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Abstract

The strong product G1 £G2 of graphs G1 and G2 is the graph with
V (G1) × V (G2) as the vertex set, and two distinct vertices (x1, x2)
and (y1, y2) are adjacent whenever for each i ∈ {1, 2} either xi =
yi or xiyi ∈ E(Gi). In this note we show that for two connected
graphs G1 and G2 the edge-connectivity λ(G1£G2) equals min{δ(G1£
G2), λ(G1)(|V (G2)|+2|E(G2)|), λ(G2)(|V (G1)|+2|E(G1)|)}. In addi-
tion, we fully describe the structure of possible minimum edge cut sets
in strong products of graphs.
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1. Introduction

The vertex and the edge connectivity of a graph are among the most natural
and well-studied graph invariants that found applications in communication
networks and elsewhere. For a connected graph G, a set S of edges of G is
called separating if G− S (the graph obtained from G by deletion of edges
from S) is not connected. The edge-connectivity λ(G) of a graph G is the
cardinality of a minimum separating set in G. Clearly λ(G) ≤ δ(G) where
δ(G) denotes the minimum degree of vertices in G. We will say that a
separating set S in a graph G is a λ-set in G if |S| = λ(G).

The strong product is one of the four standard graph products [1]. It is
often the case that graph invariants of a product of graphs can be expressed
in terms of some invariants of their factors which are smaller and thus easier
to consider. The vertex and the edge connectivity of the Cartesian product of
graphs have already been determined [2, 4]. Concerning the strong product
of graphs, so far only the vertex connectivity was established [3]. Our aim in
this note is to exactly determine the edge-connectivity of the strong product
of graphs.

It may not be surprising that the edge-connectivity of G £ H is often
equal to the minimum degree. However, this is not the only case which makes
the formula more complex, and the proof more interesting. In addition, we
also describe the structure of λ-sets in each of the cases that can appear.

Theorem 1. Let G and H be connected graphs. Then

λ(G£H) = min{δ(G£H), λ(G)(|V (H)|+2|E(H)|), λ(H)(|V (G)|+2|E(G)|)}.

Moreover, if S is a λ-set in G £ H and C1, C2 are connected components of
(G £ H)− S then one of the following occurs:

(i) C1 = {x} and C2 = V (G)× V (H)− {x} for some x ∈ V (G £ H) or
(ii) C1 = C ′

1 × V (H) and C2 = C ′
2 × V (H) or

(iii) C1 = V (G)× C ′′
1 and C2 = V (G)× C ′′

2

where C ′
i and C ′′

i (for i = 1, 2) are connected components of G − S′ and
H − S′′ for some λ-sets S′ and S′′ in G and H, respectively.

The note is organized as follows. In the next section we prove some pre-
liminary observations that are needed in the proof of the theorem. In the
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third section Theorem 1 is proved, and in the last section some examples are
presented that show, each of the expressions in the formula can be achieved.

2. Key Observations

The following observation is straightforward.

Lemma 2. Let S be a λ-set in a graph G. Then G − S consists of two
connected components.

Let S be a λ-set of G£H. By the lemma there are two connected components
C1 and C2 of G£H−S, and we will say that the vertices of C1 are black and
the vertices of C2 white. Hence an edge is from S if and only if its endvertices
are of different colors. The edges from S will be called grey edges.

Let G£H be the strong product of graphs G and H. For v ∈ V (H) the
set Gv = {(x, v) |x ∈ V (G)} is called a G-fiber. It is clear that the subgraph
of G£H induced by Gv is isomorphic to G. Analogously we define H-fibers
that clearly induce subgraphs of G£H that are isomorphic to H. As usual,
the projections pG and pH map vertices from V (G £ H) to their first and
second coordinates, respectively. The following lemma is one of the main
keys in the proof.

Lemma 3. Let G and H be nontrivial connected graphs and S ⊆ E(G£H)
a λ-set in G £ H. Let C1 and C2 be connected components of (G £ H)− S
and suppose that uv ∈ E(H) is an edge such that Gu ∩ Ci and Gv ∩ Ci are
nonempty for i = 1, 2. Then there are at least 2λ(G) edges e ∈ S, such
that one endvertex of e is in Gu and the other in Gv. Moreover, if there are
exactly 2λ(G) such edges, then pG(Gu ∩ Ci) = pG(Gv ∩ Ci) for i = 1, 2.

Proof. We refer to edges with one endvertex in Gu and the other in Gv as
the cross edges. We define the following sets

A = {x ∈ V (G) | (x, u) ∈ C1, (x, v) ∈ C2},
B = {x ∈ V (G) | (x, u) ∈ C2, (x, v) ∈ C1},
C = {x ∈ V (G) | (x, u) ∈ C1, (x, v) ∈ C1},
D = {x ∈ V (G) | (x, u) ∈ C2, (x, v) ∈ C2}.
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Clearly the sets A,B,C and D are pairwise disjoint (and not necessarily
nonempty) and their union is V (G).

