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Abstract

In this paper, we introduce the concept of monochromatic kernel-
perfect digraph, and we prove the following two results:

(1) If D is a digraph without monochromatic directed cycles, then
D and each αv, v ∈ V (D) are monochromatic kernel-perfect digraphs if
and only if the composition over D of (αv)v∈V (D) is a monochromatic
kernel-perfect digraph.

(2) D is a monochromatic kernel-perfect digraph if and only if for
any B ⊆ V (D), the duplication of D over B, DB , is a monochromatic
kernel-perfect digraph.
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1. Introduction

For general concepts we refer the reader to [1]. Let D be a digraph, V (D)
and A(D) will denote the sets of vertices and arcs of D respectively. Let
S1, S2 ⊆ V (D), an arc (u1, u2) of D will be called an S1S2-arc whenever
u1 ∈ S1 and u2 ∈ S2; D[S1] will denote the subdigraph of D induced by
S1. A set I ⊆ V (D) is independent if A(D[I]) = ∅. A kernel N of D is an
independent set of vertices such that for each z ∈ (V (D) −N) there exists
a zN -arc in D. A digraph D is called a kernel-perfect digraph when every
induced subdigraph of D has a kernel.

A digraph D is said to be an m-coloured digraph, if its arcs are coloured
with m colours without loss of generality {1, 2, . . . ,m}. A directed path (or
a directed cycle) is called monochromatic if all of its arcs are coloured alike.

A set N ⊆ V (D) of vertices of D is said to be a kernel by monochromatic
paths of the m-coloured digraph D, if it satisfies the two following properties,
(1) N is independent by monochromatic paths; i.e., for any two different
vertices x, y ∈ N , there is no monochromatic directed path between them,
and (2) N is absorbent by monochromatic paths; i.e., for each u ∈ (V (D)−
N) there exists a uv-monochromatic directed path, for some v ∈ N .

In this paper, we prove that if D is a digraph without monochromatic
directed cycles, then (i) D has a kernel by monochromatic paths if and only if
any composition over D of a family of digraphs (αv)v∈V (D) each one of them
having a kernel by monochromatic paths, has a kernel by monochromatic
paths, and (ii) D has a kernel by monochromatic paths if and only if for any
B ⊆ V (D) the duplication of D over B, DB, has a kernel by monochromatic
paths.

As a consequence we obtain the two results mentioned in the abstract.
Clearly, D has a kernel if and only if the m-coloured digraph D, in which

every two different arcs have different colours, has a kernel by monochro-
matic paths. Sufficient conditions for the existence of a kernel in a digraph
have been investigated by several authors, namely Von Neumann and Mor-
genstern [16], Richardson [13], Duchet and Meyniel [5] and Galeana-Sánchez
and Neumann-Lara [6]. The concept of a kernel is very useful in applications,
and clearly, the concept of a kernel by monochromatic paths generalizes that
of kernel. Sufficient conditions for the existence of kernels by monochromatic
paths in m-coloured digraphs have also been investigated by several authors;
see for example [7, 9, 10, 14, 15, 18].
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Definition 1.1. Let D be an arc coloured digraph and α = (αv)v∈V (D)

a family of pairwise vertex disjoint arc coloured digraphs. We define the
composition of α over D, denoted σ(D,α), by the following conditions:

(i) V (σ(D,α)) =
⋃

v∈V (D)

V (αv).

(ii) A(σ(D,α)) =
( ⋃

v∈V (D)

A(αv)
)
∪ {(x, y) coloured i |x ∈ αu, y ∈ αv,

(u, v) ∈ F (D) coloured i}.

The composition of a family of graphs β = (Gv)v∈V (G) over a graph G
was studied in [3] and its definition was extended to digraphs in [17]. The
existence of kernels in the composition σ(D,α) of a family of digraphs α =
(αv)v∈V (D) over a digraph D was studied in [8], and the result was used
to prove the existence of kernel-perfect digraphs with an arbitrarily large
dichromatic number whose underlying graphs have no triangles.

