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Abstract

A cycle C is a vertex-dominating cycle if every vertex is adjacent to
some vertex of C. Bondy and Fan [4] showed that if G is a 2-connected
graph with δ(G) ≥ 1

3 (|V (G)| − 4), then G has a vertex-dominating
cycle. In this paper, we prove that if G is a 2-connected bipartite graph
with partite sets V1 and V2 such that δ(G) ≥ 1

3 (max{|V1|, |V2|}+ 1),
then G has a vertex-dominating cycle.
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1. Introduction

In this paper, we only consider finite undirected graphs without loops or
multiple edges. We denote the degree of a vertex x in a graph G by dG(x).
Let δ(G) be the minimum degree of a graph G. We denote the number of
components of G by ω(G). A connected graph G is defined to be t-tough if
|S| ≥ t·ω(G−S) for every cutset S of V (G). The toughness of G, denoted by
t(G), is the maximum value of t for which G is t-tough (taking t(Kn) = ∞
for all n ≥ 1). A set S of vertices in a graph G is said to be d-stable if the
distance of each pair of distinct vertices in S is at least d.

In 1960, Ore introduced a degree sum condition for hamiltonian cycles.

Theorem 1 (Ore [8]). Let G be a graph on n ≥ 3 vertices. If dG(x) +
dG(y) ≥ n for any nonadjacent vertices x and y, then G is hamiltonian.
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It is observed that weaker conditions guarantee the existence of hamiltonian
cycles by putting a further assumption on graphs. For example, Jung (1972)
and Moon and Moser (1963) showed that weaker degree sum conditions
guarantee hamiltonian cycles in 1-tough graphs and in bipartite graphs,
respectively.

Theorem 2 (Jung [6]). Let G be a 1-tough graph of order n ≥ 11. If
dG(x) + dG(y) ≥ n − 4 for any nonadjacent vertices x and y, then G is
hamiltonian.

Theorem 3 (Moon and Moser [7]). Let G be a bipartite graph with partite
sets V1 and V2, where |V1| = |V2| = n. If dG(x) + dG(y) ≥ n + 1 for each
pair of nonadjacent vertices x ∈ V1 and y ∈ V2, then G is hamiltonian.

A cycle C is a dominating cycle if every edge is incident with some vertex of
C. A cycle C is called a vertex-dominating cycle if every vertex is adjacent to
some vertex of C. A dominating cycle is can be consider as a generalization
of a hamiltonian cycle, and a vertex-dominating cycle as a generalization
of a dominating cycle. Therefore there may be weaker sufficient conditions
for the existence of dominating cycles or vertex-dominating cycles which
correspond to that for hamiltonicity.

Bondy (1980) and Bondy and Fan (1987) gave a degree sum condition
for dominating cycles and vertex-dominating cycles, respectively.

Theorem 4 (Bondy [3]). Let G be a 2-connected graph on n vertices. If
dG(x) + dG(y) + dG(z) ≥ n + 2 for any independent set of three vertices x,
y and z, then any longest cycle is a dominating cycle.

Theorem 5 (Bondy and Fan [4]). Let k ≥ 2 and let G be a k-connected
graph on n vertices. If

∑
x∈S dG(x) ≥ n − 2k for every 3-stable set S of G

of order k + 1, then G has a vertex-dominating cycle.

Like hamiltonian cycles, some sufficient conditions for the existence of dom-
inating cycles can be relaxed if we put a further assumption on a graph. In
1989, Bauer, Veldman, Morgana and Schmeichel showed the following result
for 1-tough graphs.

Theorem 6 (Bauer et al. [2]). Let G be a 1-tough graph of order n. If
dG(x) + dG(y) + dG(z) ≥ n for any independent set of three vertices x, y
and z, then any longest cycle in G is a dominating cycle.
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In 1984, Ash and Jackson gave a minimum degree condition for a bipartite
graph.

Theorem 7 (Ash and Jackson [1]). Let G be a 2-connected bipartite graph
with partite sets V1 and V2, where max{|V1|, |V2|} = n. If δ(G) ≥ (n + 3)/3,
then there exists a longest cycle which is a dominating cycle.

In 2003, Saito and the author showed that Theorem 5 also admits a similar
relaxation under an additional assumption on toughness.