First suppose that there is no edge ab ∈ E(G) such that a ∈ A and
b ∈ B. Let Sv ⊆ S be the set of grey edges with endvertices in Gv (that
are the edges with one endvertex in C1 ∩ Gv and the other in C2 ∩ Gv).
Similarly, let Su ⊆ S be the set of grey edges with endvertices in Gu. Since
S is a separating set of G £ H, Sv (resp. Su) must be a separating set of
the subgraph induced by Gv (resp. Gu), and so |Sv|, |Su| ≥ λ(G). Now we
have the following observation (see Figure 1):

(x, v)(y, v) ∈ Sv and (x, u)(y, u) ∈ Su ⇐⇒ xy ∈ E(G), x ∈ C, y ∈ D .

Figure 1. Case when there are no edges between A and B. The edges with both
endvertices in a G-fiber and corresponding cross edges are marked with the same
number.

Observe also that (x, v)(y, v) ∈ Sv and (x, u)(y, u) ∈ Su implies (x, v)(y, u) ∈
S and (x, u)(y, v) ∈ S. If (x, v)(y, v) ∈ Sv and (x, u)(y, u) /∈ Su then observe
that either (x, v)(y, u) ∈ S or (x, u)(y, v) ∈ S. Similarly if (x, v)(y, v) /∈ Sv

and (x, u)(y, u) ∈ Su then either (x, v)(y, u) ∈ S or (x, u)(y, v) ∈ S. We
infer there are at least |Sv| + |Su| grey cross edges between fibers Gu and
Gv. Since |Sv|, |Su| ≥ λ(G), we find that there are at least 2λ(G) cross edges
between Gu and Gv that are from S.

Also note that if A or B is nonempty, then there are additional cross
edges in S, namely (x, v)(x, u), where x ∈ A ∪ B. Hence if the number of
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cross edges is exactly 2λ(G) then A = B = ∅. In other words, pG(Gu∩Ci) =
pG(Gv ∩ Ci) for i = 1, 2 which proves the claim in the last assertion of the
lemma for this case.

Now suppose that there is at least one edge ab ∈ E(G) such that
a ∈ A and b ∈ B. If there is exactly one such edge, then for the edges
(a, v)(b, v) ∈ Sv and (a, u)(b, u) ∈ Su we get two grey cross edges (a, v)(a, u)
and (b, v)(b, u). For the other edges of Sv and Su we argue similarly as
above, and again derive there are at least |Sv| + |Su| ≥ 2λ(G) grey cross
edges between Gu and Gv.

Finally assume there is more than one edge ab ∈ E(G) such that a ∈ A
and b ∈ B. In this case |A| ≥ 2 or |B| ≥ 2. Without loss of generality assume
that |A| ≥ |B| (and thus |A| ≥ 2). Let a ∈ A be a vertex with minimum
number of neighbors in C ∪D among vertices from A (see Figure 2).

Figure 2. Case when there are edges between A and B.

We claim there are at least 2 degG(a) cross edges in S. For all neighbors
x ∈ A of a we get two grey cross edges, namely (a, v)(x, u) and (x, v)(a, u).
The number of neighbors of a in B is at most |B|. Since 2|B| ≤ |A| + |B|
we find that there are at least 2|B| edges (x, u)(x, v) in S, where x ∈ A∪B
(note that these are also cross edges). For each neighbor x ∈ C ∪D either
(a, v)(x, u) or (x, v)(a, u) is in S. By the initial assumption about a, any
other vertex a′ ∈ A has at least as much neighbors in C ∪ D as a. Hence
for each neighbor x′ ∈ C ∪D of a′ either (a′, v)(x′, u) or (x′, v)(a′, u) is in S.
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Altogether (a, v), (a, u), (a′, v) and (a′, u) yield k grey cross edges between
Gu and Gv that have another endvertex in p−1

G (C ∪D), where k is at least
twice the number of neighbors of a in C ∪D. Thus we derive there are at
least 2 degG(a) ≥ 2λ(G) cross edges in S.

