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Abstract

For a given graph G and a positive integer r the r-path graph,
Pr(G), has for vertices the set of all paths of length r in G. Two
vertices are adjacent when the intersection of the corresponding paths
forms a path of length r − 1, and their union forms either a cycle or a
path of length k+1 in G. Let P k

r
(G) be the k-iteration of r-path graph

operator on a connected graph G. Let H be a subgraph of P k
r (G). The

k-history P−k
r

(H) is a subgraph of G that is induced by all edges that
take part in the recursive definition of H . We present some general
properties of k-histories and give a complete characterization of graphs
that are k-histories of vertices of 2-path graph operator.
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1. Introduction

Path graphs were introduced by Broersma and Hoede in [4]. Let G be a
graph. The vertex set of path graph Pr(G) is the set of all paths of length r
in G, r ≥ 1. Two vertices of Pr(G) are adjacent if and only if the intersection
of corresponding paths is a path of length r − 1 and the union is a path or
a cycle of length r + 1. The most frequently studied path graphs are 2-
path graphs. Characterization of 2-path graphs is given in [14] and [10].
Traversability of 2-path graphs is studied in [16]. Distance properties of
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2-path graphs are studied in [7, 8] and [9] and the connectivity of path
graphs is studied in [2, 5, 6] and [3]. Papers [1] and [11] are devoted to the
problem of isomorphism of path graphs. Dynamics of iterated path graphs
is discussed in [13] and [15].

The history of a vertex with respect to the line operator was used in [12]
to prove the asymptotical behavior of diameter and radius of iterated line
graphs. Line graphs could be understood as a special case of r-path graphs
with r = 1. Histories of vertices of path graphs were used in [7] for the
study of diameters in iterated path graphs and in [9] to find an estimation
for cardinalities of maximal independent sets in path graphs. The structure
of the paper is following. In Section 2 we formulate a definition of k-history
of a graph and prove some properties of k-histories with respect to r-path
operator for any r ≥ 2. In Section 3 we completely characterize graphs that
are k-histories of vertices in k-iterated 2-paths graphs.

2. Histories in Iterated r-path Graphs

Let G be a graph and v be a vertex of Pr(G). Then the history of v,
P−1

r (v) is the path of length r in G that corresponds to v. The history of a
subgraph H of Pr(G), P−1

r (H) is the graph
⋃

v∈H P−1
r (v). The k-history of

H ⊂ P k
r (G) is defined recursively as P−k

r (H) = P−1
r (P

−(k−1)
r (H)). We set

P 0
r (H) = H.

In other words, the j-history of H is the subgraph of P k−j
r (G), formed

by all edges that take part in the recursive definition of H. Hence, while the
path operator can be applied to any graph, the history operator is defined
on path graphs only.

Example 1. Let p be a path of length rk, then P k
r (p) is a singleton, it

means a graph with a single vertex. Let us denote this vertex by v. Then
P−j

r (v) is a graph isomorphic to a path of length jr for any 0 ≤ j ≤ k.

Let c be a cycle of length k ≥ r + 1 then P j
r (c) is isomorphic to a cycle

of length k for any j ≥ 0. Let v ∈ P j
r (c) then P−i

r (v) is defined for any
0 ≤ i ≤ j. P−i

r (v) is a path of length ir when ir < k otherwise it is a cycle
of length k.

Observation 2. If H ′,H ′′ are two subgraphs of Pr(G) with V (H ′) = V (H ′′)
then P−1

r (H ′) = P−1
r (H ′′).
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For simplicity we shall omit the subscript r in the notation of path operator
when it is clear from the context. The j-histories satisfy the usual property
of powers of operators in the following form.

Lemma 3. Let G be a graph, k ≥ 1, and let H be a subgraph of P k(G).

1. Let 1 ≤ j ≤ k, then P−1(P−(j−1)(H)) = P−(j−1)(P−1(H)) = P−(j)(H)

2. Let m,n be integers such that 0 ≤ m + n ≤ k. Then P−m(P−n(H)) =
P−(m+n)(H).

3. Let 1 ≤ j ≤ k, then P (−j)(H) =
⋃

v∈H P−j
r (v).

4. Let 0 ≤ n ≤ k, 0 ≤ m. Then P (m−n)(H) is a subgraph of Pm(P−n(H)).

P roof. Statements 1–4 are direct consequences of definition of path and
history operators. We should mention that it is not possible to change the
inclusion in property 4 to equality. It is enough to consider the history of a
vertex in a cycle (example 1).