Theorem 8 (Saito and Yamashita [9]). Let k ≥ 2 and G be a k-connected
graph on n vertices with t(G) > k/(k + 1). If

∑
x∈S dG(x) ≥ n− 2k − 2 for

every 4-stable set S of order k + 1, then G has a vertex-dominating cycle.

In this paper, we give a minimum degree condition for a bipartite graph to
have a vertex-dominating cycle.

Theorem 9. Let G be a 2-connected bipartite graph with partite sets V1

and V2, where max{|V1|, |V2|} = n. If δ(G) ≥ (n + 1)/3, then G has a
vertex-dominating cycle.

In Theorem 9, the degree condition is sharp in the following sense. Let
mi, ni be positive integers, where 1 ≤ i ≤ 3. The graph G is obtained from
Km1,n1 ∪Km2,n2 ∪Km3,n3 , by adding new two vertices x and y, and joining
both x and y to every vertex in three partite sets of order ni. It is easy to
see that G is a 2-connected bipartite graph with partite sets V1 and V2 and
δ(G) ≤ max{|V1|, |V2|}/3, but has no vertex-dominating cycle.

2. Proof of Theorem 9

Before proving Theorem 9, we prepare some definitions and notations, and
refer to Diestel [5] for terminology and notations not defined here. For a
subgraph H of G and a vertex x ∈ V (G)− V (H), we also denote NH(x) :=
NG(x)∩V (H) and dH(x) := |NH(x)|. For X ⊂ V (G), NG(X) denote the set
of vertices in G−X which are adjacent to some vertex in X. Furthermore, for
a subgraph H of G and X ⊂ V (G)− V (H), we sometimes write NH(X) :=
NG(X)∩V (H). If there is no fear of confusion, we often identify a subgraph
H of a graph G with its vertex set V (H). For example, we often write G−H
instead of G− V (H).
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We write a cycle C with a given orientation by
−→
C . For x, y ∈ V (C), we

denote by C[x, y] a path from x to y on
−→
C . The reverse sequence of C[x, y] is

denoted by
←−
C [y, x]. We define C(x, y] = C[x, y]−{x}, C[x, y) = C[x, y]−{y}

and C(x, y) = C[x, y]−{x, y}. For convenience, we consider C[x, x) = ∅. For
x ∈ V (C), we denote the successor and the predecessor of x on

−→
C by x+ and

x−, respectively. A path P connecting x and y is denoted by P [x, y]. For a
subgraph H of G, a path P [x, y] is called an H-path if P [x, y]∩V (H) = {x, y}
and E(H) ∩ E(P ) = ∅.

Let S and T be subsets of V (G). Then S is said to dominate T if every
vertex in T either belongs to S or has a neighbor in S. If S dominates V (G),
then S is called a dominating set.

We define the following sets Fk and Hk of graphs for each odd integer
k ≥ 5. Let l, b1, b2, . . . , bl be integers with l ≥ 3 and bi ≥ (k+1)/2 (1 ≤ i ≤ l).
Let

⋃l
i=1 K(k−3)/2,bi

denote the vertex-disjoint union of K(k−3)/2,bi
for all

i ∈ {1, 2, . . . , l}. Then the graph Fk,b1,...,bl
is obtained from

⋃l
i=1 K(k−3)/2,bi

by adding two new vertices x and y, and joining both x and y to every vertex
of

⋃l
i=1 K(k−3)/2,bi

whose degree in
⋃l

i=1 K(k−3)/2,bi
is (k − 3)/2. Let Fk be

the set of all such graphs. To define Hk, let m, c1, . . . , cm be integers at
least (k + 1)/2. The graph Hk,c1,...,cm is obtained from

⋃m
i=1 K1,ci by adding

(k − 1)/2 new vertices x1, . . . , x(k−1)/2, and joining each xi to every vertex
of

⋃m
i=1 K1,ci whose degree in

⋃m
i=1 K1,ci is 1. Let Hk be the set of all such

graphs.

Figure 1. Fk and Hk

To prove Theorem 9, we use the following result due to Wang.