We now prove the last assertion of the lemma. Suppose that the number
of grey cross edges is exactly 2λ(G). First observe that |A| 6= |B| implies
that 2|B| < |A|+ |B| in which case the number of grey cross edges is strictly
greater than 2λ(G). Hence we may assume |A| = |B|. Let a ∈ A ∪ B be a
vertex with the minimum number of neighbors in C ∪D. If there is a vertex
a′ ∈ A ∪ B with more neighbors in C ∪D as a, then again we derive there
are more than 2λ(G) grey cross edges. Hence all vertices from A ∪ B have
the same number of neighbors in C ∪D. If |A ∪ B| ≥ 4 we find that next
to 2 degG(a) grey cross edges described in the previous paragraph, there
are additional grey cross edges, namely (a′′, v)(x, u) or (a′′, u)(x, v), where
a′′ ∈ A∪B and a′′ /∈ {a, a′} (where x ∈ C∪D is a neighbor of a′′). Hence the
last case is when A and B have only one vertex. Let A = {a} and B = {b}
and denote

|NG(a) ∩ C| = α, |NG(a) ∩D| = β, |NG(b) ∩ C| = γ and |NG(b) ∩D| = δ .

Since degG(a) = degG(b) we find that α+β = γ+δ. If degG(a) > λ(G), then
clearly the number of grey cross edges is greater than 2λ(G), a contradiction.
So assume that degG(a) = λ(G). Furthermore there are no edges between
C and D (for otherwise again there are strictly more than 2 degG(a) grey
cross edges). Hence vertices of C (and D) may be adjacent only to a and b.
Hence α + γ ≥ λ(G) and β + δ ≥ λ(G). We get

α + γ + β + δ ≥ 2λ(G).

On the left-hand side we have the sum of the number of neighbors of a from
C ∪ D with the number of neighbors of b from C ∪ D; on the right-hand
side we have degG(a)+degG(b). This readily implies that there must be the
equality sign, and in addition, a and b are not adjacent. But a and b not
adjacent implies there are at least 2λ(G) + 2 grey cross edges between Gu

and Gv, a contradiction. We infer that A and B are empty as desired.
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3. Proof of Theorem 1

We first prove that

(1)
λ(G £ H) ≤ min {δ(G £ H), λ(G)(|V (H)|+ 2|E(H)|),

λ(H)(|V (G)|+ 2|E(G)|)}.

First, it is clear that λ(G £ H) ≤ δ(G £ H). Let S′ be any λ-set in G and
let C ′

1 and C ′
2 be connected components of G − S′. Note that in G £ H

there are exactly λ(G)(|V (H)| + 2|E(H)|) edges between C ′
1 × V (H) and

C ′
2 × V (H). Hence λ(G £ H) ≤ λ(G)(|V (H)|+ 2|E(H)|). Similarly we see

that λ(G £ H) ≤ λ(H)(|V (G)|+ 2|E(G)|). The inequality (1) follows.
Next we prove that

(2)
λ(G £ H) ≥ min {δ(G £ H), λ(G)(|V (H)|+ 2|E(H)|),

λ(H)(|V (G)|+ 2|E(G)|)}.

Let S be a λ-set in G £ H and let C1 and C2 be connected components
of G £ H − S. Recall that we call the vertices from C1 black vertices and
vertices from C2 white vertices. We distinguish three cases (two of which
are symmetric).

Case 1. No G-fiber lies entirely in one connected component of G£H−S.
In this case for every edge uv ∈ E(H), Gu∩Ci and Gv∩Ci are nonempty for
i = 1, 2. Therefore, by Lemma 3, for every edge uv ∈ E(H) there are at least
2λ(G) grey cross edges (that is, edges with one endvertex in Gu and the other
in Gv). As no G-fiber lies entirely in one connected component, we find that
for each vertex u ∈ V (H), there are at least λ(G) grey edges in the subgraph
induced by Gu. Summing up we infer that |S| ≥ λ(G)(|V (H)| + 2|E(H)|).
Moreover, if the equality holds, then by Lemma 3, for every edge uv ∈ E(H),
pG(Gu ∩ Ci) = pG(Gv ∩ Ci) for i = 1, 2. Since H is connected, this yields
case (ii) of the theorem.

Case 2. No H-fiber lies entirely in one connected component of G £
H − S. By reversing the roles of G and H we infer by Case 1 that |S| ≥
λ(H)(|V (G)| + 2|E(G)|). Moreover, if the equality holds, case (iii) of the
theorem occurs.
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Case 3. A G-fiber and an H-fiber exist that both lie in one and the
same connected component of G £ H − S. Without loss of generality we
may assume, there is a G-fiber with only white vertices, and an H-fiber with
only white vertices.

Set δ1 = δ(G) and δ2 = δ(H). Note that

δ(G £ H) = δ1δ2 + δ1 + δ2.

We may assume without loss of generality that δ1 ≥ δ2. Denote by W the
projection pH(W ′), where W ′ consists of the G-fibers that have only white
vertices. Since H is connected, there is a vertex y ∈ V (H) \ W that is
adjacent to some vertex in W . Since y is not in W there must be a black
vertex in Gy. In fact, a black vertex (x, y) in Gy exists that is adjacent to a
white vertex in Gy (this is because Gy does not contain only black vertices
and because G is connected).

