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Abstract

Line digraphs can be obtained by sequences of state splittings, a
particular kind of operation widely used in symbolic dynamics [12].
Properties of line digraphs inherited from the source have been studied,
for instance in [7] Harminc showed that the cardinalities of the sets of
kernels and solutions (kernel’s dual definition) of a digraph and its line
digraph coincide. We extend this for (k, l)-kernels in the context of
state splittings and also look at (k, l)-semikernels, k-Grundy functions
and their duals.
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1. Introduction

State splitting is a fundamental operation in symbolic dynamics (see [12]
or [8]). A shift of finite type is a dynamical system (homeomorphic to a
Cantor set) consisting of all possible doubly infinite paths in a digraph and
correspond to doubly infinite sequences of symbols (the vertices). Perform-
ing state splittings induce conjugacies of shift spaces, and every conjugacy
can be decomposed into a sequence of conjugacies induced by state split-
tings (a result called decomposition theorem). Particular kind of sequences
of state splittings result in higher block presentations which consist of mak-
ing the paths of certain length the symbols of the new shift space, and
when this length equals one, the resulting digraph is isomorphic to the line
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digraph. Whence line digraphs can be obtained by sequences of state split-
tings (Proposition 2.3). This is a well known fact in symbolic dynamics.

The line digraph is an object which has been widely studied. In [7]
Harminc showed that the cardinalities of the sets of kernels in a digraph
and in its line digraph coincide, and that the same holds for solutions (ker-
nel’s dual definition). In Section 3 we show that this is also true for state
splittings. Moreover, we actually present results for (k, l)-kernels, a gener-
alization of the concept of kernels introduced by M. Kwaśnik in [9]. The
existence of (k, l)-kernels in digraphs has been studied by several authors, for
example, see [3, 10], in particular, in [4] the authors obtain results concern-
ing the line digraph. In Section 4 we look at (k, l)-semikernels in the context
of state splittings. Kucharska and Kwaśnik introduced the concept of (k, l)-
semikernel in [11], a generalization of the concept of semikernel introduced
by Neumann-Lara in [13]. In [5] the authors showed that the number of
smikernels of a digraph is less than or equal to the number of semikernels
of its line digraph. They also look at Grundy functions of a digraph and of
its line digraph, showing that their cardinalities must coincide. In Section 5
we present results for k-Grundy functions in this context of state splittings.
We consider all dual definitions and present results accordingly.

2. Sate Splittings and Line Digraphs

In this section we define state splittings (use the terms “vertex” and “state”
interchangeably). For a complete treatment of this operation see [12] or [8]
(also, see [2] for generalizations of state splittings on digraphs presented by
polynomial matrices, or more generally, see [6], where matrices over formal
power series are considered). All digraphs are simple, which means that
there are no loops nor multiple arcs. For general concepts see [1].

Let D be a digraph with vertex set V (D) and arc set A(D) ⊂ V (D)×
V (D) with no loops (so (v, v) /∈ A(D) for all v ∈ V (D)). For every v ∈ V (D),
let

Γ−(v) = Γ−D(v) = {x ∈ V (D) | (x, v) ∈ A(D)}
and

Γ+(v) = Γ+
D(v) = {y ∈ V (D) | (v, y) ∈ A(D)}.

Definition 2.1. Let D be a digraph. For v ∈ V (D), let Γ−(v) = X1∪X2 be
a partition of Γ−(v) inducing a partition of the incoming arcs to v. Let D0
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be the digraph that results from D by an elementary in-splitting of vertex
v into two new vertices v1, v2 ∈ V (D0) in such a way that for i = 1, 2,
we have (x, vi) ∈ A(D0) whenever x ∈ Xi and (vi, y) ∈ A(D0) whenever
(v, y) ∈ A(D). Define elementary out-splitting similarly.

v v1 v2

x x yy z z

Figure 1. Elementary in-splitting.