Theorem 10 (Wang [10]). Let k ≥ 2 and let G be a 2-connected bipartite
graph with partite sets V1 and V2. If dG(x) + dG(y) ≥ k + 1 for every pair
of nonadjacent vertices x and y, then G contains a cycle of length at least
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min{2a, 2k} where a = min{|V1|, |V2|}, unless 5 ≤ k ≤ a, k is odd and
G ∈ Fk ∪Hk.

Proof of Theorem 9. Suppose that G has no vertex-dominating cycle.
Let C be a longest cycle in G such that ω(G − C) is as small as possible,
and let |V1| = n1, |V2| = n2 and n1 ≤ n2.

Claim 1. |C| = 2
3(2n2 − 1) and |V2 − C| = 1

3(n2 + 1).

Proof. First suppose that G ∈ Fk. Since δ(G) = 1
2(k + 1) and l ≥ 3, we

have

1
3
(n2 + 1) =

1
3

(
l∑

i=1

bi + 1

)
≥ 1

3

(
l(k + 1)

2
+ 1

)
=

l

3
δ(G) +

1
3

> δ(G).

This contradicts the degree condition. Hence G /∈ Fk. Next suppose that
G ∈ Hk. Since δ(G) = 1

2(k + 1) and m ≥ 3, we get

1
3
(n2 + 1) =

1
3

(
m∑

i=1

ci + 1

)
≥ 1

3

(
m(k + 1)

2
+ 1

)
=

m

3
δ(G) +

1
3

> δ(G),

a contradiction. Therefore G /∈ Hk.
Since dG(x) + dG(y) ≥ 2

3(n2 + 1) = 1
3(2n2 − 1) + 1 for any x, y ∈ V (G),

we obtain |C| ≥ min
{
2n1,

2
3(2n2 − 1)

}
by Theorem 10. Suppose that |C| ≥

2n1. Then V1 ⊂ V (C). Since G is 2-connected, NC(v2) 6= ∅ for any v2 ∈
V2−C. Hence C is a vertex-dominating cycle, a contradiction. Suppose that
|C| > 2

3(2n2 − 1). Then |V1 −C| ≤ |V2 −C| < n2 − 1
3(2n2 − 1) = 1

3(n2 + 1).
Since δ(G) ≥ 1

3(n2 + 1), NC(v) 6= ∅ for any v ∈ V (G − C), that is, C is a
vertex-dominating cycle, a contradiction. Thus we obtain |C| = 2

3(2n2 − 1)
and |V2 − C| = 1

3(n2 + 1).

Note that 2
3(2n2 − 1) and 1

3(n2 + 1) are integers. We shall partition Vi − C
(i = 1, 2) into three subsets as follows:

Xi := {xi ∈ Vi − C : NC(xi) 6= ∅, NG−C(xi) 6= ∅},

Yi := {yi ∈ Vi − C : NG−C(yi) = ∅} and

Zi := {zi ∈ Vi − C : NC(zi) = ∅}.

Claim 2. For any x2 ∈ X2, |NC(x2)| ≥ 1
3(n2 + 1)− (|X1|+ |Z1|) ≥ |Y1|.
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Proof. By the degree condition, for any x2 ∈ X2, |NC(x2)| ≥ δ(G)−
(|X1|+ |Z1|) ≥ 1

3(n2 + 1)− (|X1|+ |Z1|). Moreover, it follows from Claim 1
that |NC(x2)| ≥ 1

3(n2 + 1)− (|X1|+ |Z1|) ≥ 1
3(n2 + 1)− (

1
3(n2 + 1)− |Y1|

)
≥ |Y1|.

Claim 3. Let zi ∈ Zi. Then NG(zi) = V3−i−C and |V3−i−C| = 1
3(n2 + 1).

Proof. Suppose that zi ∈ Zi. By Claim 1 and the definition of Zi,
1
3(n2 + 1) ≥ |V3−i − C| ≥ dG(zi) ≥ 1

3(n2 + 1). This implies |V3−i − C| =
dG(zi) = 1

3(n2 + 1), and so NG(zi) = V3−i − C and |V3−i − C| = 1
3(n2 + 1).

Claim 4. Z1 or Z2 is non-empty. If Z2 is not empty, then |V1| = |V2| and
Y1 is empty.