Let D be the set of neighbors of y that lie in W , and let C be the set of
other neighbors of y, that is C = NH(y) \D. Set |D| = d, |C| = c, and note
that c+d ≥ δ2. Let K ′ be the set of black neighbors of (x, y) in Gy, and L′ the
set of white neighbors of (x, y) in Gy. Let L = pG(L′) and K = pG(K ′) be
the corresponding projections, and set |L| = `, |K| = k. Note that k+` ≥ δ1.
Also note that by the construction we have d ≥ 1, c ≥ 0, ` ≥ 1, and k ≥ 0.
See also Figure 3 where vertices whose color is not yet determined are grey.

Figure 1. Case 3 in the proof of the theorem.
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Note that in V (G)×D vertex (x, y) has d(k + ` + 1) neighbors that are all
white, hence the respective edges are all grey. Also, every vertex from K ′

(these are black vertices in Gy) has in V (G)×D at least d(δ1 +1) neighbors.
Summing this up for all vertices of K ′ we find there are at least kd(δ1 + 1)
grey edges. Next, (x, y) and its (white) neighbors from L′ yield another
` grey edges. Consider now the vertices from L × C and note they are
adjacent to (x, y). Let (u, v) be an arbitrary vertex from L × C. If (u, v)
is white, we find that the edge between (x, y) and (u, v) is grey. On the
other hand, if (u, v) is black, then the edge between (u, y) and (u, v) is grey.
In any case, each vertex of L × C is incident with at least one grey edge,
which yields another ` · c grey edges. Finally, the same argument can be
applied for vertices from {x} × C. They are all neighbors of (x, y) and also
of (u, y) ∈ L′. Hence we get c grey edges that have an endvertex in {x}×C.

Summing all up, we find the following inequality:

|S| ≥ d(k + ` + 1) + kd(δ1 + 1) + `c + ` + c.

Modifying the right-hand side a little, and noting that

(` + kd) + (c + d) ≥ δ1 + δ2

we infer

(3) |S| ≥ d(k + `) + kdδ1 + `c + δ1 + δ2.

Now, we distinguish two cases.

Case 3.1. c ≥ δ2.
Then `c ≥ `δ2, kdδ1 ≥ kδ2 (since by assumption δ1 ≥ δ2), and d(k + `) > 0.
Combining this with (3) we infer

|S| > kδ2 + `δ2 + δ1 + δ2 = (k + `)δ2 + δ1 + δ2 ≥ δ1δ2 + δ1 + δ2,

as desired.

Case 3.2. c < δ2.
Now d(k + `) ≥ dδ1 and kdδ1 ≥ kdδ2 ≥ kdc ≥ kc (in fact kdδ1 > kc, unless
k = 0). Hence

d(k + `) + kdδ1 + `c ≥ δ1d + kc + `c = δ1d + (k + `)c ≥ δ1(d + c) ≥ δ1δ2.
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Combining this and (3) we derive

|S| ≥ δ1δ2 + δ1 + δ2.

In addition, we observe that |S| is strictly greater than δ(G £ H) unless
k = 0 (since in the first case |S| is strictly greater than δ(G £ H)).

Hence we may assume that k = 0, that is, (x, y) has no black neighbors
in Gy. If there is some other black vertex (u, v) 6= (x, y) in G£H, then v 6= y
and we can choose (u, v) so that (u, v) has a white neighbor in Gv. This yields
an additional grey edge in the Gv-fiber. But then |S| > degG£H(x, y) ≥
δ(G £ H), a contradiction with S being a λ-set. We conclude that (x, y) is
the only black vertex and so the case (i) of the theorem occurs.

4. Concluding Remarks

Usually, when one takes two graphs G and H, the minimum for λ(G £ H)
will be achieved in δ(G £ H) (for instance, if G and H are paths or cycles).
To see that also the other two cases of the theorem are applicable we present
the following example.

Let G be obtained from the disjoint union of complete graphs Kp and Kr

by adding a bridge (any edge between two vertices of the complete graphs).
Let H be the complete graph Km such that m < p ≤ r. Then δ(G £ H) =
pm − 1 while λ(G)(|V (H)| + 2|E(H)|) = m2 which is less than pm − 1 as
soon as m ≥ 2.

It might be an interesting problem to characterize strong products of
graphs for which λ-sets have the structure from case (i) of the theorem.

The problem of finding a result similar to Theorem 1 for the edge-
connectivity (and also vertex-connectivity) of the direct product of graphs
seems to be very intriguing (we believe it is more difficult than the case of
strong product).
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