An example of an elementary in-splitting is depicted in Figure 1. Sometimes
we will have to consider the possibility Xi = ∅ for some i = 1, 2, (e.g. if
|Γ−(v)| = 1), in which case we let D0 = D. If we say that an in-splitting
of a vertex v is performed, it will be implicit, if not stated, the assumption
Γ−(v) 6= ∅, and similarly for out-splittings.

Definitions of in-splittings and out-splittings (not necessarily elemen-
tary) are carried out similarly except for the partition which is allowed to
have more than two elements (clearly, splittings can be obtained by se-
quences of elementary splittings). In particular, we let the complete in-
splitting (resp. complete out-splitting) of a vertex be the digraph that results
from in-splitting (resp. out-splitting) a vertex according to the partition
with all its elements being singletons.

Definition 2.2. Let D be a digraph. The line digraph L(D) has ver-
tex set V (L(D)) = A(D) and arc set A(L(D)) determined by the rule
((u, v), (v, w)) ∈ A(L(D)) whenever u, v, w ∈ V (D) are such that (u, v),
(v, w) ∈ A(D).

A well known result in symbolic dynamics is the following (see [12] or [8]).

Proposition 2.3. If D is a digraph with Γ−(v) 6= ∅ (resp. Γ+(v) 6= ∅) for
all v ∈ V (D), then L(D) can be obtained by sequences of in-splittings (resp.
out-splittings).
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Figure 2. Elementary in-splittings that result in the line digraph.

Figure 2 describes the procedure of the proof of Proposition 2.3.

Proof. Let V (D) = {u, v, . . . , w}. Start with a complete in-splitting of
vertex u ∈ V (D). Then u in-splits into |Γ−(u)| new vertices, one for each
x ∈ Γ−(u), so we label the new vertices by ux. Next, choose a second vertex
v 6= ux for all x ∈ Γ−(u). Its in-coming arcs are of the form (y, v) with
y ∈ Γ−(v) \ {u} or of the form (ux, v) if u ∈ Γ−(v) with x ∈ Γ−(u). In-
split vertex v into |Γ−(v)| new vertices according to the partition formed
by the singletons {y} with y ∈ Γ−(v) \ {u} and by {ux | x ∈ Γ−(u)}. La-
bel the vertices corresponding to the singletons {y} with y ∈ Γ−(v) \ {u}
by vy, and label the last vertex corresponding to the partition element
{ux | x ∈ Γ−(u)} by vu. Continue in-splitting vertices in this way until
a last vertex w in-splits according to the partition with |Γ−(w)| elements,
one for each x ∈ Γ−(w) and defined by {xy | y ∈ Γ−(x)}. Each of the
new vertices is determined by a unique x ∈ Γ−D(w) and therefore we label
them by wx.

For every arc (x, y) ∈ A(D) there is a unique vertex yx, and the map
(x, y) 7→ yx defines a bijection between A(D) and the vertices of the resulting
digraph. If (x, y), (y, z) ∈ A(D), then (yx, zy) is an arc in the resulting
digraph because the labeling has the property that the incoming arcs to
vertex zy come from vertices yx for all x ∈ Γ−(y), and since for (xy, zw) to
be an arc in the resulting digraph it is actually necessary that w = x, the
map is an isomorphism between L(D) and the resulting digraph.

A sequence of out-splittings that results in a digraph isomorphic to L(D)
is found similarly.

Definition 2.4. Let D be a digraph. A set of vertices I ⊂ V (D) is inde-
pendent if there exists no x, y ∈ I with (x, y) ∈ A(D).

Recall that a (directed) path in a digraph D is a sequence of distinct vertices
(x0, . . . , xn) such that (xi−1, xi) ∈ A(D) for every i = 1, . . . , n, and its length
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is n. Given x, y ∈ A(D), a shortest path from x to y is a path of minimal
length.