In [12] it was proved that that k-history of a vertex v in an iterated line
graph Lk(G) is a connected graph with at most k edges. We prove analogous
results for arbitrary path graphs.

Lemma 4. Let G be a graph and r ≥ 2, k ≥ 1. If uv is an edge in P k
r (G)

then P−k
r (u) and P−k

r (v) have at least r − 1 common edges.

P roof. Induction on k. If k = 1 then, since u and v are adjacent, P−1
r (u)

and P−1
r (v) are paths of length r with r − 1 ≥ 1 common edges. Let now

the assertion be true for some k − 1 ≥ 1. Let u′v′ be the common edge of

P
−(k−1)
r (u) and P

−(k−1)
r (v). Again, P−1

r (u′) and P−1
r (v′) are paths of length

r with r − 1 ≥ 1 common edges belonging to both P−k
r (u) and P−k

r (v).

Lemma 5. Let G be a graph and H a connected subgraph of Pr(G) with m
vertices. Then P−1

r (H) contains at most m + r − 1 edges.

P roof. We prove the assertion by induction on m. If H contains just
one vertex then P−1

r (H) is a path of length r, so the hypothesis is true.
Suppose now that the statement holds for any graph consisting of less than
m vertices. Let v be a vertex in H, such that H − v is connected. Then
the number of edges in P−1

r ((H) − v) is at most (m − 1) + (r − 1). The
history of v has at most one edge different from edges in the history of any
vertex adjacent to v. Therefore, the number of edges in P−1

r (H) is at most
(m + r − 1).
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Lemma 6. Let G be a graph and v a vertex in P k
r (G), k ≥ 0, r ≥ 2. Then

P−k
r (v) is a connected graph with at most rk edges.

P roof. First we prove that P−k(v) is connected. We will use induction
on k. It is clear that P−1

r (v) is connected. Now let us suppose that the
assertion is true for some k − 1 > 1. Let P−1

r (v) = a1a2 . . . ar. Now,

following Lemma 3, P−k
r (v) = P−1

r (P
−(k−1)
r (v)) = P

−(k−1)
r (P−1

r (v)) =

P
−(k−1)
r (a1a2 . . . ar). Using property 3 we obtain P−k

r (v) =
⋃r

i=1P
−(k−1)
r (ai).

By the inductive hypothesis, for 1 ≤ i ≤ r, P
−(k−1)
r (ai) is a connected graph.

Lemma 4 implies that each pair P−k
r (ai), P

−k
r (ai+1)where 1 ≤ i ≤ r−1, has

a common edge. Hence the graph P−k
r (v) is connected.

Now, using induction again, we will prove that P−k
r (v) contains at most

rk edges. The assertion is trivial for k = 0. Let it be true for k−1 ≥ 0. Then

P
−(k−1)
r (v) contains at most r(k−1) edges. Since P

−(k−1)
r (v) is connected, it

has a spanning tree, which cannot contain more edges. Therefore P
−(k−1)
r (v)

consists of r(k−1)+1 vertices at most. Then, following Lemma 5, P−k
r (v) =

P−1
r (P

−(k−1)
r (v)) contains at most (r(k − 1) + 1) + (r − 1) = rk edges.

Now we can formulate a necessary and sufficient condition for a path to be
a k-history of some vertex. From Example 1 and Lemma 6 it follows

Proposition 7. Let p be a path in graph G such that P k
r (G) is not empty.

Then p is the k-history of some vertex v in P k
r (G) if and only if the length

of p is rk.

A sequence of vertices (v1, v2, . . . , vm) in graph G is a walk when (vi, vi+1)
is an edge in G for any 0 ≤ i ≤ m − 1. We call the walk r-regular if any
r + 1 consecutive vertices are distinct. In other words any sequence of r + 1
consecutive vertices in r-regular walk is a path of length r. We say that
a walk W covers subgraph H of G if E(H) is equal to the set of all edges
in W .

Lemma 8. Let W be a r-regular walk in graph G of length k ≥ r. Then

there exists a subgraph H of Pr(G) covered by a r-regular walk of length k−r
such that P−1

r (H) is formed by all vertices and edges of walk W .