In this paper, we study the existence of kernels by monchromatic paths
in the composition σ(D,α) of a family of arc coloured digraphs α = (αv)v∈V (D)

over an arc coloured digraph D.
The duplication of a vertex of a graph was introduced in [4], and [11]

gives the definition of the duplication of a subset of vertices of a graph as a
generalization of the duplication of a vertex of a graph. This definition can
be applied to arc coloured digraphs as follows:

Definition 1.2. Let D be an arc coloured digraph, B a proper subset of
V (D) and let B′D a digraph isomorphic to D[B] with V (B′D)∩V (D) = ∅. A
vertex belonging to B′D and corresponding to a vertex x ∈ B will be denoted
by x′. The duplication of D over B is the arc coloured digraph denoted DB

and defined as follows:

V (DB) = V (D) ∪ V (B′D)

and
A(DB) = A(D) ∪A(B′D) ∪A0 ∪A

in which A0 = {(x′, y) coloured i |x′ ∈ V (B′D), y ∈ V (D) and (x, y) ∈ A(D)
coloured i}. A1 = {(y, x′) coloured i | y ∈ V (D), x′ ∈ V (B′D) and (y, x) ∈
A(D) coloured i}.

We will denote B′ = V (B′D). A vertex x′ ∈ B′ (resp., a subset S′ ⊆ B′) we
will call the copy of the vertex x ∈ B (resp., the copy of the subset S ⊆ B).
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The vertex x (resp., the subset S) will be named the original of the vertex
x′ (resp., of the subset S′).

We will denote by Proy the function Proy : V (σ(D,α)) → V (D) such
that Proy(x) = v if and only if x ∈ V (αv).

The existence of kernels in the duplication of a digraph D has been
studied in [2]. In this paper, we study the existence of kernels by monochro-
matic paths in the duplication of an arc coloured digraph D over a proper
subset of vertices of V (D).

The composition and the duplication are two operations in digraphs
which have been considerated several times, see for example [3, 12, 17], and
they constitute a powerful tool in the construction of many examples and
counterexamples in digraphs.

Also we consider an extension of the concept of kernel perfectness of a
digraph and obtain a large variety of monochromatic kernel-perfect digraphs.

2. Kernels by Monochromatic Paths in the
Composition over D, and in the

Duplication of D over B

We start this section with a lemma which will be useful in the proof of
Theorem 2.1. Its proof is easy and will be omitted.

Lemma 2.1. Let D be a digraph and α = (αv)v∈V (D) a family of pairwise
vertex disjoint digraphs. If T = (x0, x1, . . . , xn) is a directed path in σ(D,α)
such that {x0, xn} ⊆ V (αv) for some v ∈ V (D), then Proy(T ) is a join of
directed cycles of D or a single vertex of D.

Theorem 2.1. Let D be an arc coloured digraph which has no monochro-
matic directed cycle and α = (αv)v∈V (D) a family of arc coloured pairwise
vertex disjoint digraphs. A set N∗ ⊆ V (σ(D,α)) is a kernel by monochro-
matic paths of σ(D,α) if and only if there exists a kernel by monochromatic
paths of D, say N ⊆ V (D), such that N∗ =

⋃
v∈N Nv, in which Nv is a

kernel by monochromatic paths of αv.

Proof. Let N ⊆ V (D) be a kernel by monochromatic paths of D and
Nv a kernel by monochromatic paths of αv, v ∈ N . We will prove that
N∗ =

⋃
v∈N Nv is a kernel by monochromatic paths of σ(D,α).
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(a) N∗ is absorbent by monochromatic paths.
Let z ∈ (V (σ(D,α))−N∗). There exists v0 ∈ V (D) such that z ∈ V (αv0

).
When v0 ∈ N , we have Nv0

⊆ N∗, in which Nv0
is a kernel by monochro-

matic paths of αv0
; and there exists a zNv0

-monochromatic directed path
(as z ∈ (V (α0)−Nv0

)).
When v0 /∈ N , we have v0 ∈ (V (D) − N) and thus, there exists a

monochromatic directed path contained in D, say T = (v0, v1, . . . , vn−1, u)
with u ∈ N (because N is a kernel by monochromatic paths of D); since z ∈
V (α0); taking zi ∈ V (αi) and zu ∈ Nu, we have T ′ = (z, z1, z2, . . . , zn−1, zu);
a zzu-monochromatic directed path in α(D,σ) with zu ∈ Nu ⊆ N∗.