Definition 2.5. Let D be a digraph. By the directed distance dD(x, y)
from vertex x ∈ V (D) to vertex y ∈ V (D) we mean the length of a shortest
directed path in D from x to y (so dD(x, y) = 0 if and only if x = y).

The following definition generalizes independence.

Definition 2.6. Let D be a digraph and k ≥ 2. A set of vertices I ⊂ V (D)
is k-independent if there exists no x, y ∈ I with dD(x, y) < k.

Lemma 2.7. Let D be a digraph and k ≥ 2. Suppose that there exist no
cycles in D of length less than k. Let D0 be the digraph that results from the
elementary in-splitting (resp. out-splitting) of vertex v ∈ V (D) according to
a partition Γ−(v) = X1 ∪X2 (resp. Γ+(v) = X1 ∪X2).

1. If A ⊂ V (D) is k-independent and v ∈ A, then A0 = (A\{v})∪{v1, v2}
is k-independent in D0.

2. If A ⊂ V (D) is k-independent and v /∈ A, then A0 = A is k-independent
in D0.

3. If A0 ⊂ V (D0) is k-independent and v1, v2 ∈ A0, then A = (A0 \
{v1, v2}) ∪ {v} is k-independent in D.

4. If A0 ⊂ V (D0) is k-independent and v1, v2 /∈ A0, then A = A0 is
k-independent in D.

Proof. First we prove 1. The fact that for every x, y ∈ A0 we have
dD0(x, y) ≥ k is clear except for the case when x = vi and y = vj with
i 6= j, which follows from the hypothesis of having no cycles of length less
than k.

Next we prove 2. If there exist x, y ∈ A0 such that dD0(x, y) < k, then
there exists a path in D0 from x to y of length less than k, and such a path
must come from a path in D of length less than k, contradicting that A is
k-independent.

To show 3, observe that for every x, y ∈ A, there exists no path in D0

of length less than k from x to y that intersects A except at the extreme
vertices. Thus a shortest path in D0 from x to y must come from a shortest
path in D from x to y if x, y /∈ {v1, v2}, from v to y if x ∈ {v1, v2} and
y /∈ {v1, v2}, from x to v if x /∈ {v1, v2} and y ∈ {v1, v2}, and finally from v
to v if x, y ∈ {v1, v2}, whence dD(x, y) = dD0(x, y) ≥ k.
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Finally we show 4. Let x, y ∈ A and suppose that dD(x, y) < k. Then
there exists a path in D from x to y of length less than k, and such a path
becomes a path in D0 from x to y of length less than k, contradicting that
A0 is k-independent.

3. (k, l)-kernels

Definition 3.1. Let D be a digraph. An independent set of vertices K ⊂
V (D) is a kernel if for every v ∈ V (D) \ K, there exists y ∈ K such that
(v, y) ∈ A(D). Let K(D) be the set of kernels of D.

In [7] Harminc showed that |K(D)| = |K(L(D))|.
The following definition generalizes kernels.

Definition 3.2. Let D be a digraph, k ≥ 2 and l ≥ 1. A subset of vertices
K ⊂ V (D) is a (k, l)-kernel if the following are satisfied:

1. K is k-independent.
2. K is l-absorbent, which means that for every u ∈ V (D)\K, there exists

x ∈ K such that dD(u, x) ≤ l.

Let K(k,l)(D) be the set of (k, l)-kernels of D.

Observe that a (2, 1)-kernel of a digraph D is a kernel in the sense of Defi-
nition 3.1, that is, K(D) = K(2,1)(D).

Theorem 3.3. Let D be a digraph, k ≥ 2 and l ≥ 1. Suppose that there
exist no cycles in D of length less than k. Let D0 be the digraph that results
from the elementary in-splitting of vertex v ∈ V (D) according to a partition
Γ−(v) = X1 ∪ X2. Then |K(k,l)(D)| ≤ |K(k,l)(D0)| with equality holding if
l < k.