P roof. If k = r then W is a path of length r and H = Pr(W ) is a singleton
which is a path of length 0. Let k > r. Denote by ui the vertex in Pr(G)
corresponding to the path (vi, vi+1, . . . , vi+r), 1 ≤ i ≤ k − r + 1. Vertices ui,
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ui+1 are adjacent in Pr(G) because (vi, vi+1, . . . , vi+r+1) is a path of length
r + 1 when vi 6= vi+r+1 or a cycle when vi = vi+r+1, respectively. From the
r-regularity of W it follows that vi+r+1 6= vi+j for any 1 ≤ j ≤ r. Hence
vertices (u1, u2, . . . , uk+1−r) form a walk W ′ of length k−r. Let H be formed
by vertices and edges of W ′. Clearly , P−1

r (H) = W .

Now we show that W ′ is r-regular. Suppose that it is not true. Then
there exists a vertex ui ∈ W ′ such that ui = ui+j and j ≤ r. In this
case (vi, vi+1, . . . , vi+r) = (vi+j , vi+j+1, . . . , vi+j+r) or (vi, vi+1, . . . , vi+r) =
(vi+j+r, vi+j+r−1, . . . , vi+j). Both cases contradict to the r-regularity of W ,
hence W ′ is r-regular.

Corollary 9. Let H be a subgraph of G such that there exists a r-regular

walk W of length kr that covers H. Then there exists a vertex v ∈ P k
r (G)

such that H = P−k
r (v).

The minimal degree of a vertex in a graph G is denoted by δ(G) the size of
a shortest cycle in G is called girth and we denote it girth(G).

Theorem 10. Let G be a connected graph with δ(G) ≥ 2 and girth(G) > r
then there exist k ≥ 1 and v ∈ P k

r (G) such that G = P−k
r (v).

P roof. To prove the statement of the theorem it is enough to construct a
r-regular walk covering graph G. We can use a depth-first search strategy
to construct a walk. Suppose that each vertex is labelled by an integer that
is its order in the process of search. The starting vertex has label 1 and
the last-found vertex has the label n where n is the number of vertices in
G. We also suppose that the edges of G have orientation. Each edge of the
depth-first search tree is oriented from the vertex with the smaller label to
the larger one and is called direct. All other edges are oriented from the
larger value of label to the smaller one and are called back edges. The walk
W is created by traversing all edges of G. When all edges incident with a
vertex are traversed we call it completed. We start with vertex 1 and use
following rules:

(1) From the current vertex with label i we traverse by a direct edge to
a vertex j if the subtree with the root j contains at least one non-completed
vertex. The vertex j becomes the current vertex.

(2) If the the current vertex i is a leaf of the depth-first search tree or the
subtree with root i has all vertices completed, we traverse a back edge (i, j)
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that was not yet used in the previous traversal and j becomes the current
vertex.

(3) If in condition (2) the current vertex is already completed and there
are still non-completed vertices in subtrees of vertices with the smaller label
then i, we traverse the direct edge (j, i) in the opposite direction.

(4) When all vertices are completed we stop the traversal.

When we traverse the direct edge we move always towards non-completed
vertices. Because in G are not vertices of degree 1 the last edge of the
traversal is a back one.

In the traversal procedure each back edge is traversed exactly once and
some direct edges can be repeated in the resulting walk. Because the girth of
G is at least r + 1 the subsequence of W between any two repeated vertices
has length at least r + 1 and the walk is r-regular. When the length of the
walk is not divisible by r it is possible to prolong it repeating a part of W
in the direct direction (the last edge was a back one).

In the the proof of Theorem 10 we have constructed a r-regular walk that can
be arbitrary prolonged. It is enough to repeat a subsequence corresponding
to any cycle. It means that if G fulfils the conditions of theorem, then for
any K ≥ k G is a k-history of some vertex v ∈ PK

r (G).

3. Case r = 2

In this part we consider histories of path graphs where vertices correspond
to paths of length 2.