(b) N∗ is independent by monochromatic paths.
We proceed by contradiction, suppose that there exist x0, xn ∈ N∗ and a
x0xn-monochromatic directed path, say T = (x0, x1, . . . , xn) contained in
σ(D,α). We consider two possible cases:

Case (b.1). {x0, xn} ⊆ V (αv), for some v ∈ V (D).
When T ⊆ αv, we have that T is an x0xn-monochromatic directed path
contained in αv, with {x0, xn} ⊆ Nv, a contradiction.

When T 6⊆ αv, we have from Lemma 2.1 that Proy(T ) is a join of
monochromatic directed cycles contained in D, contradicting our hypothesis
on D.

Case (b.2). x0 ∈ αv and xn ∈ αu with u 6= v.
In this case, it follows from the definition of N∗ that x0 ∈ Nv and xn ∈ Nu

with {u, v} ⊆ N . Since T is monochromatic, We have that Proy(T ) contains
a vu-monochromatic path, which is contained in D, contradicting that N is
a kernel by monochromatic paths of D. We conclude that N∗ is a kernel by
monochromatic paths.

Now let N∗ be a kernel by monochromatic paths of σ(D,α). We will
prove that N = {v ∈ V (D) |N∗ ∩ αv 6= ∅} is a kernel by monochromatic
paths of D and N∗∩V (αv) = Nv is a kernel by monochromatic paths of αv,
for each v ∈ N .

N is absorbent by monochromatic paths.
Let v ∈ (V (D)−N) and z0 ∈ V (αv); since v /∈ N we have that z0 /∈ N∗;

thus there exists a monochromatic directed path T = (z0, . . . , zn) with zn ∈
N∗; now, zn ∈ V (αu) for some u ∈ V (D); moreover, from the definition of
N we have u ∈ N and then Proy(T ) contains a vu-monochromatic directed
path with u ∈ N .
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N is independent by monochromatic paths.
We proceed by contradiction, suppose that there exist v0, vn ∈ N and a v0vn-
monochromatic directed path T = (v0, v1, . . . , vn) contained in D. Since
v0, vn ∈ N there exist z0 ∈ V (αv0) ∩N∗ and zn ∈ V (αvn) ∩N∗; now taking
any vertex zi ∈ V (αvi) for each 1 ≤ i ≤ n − 1; we have from the definition
of σ(D,α) that (z0, z1, . . . , zn) is a z0zn-monochromatic directed path with
{z0, zn} ⊆ N∗, a contradiction.

Now; let v ∈ V (D) be such that N∗ ∩ V (αv) 6= ∅. We will prove that
Nv = N∗ ∩ V (αv) is a kernel by monochromatic paths of αv.

Nv is independent by monochromatic paths.
We proceed by contradiction. Suppose that there exist u, x ∈ Nv, u 6= x,

and a monochromatic directed path T between them, with T ⊆ αv; clearly,
T ⊆ σ(D,α) and {u, x} ⊆ N∗, a contradiction (as N∗ is independent by
monochromatic paths in σ(D,α)).

N is absorbent by monochromatic paths.
Let u ∈ (V (αv) − N) clearly u ∈ (V (σ(D,α)) − N∗); thus there exists

z ∈ N∗ and a uz-monochromatic directed path T ⊆ σ(D,α). Let T = (u =
u0, u1, . . . , un = z), we will prove that T ⊆ αv. When un = z ∈ V (αv);
it follows from Lemma 2.1 that Proy(T ) is a single vertex i.e., T ⊆ αv;
otherwise D contains a monochromatic directed cycle, contradicting our
hypothesis on D. When un /∈ V (αv); we have un ∈ αw for some w ∈ V (D)
and w ∈ N∗. Now take x ∈ N∗v (recall N∗ ∩ αv 6= ∅); it follows from
the definition of α(D,α) that (x, u1, u2, . . . , un = z) is a xz-monochromatic
directed path in σ(D,α) with x 6= z, x, z ∈ N∗, a contradiction.