Proof. Let K ∈ K(k,l)(D). Suppose that v ∈ K and let K0 = (K \ {v}) ∪
{v1, v2}. By 1 of Lemma 2.7, K0 is k-independent. For every u ∈ V (D0)\K0

there exists x ∈ K such that dD(u, x) ≤ l because u ∈ V (D) \K. If x 6= v,
then x ∈ K0 and therefore dD0(u, x) ≤ l. If x = v, then a path in D of
length dD(u, v) becomes a path in D0 of equal length ending at vi for some
i = 1, 2, thus dD0(u, vi) ≤ l. Therefore K0 ∈ K(k,l)(D0).
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Now suppose that v /∈ K and let K0 = K. By 2 of Lemma 2.7, K0 is k-
independent. Let u ∈ V (D0) \K0. If u /∈ {v1, v2}, then u ∈ V (D) \K and
there exists x ∈ K such that dD(u, x) ≤ l, that is, there exists a path in D
from u to x of length at most l. If such a path does not intersect {v}, then it
remains unchanged in D0, otherwise it becomes a path of equal length that
intersects {vi} for some i = 1, 2. Hence, in both cases, we have dD0(u, x) ≤ l
with x ∈ K0. Now suppose that u ∈ {v1, v2}. There exists y ∈ K such that
dD(v, y) ≤ l, that is, there exists a path in D from v to y of length at most l.
Such a path becomes two paths in D0 of equal lengths, one starting at v1 and
the other starting at v2, whence dD0(u, y) ≤ l. Therefore K0 ∈ K(k,l)(D0).
Clearly, the map K 7→ K0 is injective, so |K(k,l)(D)| ≤ |K(k,l)(D0)|.

Next, suppose that l < k and let K0 ∈ K(k,l)(D0). Suppose that v1, v2 ∈
K0 and let K = (K0\{v1, v2})∪{v}. By 3 of Lemma 2.7, K is k-independent.
Let u ∈ V (D)\K. Since u ∈ K0, there exists x ∈ K0 such that dD0(u, x) ≤ l,
that is, there exists a path in D0 from u to x of length at most l, and such
a path must come from a path in D of equal length from u to x ∈ K if
x /∈ {v1, v2} or from u to v if x ∈ {v1, v2}, whence dD(u, x) ≤ l. Therefore
K ∈ K(k,l)(D).

Now suppose that v1, v2 /∈ K0 and let K = K0. By 2 of Lemma 2.7, K
is k-independent. Let u ∈ V (D) \K. If u 6= v, then u ∈ V (D0) \K0 and
hence there exists x ∈ K0 such that dD0(u, x) ≤ l, that is, there exists a
path in D0 from u to x of length at most l, and such a path must come from
a path in D from u to x of equal length, thus dD(u, x) ≤ l. If u = v, then
there exists x ∈ K0 such that dD0(v1, x) ≤ l and so dD(v, x) ≤ l. Therefore
K ∈ K(k,l)(D).

Finally, suppose that vi ∈ K0 and vj /∈ K0 for i 6= j. There exists
x ∈ K0 such that dD0(vj , x) ≤ l, so dD0(vi, x) ≤ l < k, contradicting that
K0 is k-independent. We conclude that the injective map K0 7→ K is the
inverse of the map described above and hence |K(k,l)(D)| = |K(k,l)(D0)|.

Corollary 3.4. Let D be a digraph. Let D0 be the digraph that results from
the elementary in-splitting of a vertex v ∈ V (D) according to a partition
Γ−(v) = X1 ∪X2. Then |K(D)| = |K(D0)|.

Proof. By assumption, D has no cycles of length less than k = 2. Since
l = 1 < 2 and K(D) = K(2,1)(D), the result follows from Theorem 3.3.