The path graph of a connected graph G is either connected or consists
of one connected component and a set of isolated vertices. The path graph
of an isolated vertex is empty, so for construction of iterations P i(G) we
consider main connected components only. Graphs with the infinite sequence
of iterations where P i(G) is not isomorphic to P i+k(G) for any i, k ≥ 1
are P-divergent. Graphs that are not P -divergent are P-convergent. From
Theorem 10 it follows that any connected graph without pendant vertices is
a k-history of a vertex if k ≥ k0 for some k0 ≥ 1. So it is enough to study
graphs that contain pendant vertices. In [15] it was proved that the sequence
G,P 1(G), P 2(G), . . . is finite only if G is a tree and does not contain any of
the graphs G0 or Gj from Figure 1 as subgraphs. The parameter j of Gj is
the distance between vertices u and v.
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Figure 1. Convergent graphs

A tree T is called a caterpillar if it consists of a diametric path of length d
and some pendant vertices that are adjacent to vertices of this path. Vertices
of degree at least 3 we shall call root vertices or simply roots. If the distance
between any two roots is even, we call the caterpillar even. Trees that
contain neither G0 nor Gj are either paths or even caterpillars. The star
K1,n is a special case of even caterpillar with diametric path of length d = 2.
Path graph of a star is a set of isolated vertices so the star can not be a
k-history of a single vertex.

For all other connected graphs the sequence of iterated path-graphs is
infinite. The only non-trivial P -convergent graphs are cycles, G0 and Gj ,
where j is odd [15]. From Example 1 it is clear that the cycle Cd is k-history
of a vertex for any k ≥ d/2.

When the sequence of iterated path graphs converges to the empty
graph, the possible value of the parameter k is bounded by the index of
the last non-empty iteration. So first we concentrate on even caterpillars.
The path joining any pendant vertex with a closest root vertex will be called
an end. The parity of an end is the parity of its length. We prove that an
even caterpillar with at most 2 odd ends is a k-history of some vertex. First
we prove the next lemma.

Lemma 11. Let T be an even caterpillar with e odd ends where e = 1 or

e = 2, and k edges. Then there exists a graph H such that T = P−1(H),H
has k − e edges, and H is a path or a caterpillar with two odd ends.

P roof. Let d be the length of the diametric path (u0, u1, . . . , ud) in T . We
consider two cases.

(a) Let T have two even ends of lengths d1 ≥ d2. In this case all other
ends are of length 1 and these ends are pendant vertices on the diametrical
path. When d1 = d2 = 2, pendant vertices u and v are adjacent to u2
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and uj+2 where j is the distance between root vertices. In this case graph
H is induced by vertices (u, u2, u1), (v, uj+2, uj+3) and (ui, ui+1, ui+2) where
0 ≤ i ≤ d − 2. Graph H is a path of length d. When T has only one odd
end then j = 0 and we set u = v. The constructed graph H is then also a
path of length d.

Now let d1 > 2 and the numbering of the diametrical path starts from
the end of length d1. Let the odd ends be (u, ud1

), (v, ud1+j) then H is
induced by vertices (u, ud1

, ud1−1) and (v, ud1+j , ud1+j−1) and (ui, ui+1, ui+2)
where 0 ≤ i ≤ d − 2. The resulting graph is a caterpillar with two pendant
vertices and diametric path with d− 2 edges. When T has just one odd end
we again set u = v and the resulting graph is again a caterpillar with two
pendant vertices and diametric path with d − 2 edges.

(b) Let T have one even end and two odd ends. Let d1 be the length of
the even end and d2 be the length of the odd end of the diametric path. Let
(u, ud1

) be the pendant edge. We suppose that vertices of the diametric path
are numbered starting from the even end. Graph H is induced by vertices
(u, ud1

, ud1−1) and (ui, ui+1, ui+2) where 0 ≤ i ≤ d − 2. When d1 > 2 then
graph H is a caterpillar with the diametric path of length d − 2 and one
pendant edge, otherwise it is a path of length d − 1. Because there are no
other possible cases, the proof is complete.

Now we prove that each caterpillar with at most 2 odd ends is a k-history
of a vertex for some value k ≥ 1. Let T be an even caterpillar with 2k
or 2k − 1 edges and 2 or 1 odd ends, respectively. Using the construc-
tion from Lemma 11 we create the sequence (T0, T1, . . . , Tk) where T = T0,
P−1(Ti+1) = Ti and Tk is a single vertex. When Ti is a caterpillar then we
use the construction from the lemma. When Ti is a path of length 2d and
d > 1 then Ti+1 is a path of length 2d − 2 otherwise d = 1 and Ti+1 is a
vertex. Ti is a subgraph of P i(T ), hence P−i(Ti) = T and vertex Tk is the
k-history of T .

