Now each v ∈ D−S has |N(v)∩S| = k and |(D−S, S)| ≥
k · |S − D| implies that |D − S| ≥ |S − D|. Thus γj,k(G) = |D| ≥ |S|.
Consequently, |S| = γ1,k(G).

Using the above theorem, we can generalize to graphs G which are efficiently
(j, k)-dominatable, that is, graphs G with Fj,k(G) = k · n.
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Theorem 13. If G has an efficient (j, k)-dominating function f : V (G) →
{0, 1, . . . , j}, with f(N [v]) = k for all v ∈ V (G), so that Fj,k = k · n, then

the weight of f satisfies w(f) = γj,k(G). In particular, all efficient (j, k)-
dominating functions have the same weight.

P roof. Let f be an efficient (j, k)-dominating function and let g : V (G) →
{0, 1, . . . , j} be a γj,k(G)-function, so that g(N [v]) ≥ k for all v ∈ V (G) and
w(g) = γj,k(G).

Let R be the set of vertices in V (G) with nonzero weight under the
function f , R = {v ∈ V (G) : f(v) ≥ 1} and B = {x ∈ V (G) : g(x) ≥ 1},
and let W = V (G)−(R∪B)). We construct a graph H on w(f)+w(g)+|W |
vertices as follows. Replace each v ∈ R−B by a clique on f(v) “red” vertices;
replace each x ∈ B − R by a clique on g(x) “blue” vertices; replace each
y ∈ R ∩ B by a clique on f(y) + g(y) vertices with f(y) of them considered
to be “red” and g(y) to be “blue”; and replace each w ∈ W by one vertex
in H. So |V (H)| = w(f)+ w(g)+ |W |. Thus for each vertex z in G we have
a corresponding clique Kz in H with |Kz| = f(z) if z ∈ R − B, |Kz| = g(z)
if z ∈ B − R, |Kz| = f(z) + g(z) if z ∈ R ∩ B, and |Kz | = 1 if z ∈ W .

For each edge {a, b} in E(G), we form the join Ka+Kb in H, that is, ev-
ery vertex in Ka is made adjacent to every vertex in Kb. For each vertex a∗ in
Ka, observe that in H we have NH [a∗] containing exactly

∑
u∈NG[a] f(u) = k

red vertices and NH [a∗] containing exactly
∑

u∈NG[a] g(u) ≥ k blue vertices.
That is, the set R∗ of red vertices in H is an efficient k-tuple dominating
set. Because the set B∗ of blue vertices in H is a k-tuple dominating set
for H, by Theorem 12, we have w(f) = |R∗| = γ1,k(H) ≤ |B∗| = w(g).
In G, the function f is a k-tuple dominating function, and so we have,
w(g) = γj,k(G) ≤ w(f). Consequently, w(f) = w(g) = γj,k(G).

5. Fractional Connections

In Grinstead and Slater [12] and Rubalcaba and Walsh [14], efficient frac-
tional dominating functions were investigated. A fractional dominating
function f : V → [0, 1] is efficient if f(N [v]) =

∑
u∈N [v] f(u) = 1, for

every v ∈ V . Domke, Hedetniemi, Laskar, and Fricke in [7] showed that
the fractional domination number can be defined as the following limit:

limk→∞
γ{k}(G)

k
= γf (G).

Moreover, since the fractional domination number is, in fact, a rational
(optimal solutions to linear programs with integer coefficients are rational
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numbers), there exists an integer k so that
γ{k}(G)

k
=

γk,k(G)
k

= γf (G). For
example, for C5, this integer is k = 3.

In the following, x = [x(v1), x(v2), . . . , x(vn)]t is the column vector rep-
resentation of the function x : V (G) → [0, 1]. The closed neighborhood
matrix, denoted by N , is N = A + I where A is the adjacency matrix and
I is the n × n identity matrix. A graph G has an efficient fractional domi-
nating function if and only if Nx = 1 has a solution where each xi in [0, 1].
As shown in Bange et al. [4], if a non-negative solution to Nx = 1 exists,
then it is either unique or there are infinitely many solutions (depending on
whether or not N is invertible).