The following definition duals kernels.
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Definition 3.5. Let D be a digraph. An independent set of vertices K∗ ⊂
V (D) is a solution if for every u ∈ V (D)\K∗, there exists x ∈ K∗ such that
(x, u) ∈ A(D). Let K∗(D) be the set of solutions of D.

In [7] Harminc also showed that |K∗(D)| = |K∗(L(D))|.
The following definition generalizes solutions.

Definition 3.6. Let D be a digraph, k ≥ 2 and l ≥ 1. A subset of vertices
K ⊂ V (D) is a (k, l)-solution if the following are satisfied:

1. K is k-independent.
2. K is l-dominant, which means that for every u ∈ V (D)\K, there exists

x ∈ K such that dD(x, u) ≤ l.

Let K∗(k,l)(D) be the set of (k, l)-solutions of D.

Again, observe that a (2, 1)-solution of a digraph D is a solution in the sense
of Definition 3.5, that is, K∗(D) = K∗(2,1)(D).

Theorem 3.7. Let D be a digraph, k ≥ 2 and l ≥ 1. Suppose that there
exist no cycles in D of length less than k. Let D0 be the digraph that results
from the elementary out-splitting of vertex v ∈ V (D) according to a partition
Γ+(v) = X1 ∪ X2. Then |K∗(k,l)(D)| ≤ |K∗(k,l)(D0)| with equality holding if
l < k.

Proof. The proof is similar to the proof of Theorem 3.3.

Corollary 3.8. Let D be a digraph. Let D0 be the digraph that results from
the elementary out-splitting of a vertex v ∈ V (D) according to a partition
Γ+(v) = X1 ∪X2. Then |K∗(D)| = |K∗(D0)|.

Proof. The proof is similar to the proof of Corollary 3.4.

Using Proposition 2.3 and Corollaries 3.4 and 3.8 we obtain as corollaries
Harminc’s results mentioned above.

4. (k, l)-semikernels

Definition 4.1. Let D be a digraph. An independent set of vertices S ⊂
V (D) is a semikernel if for every u ∈ V (D) \S, there exists x ∈ S such that
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(u, x) ∈ A(D) whenever there exists y ∈ S such that (y, u) ∈ A(D). We let
S(D) be the set of semikernels of D.

In [5] Galeana Sánchez et al. showed that |S(D)| ≤ |S(L(D))|.
The following definition generalizes semikernels.

Definition 4.2. Let D be a digraph, k ≥ 2 and l > 1. A subset of vertices
S ⊂ V (D) is a (k, l)-semikernel if the following are satisfied:

1. S is k-independent.
2. For every u ∈ V (D) \ S there exists x ∈ S such that dD(u, x) ≤ l

whenever there exists y ∈ S such that dD(y, u) ≤ l.

Let S(k,l)(D) be the set of (k, l)-semikernels of D.

Theorem 4.3. Let D be a digraph, k ≥ 2 and l > 1. Suppose that there exist
no cycles in D of length less than k. Let D0 be the digraph that results from
the elementary in-splitting of a vertex v ∈ V (D) according to a partition
Γ−(v) = X1 ∪X2. Then |S(k,l)(D)| ≤ |S(k,l)(D0)|.

Proof. Let S ∈ S(k,l)(D). Suppose that v ∈ S and let S0 = (S \ {v}) ∪
{v1, v2}. By 1 of Lemma 2.7, S0 is k-independent. For every u ∈ V (D0) \
S0 = V (D) \ S, there exists x ∈ S such that dD(u, x) ≤ l whenever there
exists y ∈ S such that dD(y, u) ≤ l. First suppose that y 6= v. Then y ∈ S0

and therefore dD0(y, u) ≤ l since a path in D from y to u of minimal length
remains unchanged under the in-split because it does not intersect {v}. If
x 6= v, then x ∈ S0 and again we have dD0(u, x) ≤ l, otherwise x = v and
since a path in D from u to v of minimal length becomes a path in D0 of
equal length from u to vi for some i = 1, 2, dD0(u, vi) ≤ l. Now suppose
that y = v. Thus a path in D from v to u of minimal length becomes
two paths in D0 of equal length, one starting at v1 and the other at v2,
whence dD0(vi, u) ≤ l for every i = 1, 2. Again, if x 6= v, then x ∈ S0 and
dD0(u, x) ≤ l, otherwise dD0(u, vi) ≤ l for some i = 1, 2. Therefore, in this
case, S0 ∈ S(k,l)(D0).