Proposition 12. Let T be an even caterpillar with 2k edges and two odd

ends or with 2k − 1 edges and one odd end. Then there exists a vertex

v ∈ P k(T ) such that v is the k-history of T .

Now we show that an even caterpillar with at least three odd ends is not
a k-history of any vertex for any value of k. For this purpose we define a
special class of graphs that contains even caterpillars as a subclass. Let G
be a connected bipartite graph with partitions A and B where all vertices in
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A have degrees 1 or 2, A has at least 1 vertex of degree 1, and B has at least
2 vertices. We call this graph 1-2-bipartite. When T is an even caterpillar,
then pendant vertices of odd ends are placed to set A. Because the distance
from a pendant vertex of an odd end to the closest root is odd and distance
between any to roots is even, all roots are in the set B.

Lemma 13. Let G be a 1-2-bipartite graph. Then the main connected com-

ponent of P (G) is a 1-2-bipartite graph or a star K1,n.

P roof. Let A = a1, a2 . . . ap and B = b1, b2 . . . br be partitions of 1-2-
bipartite graph. Let the set A′ be the subset of vertices in P (G) that contains
all vertices (ai, bj , ak) and let the set B′ contains all vertices (bi, aj , bk). No
two vertices in B′ are adjacent and no two vertices in A′ are adjacent. Hence
P (G) is bipartite. The degree of vertex (ai, bj , ak) in P (G) is deg(ai) +
deg(ak) − 2, hence all vertices in A′ are of the degree at most 2. When B′

has just one vertex, the main component of P (G) is a star otherwise it is a
1-2-bipartite graph.

Lemma 14. Let G be a 1-2-bipartite graph with partition (A,B) and a be a

pendant vertex in A, then each vertex u from the main component of P (G)
such that a ∈ P−1(u) has degree 1 and its history does not contain other

pendant vertex.

P roof. The path corresponding to vertex u is (a, bi, aj) and deg(u) =
deg(a) + deg(aj)− 2. The degree of vertex aj is 2 because u is not isolated.

Proposition 15. Let G be a 1-2-bipartite graph with at least 3 pendant

vertices in the set A, then G is not a k-history of any vertex v ∈ P k(G).
For any k ≥ 1.

P roof. Suppose that there exists v ∈ P k(G) such that P−k(v) = G. From
Lemmas 13 and 14 it follows that each H such that P−j(H) = G contains at
least 3 pendant vertices. This is a contradiction with the number of pendant
vertices of P−1(v).

The characterization of convergent graphs that are k-histories of vertices
follows from the Propositions 7, 12 and 15. We shall prove that the only
divergent graphs, that are not k-histories of some vertices, are 1-2-bipartite
with at least 3 odd ends. First we formulate some technical lemmas.
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Lemma 16. Let G be a union of an induced path W of length d ≥ 2 and

a cycle C such that W is rooted at a vertex of C. If d is even, then there

exists a cycle C ′ ⊆ P d/2(G) such that P−d/2(C ′) = G. If d is odd, then there

exists a cycle C ′ with a pendant edge e such that P−(d−1)/2(e ∪ C
′

) = G.

P roof. Let W = (a0, a1, . . . , ad) and C = (c0, c1, . . . , ck−1) where a0 =
c0 = ck. Let G′ be the subgraph of P (G) induced by vertices (a1, c0, c1),
(a1, ck, ck−1), (ci, ci+1, ci+2), 0 ≤ i ≤ k − 2, and all vertices of P (W ). G′ is
the union of a cycle and a path of length d − 2, and P−1(G′) = G. Repeating
the above construction we get the statement of the lemma.

Lemma 17. Let G be a cycle of length 2d− 1 with one pendant edge. Then

in P d(G) there exists a cycle C of length 2d + 1 such that P−d(C) = G.

P roof. It is easy to see that it is possible to construct a sequence of graphs
G = H0,H1,H2, . . . ,Hd−1, such that Hi is a subgraph of P (Hi−1), Hi is a
cycle with two pendant edges such that the roots of pendant edges divide
the cycle into paths of lengths 2i and (2d − 1 − 2i), and P−1(Hi) = Hi−1.
So Hd−1 has two pendant edges rooted in adjacent vertices of a cycle of
length 2d − 1. P (Hd−1) contains exactly one cycle C of length 2d + 1 and
all edges of Hd−1 are in its history. From the above construction it follows
that P−d(C) = G.