Lemma 2.2. Let D be an arc coloured digraph, B ⊂ V (D); DB the du-
plication of D over B; and ψ : D[B] → B′D the isomorphism defined by
the duplication (i.e., ψ(x) = x′ for any x ∈ V (D[B]); and denote by φ the
function defined as follows: φ : D → DB −D[B]

φ(x) =

{
x if x /∈ B,
φ(x) = x′ if x ∈ B .

Then φ is an isomorphism such that (x, y) is coloured in i if and only if
(φ(x), φ(y)) is coloured in i; in particular T ⊆ D is a monochromatic di-
rected path if and only if φ(T ) ⊆ DB − D[B] is a monochromatic directed
path.

This Lemma is a direct consequence of the definition of φ and the definition
of the duplication of D over B.
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Theorem 2.2. Let D be an arc coloured digraph which has no monochro-
matic directed cycles; B ⊂ V (D) and DB the duplication of D over B.

D has a kernel by monochromatic paths if and only if DB has a kernel
by monochromatic paths.

Proof. Let D,B and DB be as in the hypothesis and suppose that D has
a kernel by monochromatic paths, say N .

We consider two possible cases:

Case 1. N ∩B = ∅.
In this case, we will prove that N is a kernel by monochromatic paths of DB.

N is independent by monochromatic paths in DB.
Let x, y ∈ N ; x 6= y and assume for a contradiction that there exists an
xy-monochromatic directed path T = (x = x0, x1, . . . , xn = y) contained
in DB.

When V (T ) ∩ B = ∅, we have T ⊆ DB − D[B], and from Lemma 2.1
φ−1(T ) is an xy-monochromatic directed path contained in D, contradicting
that N is independent by monochromatic paths. When V (T ) ∩ B 6= ∅, we
denote I = V (T ) ∩ B; say I = {xi1 , xi2 , . . . , xik}, i1 < i2 < · · · < ik, we
also denote by T (I) = (x0, . . . , xi1−1, x

′
i1
, xi1+1, . . . , xi2−1, x

′
i2
, . . . , xn = y)

(the succesion obtained from T by substituting xij , for x′ij in T , for each
j ∈ {1, . . . , k}). It follows from the definition of DB that T (I) is a monochro-
matic directed path contained in DB−D[B]; and from Lemma 2.2 φ−1(T (I))
is an xy-monochromatic directed path contained in D, a contradiction.

N is absorbent by monochromatic paths in DB.
Let z ∈ (V (DB)−N). If z /∈ B′D, then z ∈ (V (D)−N) and there exists

a zN -monochromatic directed path, say T , with T ⊆ D ⊆ DB.
If z ∈ V (B′D), then there exists y ∈ B such that z = y′ ∈ V (B′D);

we have y /∈N because N ∩ B = ∅; thus there exists a yN -monochromatic
directed path, say T = (y, x1, . . . , xn) and then from definition of DB we
have that T ′ = (y′, x1, . . . , xn) is a zN -monochromatic directed path in DB.

Case 2. N ∩B 6= ∅.
Let Z = N ∩B, and denote by Z ′ = {z′ ∈ B′D | z ∈ Z}.

We will prove that N∗ = N ∪ Z ′ is a kernel by monochromatic paths
of DB.

N∗ is independent by monochromatic paths.
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Let x, y ∈ N∗, x 6= y, and assume for a contradiction that there exists an
xy-monochromatic directed path T = (x = x0, x1, . . . , xn = y) contained in
DB. Here we consider several possible cases:

Case 2.a. x, y ∈ N .
Let I ′ = V (T ) ∩ V (B′D) = {xi1 , xi2 , . . . , xik} and denote by yij the original
of xij (i.e., yij = ψ−1(xij ). Now let T ′ be the succession obtained from T
by substituting each xij for yij . It follows from the definition of ψ and from
the definition of DB that T ′ contains an xy-monochromatic directed path
contained in D, with x, y ∈ N , a contradiction.