Theorem 14. A graph G has an efficient fractional dominating function

if and only if there exist positive integers j, k for which G has an efficient

(j, k)-dominating function. Furthermore, the weights of the efficient frac-

tional dominating function can be expressed with common denominator k
and greatest numerator at most j.

P roof. Suppose g : V (G) → {0, . . . , j} is an efficient (j, k)-dominating

function of G. Then f(v) = g(v)
k

satisfies f(N [v]) = 1 for all v ∈ V (G).
Thus, f is a fractional efficient dominating function of G. Furthermore, each
of the weights f(v) is a fraction with denominator k and each numerator
is less than or equal to j. Let f : V (G) → [0, 1] be an efficient fractional
dominating function of G, whose weights have (common) denominator k.
Let g : V (G) → {0, . . . , k} be defined as g(v) = k · f(v) for each v ∈ V (G).
Since g(N [v]) = k for every v ∈ V (G), g is an efficient (j, k)-dominating
function.

Grinstead and Slater in [12] give a formula for finding an efficient fractional
dominating function of any complete k-partite graph which gives constant
weights on each partite set. For the complete 3-partite graph K4,6,9, assign
the weights 40

319 , 24
319 , 15

319 to each vertex in the partite set of sizes 4, 6, 9,
respectively, to obtain an efficient fractional dominating function. Thus,
K4,6,9 has an efficient (40, 319)-dominating function by assigning the weights
of 40, 24, 15 to each vertex in the partite sets of sizes 4, 6, 9, respectively.
Since the efficient fractional dominating function is unique, the only efficient
(j, k)-dominating functions for K4,6,9 are with j ≥ 40t and k = 319t (for t
any positive integer). Thus, K4,6,9 has no efficient dominating set since
k = 1 is not an integral multiple of k = 319.



Efficient (j, k)-Domination 421

As another example, the Herschel graph depicted in Figure 8(a) and the 2×4
grid graph depicted in Figure 8(b) both have efficient fractional dominating
functions (with each weight as depicted, divided by 5). Thus, they both have
efficient (2t, 5t)-dominating functions (for every positive integer t). Since for
each graph, the efficient fractional dominating functions are unique, neither
has an efficient dominating set.

2

1

1

1

11

1 1

11

(a) (b)

1 1

1 1

2

2

2 2

1

Figure 8. The Herschel graph (a) and the 2 × 4 grid graph (b).

Determining whether or not a graph has an efficient dominating set is an
NP-complete problem ([2]). However, if a unique solution to Nx = 1 exists,
then we can determine whether or not an efficient dominating set exists,
merely by inspecting the unique efficient fractional dominating function f .
If any of the weights satisfy 0 < fi = f(vi) < 1, then no efficient dominating
set exists. Note that this check can be done in polynomial time.

(b) (c)(a)

Figure 9. Graphs with no efficient (j, k)-dominating functions (for any choice of j
and k) and thus no efficient dominating set.
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In Rubalcaba and Walsh [14], a graph was defined to be a member of Class
null (denoted as Class N ) if no minimum fractional dominating function was
a maximum fractional closed neighborhood packing function. Consequently
any graph in Class N would have no efficient fractional dominating function
(see Figure 9). Thus, from Theorem 14, any graph in Class N would have no
efficient (j, k)-dominating function, for any choice of j and k. In [14], several
infinite families of graphs were found to be Class N , such as incomplete or
complete k-suns and generalized Hajós graphs.

We conclude with the following open questions.

• If for a graph G, there exists an efficient (k, k)-dominating function for
all k ≥ 2, then does G have an efficient dominating set?

• As shown in Figure 4, the graph G3 is efficiently (1, 2)-dominatable.
However, it is not efficiently (1, 1)-dominatable, nor is it efficiently (1, k)-
dominatable for k ≥ 3. That is, G3 is efficiently (1, k)-dominatable if and
only if k ∈ {2}. Note that the cycle C3k is efficiently (1, k)-dominatable
if and only if k ∈ {1, 2, 3}. For which subsets A of the positive integers
do there exist graphs GA so that GA is efficiently (1, k)-dominatable if
and only if k ∈ A?
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