Lemma 18. Let G be a caterpillar with two root vertices u and v with odd

distance j and four ends, three of length 1 and one of length d. Let us denote

this caterpillar Gj,d. Then there exists m ≥ 1 and a cycle C in Pm(G), such

that P−m(C) = G.

P roof. If j = 1, d = 1 then the main component of P (G1,1) is a cycle C
and P−1(C) = G.

Let d > 1 and j > 1. We construct a sequence of graphs H1,H2, . . . ,
H(j−1)/2. The main component of P (G) is a caterpillar Gj−2,d with one more
pendant vertex. We set graph H1 to be equal to caterpillar Gj−2,d. It is clear
that P−1(H1) = G. The construction of Hi from Hi−1 is the same as de-
scribed above. We should note, that P−1(Hi+1) = Hi, P−(j−1)/2(H(j−1)/2) =
G and H(j−1)/2 = G1,d. When d = 1 assertion of the lemma follows. When
d = 2 then the main component of P (H(j−1)/2) is a cycle with pendant path
of length 2 and assertion follows from Lemma 16.

Suppose that d ≥ 3, then the main component of P (H(j−1)/2) is a
union of a cycle C = (c0, c1, c2, c3) and a caterpillar with the diametric path
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W = (c0, a1, . . . , ad−1) and pendant edge (b, a1). Deleting the vertex c2 from
the main component we obtain graph H ′ = G1,d−1. As P−1(H ′) = H(j−1)/2,
repeating this construction we finish with a caterpillar G1,2, hence the proof
is complete.

Proposition 19. Let G be a connected P-divergent graph that is not 1-2-
bipartite, then there exists k ≥ 1 and v ∈ P k(G) such that P−k(v) = G.

P roof. Let G be a P -divergent graph different from 1-2-bipartite. When
G is not bipartite, then it contains an odd cycle Codd. Let v be a pendant
vertex of G. There is a path joining v to Codd and by Lemma 16 and 17
there exists kv ≥ 1 and a cycle C ′

odd in P kv(G) such that the kv-history of
C ′

odd contains the pendant path of vertex v. We apply this procedure to all
pendant paths and obtain a graph G′ without pendant vertices such that
P−k(G′) = G. By Theorem 10 the assertion follows.

When G is P -divergent bipartite but not 1-2-bipartite, then it contains
at least two vertices of degree ≥ 3 from different partitions. It means that
G contains a caterpillar Gj with j odd. Let v be a pendant vertex in G,
then there exists a path from v to a vertex u of Gj . Let the length of this
path be d. When u is a pendant vertex of Gj then v is a pendant vertex of
caterpillar Gd+1,j . By Lemma 18 there exists kv such that this caterpillar is
included in the kv-history of some cycle.

Let now u be a vertex on the path between the root vertices x and y of
Gj . One of the paths (u − x) or (u − y) has odd length i so v is a pendant
vertex of a caterpillar Gi,d and by Lemma 18 there is a cycle such that the
pendant path is included in its kv-history. When we apply this procedure to
all pendant paths, we create G′ without pendant vertices and by Theorem 10
the assertion follows.

The last remaining type of graphs are 1-2-bipartite P -divergent graphs with
at most 2 odd ends. A connected 1-2-bipartite graph is divergent only if
it contains a copy of graph G0 or a cycle (of even length). In both cases
P (G) contains at least one cycle. From Lemma 16 it follows that there ex-
ists a k0 ≥ 0 and a subgraph H0 of P k0(G) such that H0 has no even ends,
P−k0(H0) = G and H0 has the same number of odd ends as G. So H0 has
at most two pendant vertices. It is easy to see that there exist a 2-regular
walk that starts in the first pendant vertex, traverse all other vertices of H0

and ends in the second pendant vertex. When G has only one odd end, the
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first and the last vertex of the walk is the same. From Corollary 9 it follows
that G is a k-history of some vertex.

Now we can formulate a characterization of k-histories for 2-path graphs.

Theorem 20. A graph G is a k-history of some vertex in P k
2 (G) for some

k ≥ 0 if and only if G is a connected graph different from a path of odd

length, from a star K1,r where r ≥ 3 and from a 1-2-bipartite graph with at

least 3 odd ends.
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