Case 2.b. x ∈ N , y ∈ Z ′ and x /∈B. In this case, we proceed as in Case
2.a to get a contradiction.

Case 2.c. x ∈ N ∩B, y ∈ Z ′.
When x is the original vertex of y, taking the succession T ′ defined in Case
2.a we have that T ′ contains a monochromatic directed cycle, contradicting
our hypothesis on D; as T ′ ⊆ D.

When x is not the original vertex of y; taking again the succession T ′

defined in Case 2.a, we have that T ′ contains an xz-monochromatic directed
path, in which z is the original vertex of y and x, z ∈ N with x 6= z,
contradicting that N is independent by monochromatic paths.

Case 2.d. x, y ∈ Z ′.
Let x (resp., y) be the original vertex of x (resp., y); clearly, in this case T ′

(defined in Case 2.a) contains an xy-monochromatic directed path which is
contained in D; with x 6= y, x, y ∈ N , a contradiction. So, we conclude that
N∗ is independent by monochromatic paths.

Now we prove that N∗ is absorbent by monochromatic paths.
Let z ∈ (V (DB) − N∗). When z ∈ B′, we have z = y′ in which

y ∈ B is the original vertex of z. Since N is a kernel by monochromatic
paths of D; there exists a yN -monochromatic directed path in D, say, T =
(y = x0, x1, . . . , xn); thus T ′ = (y′ = z, x1, . . . , xn) is a zN∗-monochromatic
directed path contained in DB. When z /∈ B′, we have z ∈ (V (D) − N)
and there exists a zN -monochromatic directed path contained in D; say, T .
Clearly, T is a zN∗-monochromatic directed path contained in DB.

We conclude that N∗ is a kernel by monochromatic paths of DB. Now
suppose that DB has a kernel by monochromatic paths and let N∗ be a
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kernel by monochromatic paths of DB. We will prove that D has a kernel
by monochromatic paths.

Let Z be such that Z ′ = N∗∩V (B′D) in which Z ′ is defined by the process
introduced in the construction of B′D, when Z ′ = ∅ we define Z = ∅. Denote
by N = (N∗ − Z ′) ∪ Z. We will show that N is a kernel by monochromatic
paths of D.

N is independent by monochromatic paths in D.
Assume by contradiction that there exist x, y ∈ N ; x 6= y; and an xy-
monochromatic directed path T = (x = x0, x1, . . . , xn = y) contained in D.

Let x and y be defined as follows: x = x if x ∈ (N∗ − Z ′) and x is the
copy of x if x ∈ Z, y = y if y ∈ (N∗ − Z∗) and y is the copy of y if y ∈ Z.
Clearly, T ′ = (x, x1, . . . , xn−1, y) is a monochromatic directed path in DB

with x 6= y and x, y ∈ N∗, a contradiction.
N is absorbent by monochromatic paths in D.
Let z ∈ (V (D) − N), then from the definition of N , we have z ∈

(V (DB) − N), thus there exists a zN∗-monochromatic directed path, say
T = (z = x0, x1, . . . , xn) contained in DB. Let {xi1 , xi2 , . . . , xik} = V (T ) ∩
V (B′D); yij the original vertex of xij and T ′ the succession obtained from T
by substituting xij for yij for each 1 ≤ j ≤ k in T . Clearly, T ′ contains a
zN -monochromatic directed path, and T ′ ⊆ D.

We conclude that N is absorbent by monochromatic paths.

3. Monochromatic Kernel Perfectness of
Composition and Duplication

The following definition is a generalization of the concept of kernel perfect-
ness of a digraph.

Definition 3.1. Let D be an arc coloured digraph, D is said to be a
monochromatic kernel perfect digraph whenever for every nonempty sub-
set B of vertices of D, the digraph D[B] has a kernel by monochromatic
paths.

Theorem 3.1. Let D be an arc coloured digraph which has no monochro-
matic directed cycle and α = (αv)v∈V (D) a family in which the αv are mu-
tually disjoint arc coloured digraphs.