Now suppose that v /∈ S and let S0 = S. By 2 of Lemma 2.7, S0 is k-
independent. Let u ∈ V (D0) \ S0 and suppose that there exists y ∈ S0 such
that dD0(y, u) ≤ l. First suppose that u /∈ {v1, v2}. Then u ∈ V (D) \ S and
therefore dD(y, u) ≤ l since a path in D0 from y to u implies the existence
of a path in D from y to u of equal length. Hence there exists x ∈ S such
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that dD(u, x) ≤ l, and so dD0(u, x) ≤ l since a path in D from u to x implies
the existence of a path in D0 from u to x of equal length. Now suppose
that u = vi for some i = 1, 2. It follows that dD(y, v) ≤ l, hence there exists
x ∈ S such that dD(v, x) ≤ l and so dD0(vi, x) ≤ l since x ∈ S0. Therefore,
also in this case, S0 ∈ S(k,l)(D0). Clearly, the map S 7→ S0 is injective, so
|S(k,l)(D)| ≤ |S(k,l)(D0)|.

Corollary 4.4. Let D be a digraph. Let D0 be the digraph that results from
the elementary in-splitting of a vertex v ∈ V (D) according to a partition
Γ−(v) = X1 ∪X2. Then |S(D)| ≤ |S(D0)|.

Proof. By assumption, D has no cycles of length less than k = 2. Since
l = 1 < 2 and S(D) = S(2,1)(D), the result follows from Theorem 4.3.

The following definition duals (k, l)-semikernels.

Definition 4.5. Let D be a digraph, k ≥ 2 and l > 1. A subset of vertices
S∗ ⊂ V (D) is a (k, l)-semisolution if the following are satisfied:

1. S∗ is k-independent.
2. For every u ∈ V (D) \ S there exists y ∈ S such that dD(y, u) ≤ l

whenever there exists x ∈ S such that dD(u, x) ≤ l.

Let S∗(k,l)(D) be the set of (k, l)-semisolutions of D.

Theorem 4.6. Let D be a digraph, k ≥ 2 and l > 1. Suppose that there exist
no cycles in D of length less than k. Let D0 be the digraph that results from
the elementary out-splitting of a vertex v ∈ V (D) according to a partition
Γ+(v) = X1 ∪X2. Then |S∗(k,l)(D)| ≤ |S∗(k,l)(D0)|.

Proof. The proof is similar to the proof of Theorem 4.3.

Corollary 4.7. Let D be a digraph. Let D0 be the digraph that results from
the elementary out-splitting of a vertex v ∈ V (D) according to a partition
Γ+(v) = X1 ∪X2. Then |S∗(D)| ≤ |S∗(D0)|.

Proof. The proof is similar to the proof of Theorem 4.4.

Readers can verify that 4.3 and 4.4 are valid for out-splittings and that 4.6
and 4.7 are valid for in-splittings. Using Proposition 2.3 and Corollary 4.4
we obtain as a corollary the result mentioned above by Galeana-Sánchez
et al.
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5. k-Grundy Functions

Definition 5.1. Let D be a digraph. A function g : V (D) → N is a Grundy
function if for every x ∈ V (D), g(x) = min {N− {g(z) | z ∈ Γ+(x)}}. We
let G(D) be the set of Grundy functions of D.

In [5] Galeana-Sánchez et al. showed that |G(D)| ≤ |G(L(D))|.
The following definition generalizes Grundy functions.