D and each αv, v ∈ V (D) are monochromatic kernel perfect digraphs if
and only if σ(D,α) is a monochromatic kernel perfect digraph.
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Proof. Theorem 3.1 follows directly from Theorem 2.1 and the two fol-
lowing assertions: (1) The disjoint union of monochromatic kernel perfect
digraphs is also a monochromatic kernel perfect digraph. (2) Every con-
nected induced subdigraph of σ(D,α) has the form σ(D′, α′) for a suitable
D′ and α′ = (α′v)v∈V (D) (actually D′ is an induced subdigraph of D and α′v
is an induced subdigraph of αv for each v ∈ V (D′)).

Theorem 3.2. Let D be an arc coloured digraph which has no monochro-
matic directed cycle, B ⊂ V (D) and DB the duplication of D over B.
Then D is a monochromatic kernel perfect digraph if and only if DB is
a monochromatic kernel perfect digraph.

Proof. Clearly, an arc coloured digraph D is a monochromatic kernel per-
fect digraph if and only if each induced subdigraph of D is a monochromatic
kernel perfect digraph. Thus if DB is a monochromatic kernel perfect di-
graph, then D is a monochromatic kernel perfect digraph.

Now suppose that D is a monochromatic kernel perfect digraph and let
A ⊆ V (DB). We will prove that DB[A] has a kernel by monochromatic
paths. Here we consider two possible cases:

Case 1. A ∩ V (B′D) = ∅.
In this case, A ⊆ V (DB − V (B′D)) and DB[A] ∼= D[A] and since D[A] has
a kernel by monochromatic paths; it follows that DB[A] has a kernel by
monochromatic paths.

Case 2. A ∩ V (B′D) 6= ∅.
Let C ′ = {x′ ∈ V (DB) |x′ ∈ A∩V (B′D)} and E = A−C ′ be, thus A = C ′∪E.

Case 2.1. E ∩ C = ∅. (In Which C = ψ−1(C ′)).
In this case, we have DB[E ∪ C ′] ∼= DB[E ∪ C] ∼= D[E ∪ C] and then
DB[A] ∼= D[E ∪ C] has a kernel by monochromatic paths.

Case 2.2. E ∩ C 6= ∅.
It follows from the hypothesis that D[E∪C] has a kernel by monochromatic
paths, say N.

When N ∩ B = ∅ it follows as in Case 1 of the proof of Theorem 2.2
that N is a kernel by monochromatic paths of DC [E ∪ C] (the duplication
of D[E ∪ C] over C); therefore N is independent by monochromatic paths
in DB[E ∪ C ′]. Since N is absorbent by monochromatic paths in D[E ∪ C]
it follows that N is absorbent by monochromatic paths in DB[E ∪ C ′].
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(Clearly, to each monochromatic directed path in D[E ∪ C], say T there
corresponds an unique monochromatic directed path in DB[E ∪ C ′], T ′ ob-
tained from T by substituting each vertex x in V (T ) ∩ (C −E) for its copy
x′ in C ′).

When N ∩B 6= ∅, we denote by Z = N ∩B; we have proved in Case 2 of
the proof of Theorem 2.2 that N ∪Z ′ is a kernel by monochromatic paths of
DC [E∪C] (the duplication of D[E∪C] over C). So N∪Z ′ is independent by
monochromatic paths inDB[E∪C ′]. Now, let z ∈ (V (DB[E∪C ′])−(N∪Z ′));
clearly, z ∈ (V (DC [E∪C]− (N ∪Z ′))) and then there exists a z ∈ (N ∪Z ′)-
monochromatic directed path, say T = (z = x0, x1, . . . , xn); if T ∩(C−E) =
{xi1 , . . . , xik} then let T ′ be the succession obtained from T by substituting
each xij , 1 ≤ j ≤ k for its copy x′ij in C ′. Since D has no monochromatic
directed cycles we have x′ij /∈ V (T ) for each 1 ≤ j ≤ k. Therefore from the
definition of DB we have that T ′ is a monochromatic directed path contained
in DB[E ∪ C ′] from z to (N ∪ Z ′). We conclude that N ∪ Z ′ is a kernel by
monochromatic paths of DB[E ∪ C ′].
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