Definition 5.2. Let D be a digraph and k ≥ 1. A function g : V (D) → N
is a k-Grundy function if for every x ∈ V (D),

g(x) = min {N− {g(z) | 1 ≤ dD(x, z) ≤ k}} .

Let Gk(D) be the set of k-Grundy functions of D.

Theorem 5.3. Let D be a digraph and k ≥ 1. Suppose that there exists no
cycles in D of length less than k +1. Let D0 be the digraph that results from
the elementary in-splitting of a vertex v ∈ V (D) according to a partition
Γ−(v) = X1 ∪X2. Then |Gk(D)| = |Gk(D0)|.

Proof. Let g ∈ Gk(D) and define g0 : V (D0) → N by

g0(x) =

{
g(x) if x /∈ {v1, v2},
g(v) otherwise.

Let u ∈ V (D0). If u = vi for some i = 1, 2, then {z ∈ V (D0) | 1 ≤
dD0(vi, z) ≤ k} = {z ∈ V (D) | 1 ≤ dD(v, z) ≤ k} because there exist no
cycles of length less than k+1, hence g0(vi) = min{N−{g0(z) | 1 ≤ dD0(u, z)
≤ k}}. Suppose that u /∈ {v1, v2}. If vi /∈ {z ∈ V (D0) | 1 ≤ dD0(u, z) ≤ k}
for all i = 1, 2, then {z ∈ V (D0) | 1 ≤ dD0(u, z) ≤ k} = {z ∈ V (D) | 1 ≤
dD(u, z) ≤ k} and hence g0(u) = min {N− {g0(z) | 1 ≤ dD0(u, z) ≤ k}}. If
vi ∈ {z ∈ V (D0) | 1 ≤ dD0(u, z) ≤ k} for some i = 1, 2, then v ∈ {z ∈
V (D) | 1 ≤ dD(u, z) ≤ k} and {z ∈ V (D) | 1 ≤ dD(u, z) ≤ k} − {v} differs
from {z ∈ V (D0) | 1 ≤ dD0(u, z) ≤ k} in at most {vj} with j 6= i, hence
g0(u) = min {N− {g0(z) | 1 ≤ dD0(u, z) ≤ k}}. Thus g0 ∈ Gk(D0). Clearly,
the map g 7→ g0 is injective, so |Gk(D)| ≤ |Gk(D0)|.
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Now let g0 ∈ Gk(D0). Having no cycles of length less than k + 1 implies
that {z ∈ V (D0) | 1 ≤ dD0(v1, z) ≤ k} = {z ∈ V (D0) | 1 ≤ dD0(v2, z) ≤ k},
therefore g0(v1) = g0(v2). Define g : V (D) → N by

g(x) =

{
g0(x) if x 6= v,

g0(vi) otherwise.

It is straightforward to verify that g ∈ Gk(D0) and that the map g0 7→ g is
actually the inverse of the map defined above. Therefore the result follows.

The following definition duals k-Grundy functions

Definition 5.4. Let D be a digraph and k ≥ 1. A function g : V (D) → N
is a dual k-Grundy function if for every x ∈ V (D),

g(x) = min {N− {g(y) | 1 ≤ dD(y, x) ≤ k}} .

We let G∗k(D) be the set of dual k-Grundy functions of D.

Theorem 5.5. Let D be a digraph k ≥ 1. Suppose that there eixsts no
cycles in D of length less than k +1. Let D0 be the digraph that results from
the elementary out-splitting of a vertex v ∈ V (D) according to a partition
Γ+(v) = X1 ∪X2. Then |G∗k(D)| = |G∗k(D0)|.

Proof. The proof is similar to the proof of Theorem 5.3.

Again, using Proposition 2.3 and Corollary 4.4 we obtain as a corollary the
result mentioned above by Galeana-Sánchez et al.
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