Proof. If Z1 = ∅ and Z2 = ∅, then C is a vertex-dominating cycle. Hence
Z1 6= ∅ or Z2 6= ∅. If Z2 6= ∅ then, by Claims 1 and 3, |V1−C| = |V2−C| =
1
3(n2 + 1), that is, |V1| = |V2|. By Claim 3 and the definition of Yi, we have
Y1 = ∅.
In view of Claim 4 and the symmetry, we may assume in the rest of the
proof that Z1 is non-empty and consequently Y2 is empty.

If X2 = ∅, let xa, xb ∈ X1; otherwise let xa ∈ X1 ∪X2 and xb ∈ X2. By
Claims 3 and 4, X1 ∪X2 ∪ Z1 ∪ Z2 is contained in a component of G − C.
Hence there exists a path P0[xa, xb] in G−C. We can choose xa, xb such that
(i) a ∈ NC(xa) and b ∈ NC(xb) (a 6= b) are as close as possible on C, and
(ii) |P0| is as large as possible, subject to (i). Let C0 = xbC[b, a]P0[xa, xb],
Ui := C(b, a) ∩ Vi and U ′

i := C(a, b) ∩ Vi. We give an orientation on C such
that |C(a, b)| ≤ |C(b, a)|. By the choice of xa and xb, we have

(1) |C(a, b)| ≤ 1
2
|C| − 1 =

1
3
(2n2 − 1)− 1 = 2

(
1
3
(n2 + 1)− 1

)
.

Claim 5. C[b, a] dominates X1 ∪X2 ∪ Y1 ∪ U1.

Proof. By the choice of xa and xb, NG(x)∩C(a, b) = ∅ for any x ∈ X1∪X2.
Hence NG(x)∩C[b, a] 6= ∅ for any x ∈ X1∪X2, and so C[b, a] dominates X1

and X2. It follows from (1) that |U2| ≤ 1
3(n2 + 1)− 1. Therefore NG(y1) ∩

C[b, a] 6= ∅ for any y1 ∈ Y1. Moreover, by the choice of xa and xb, NG(U1)∩
X2 = ∅, and so NG(u1)∩C[b, a] 6= ∅ for any u1 ∈ U1. Hence C[b, a] dominates
Y1 and U1.
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Case 1. |C(a, b)| is even.
Then xa ∈ X1 and xb ∈ X2. By Claim 3, {xa, xb} dominates Z1 and Z2.
Hence if C0 dominates U2 then by Claim 5, C0 is a vertex-dominating cycle.
Thus, we may assume that C0 does not dominate U2, that is, there exists
u2 ∈ U2 such that NG(u2) ⊂ U1 ∪ Y1. By the degree condition, we have

(2)
1
3
(n2 + 1) ≤ dG(u2) ≤ |U1|+ |Y1| ≤ 1

2
|C(a, b)|+ |Y1|,

and by Claim 1,

(3) |C| = 3
2
(2n2 − 1) ≤ 2|C(a, b)|+ 4|Y1| − 2.

By combining (1) and (2), we have |Y1| ≥ 1. Assume that |Y1| ≥ 2. Since
u2 6= b−, |C(a, b)| ≥ 4. It follows from Claim 2 and (3) that

(|NC(X2)|+ 1)(|C(a, b)|+ 1)− |C|
≥ (|Y1|+ 1)(|C(a, b)|+ 1)− (2|C(a, b)|+ 4|Y1| − 2)

= (|Y1| − 1)(|C(a, b)| − 3) > 0,

and so (|NC(X2)|+1)(|C(a, b)|+1) > |C|. On the other hand, by the choice
of xa and xb, C − NC({xa} ∪ X2) consists of at least |NC(X2)| + 1 paths
of order at least |C(a, b)|. This implies |C| ≥ (|NC(X2)|+ 1)(|C(a, b)|+ 1).
Thus we get a contradiction.

Hence |Y1| = 1, say y1 ∈ Y1. By (1) and (2), |C(a, b)| = |C(b, a)| =
2

(
1
3(n2 + 1)− 1

)
. Therefore NC(X1∪X2) = {a, b}, and so {a, b} dominates

X1 and X2. By using the same argument as the proof of Claim 5, C[a, b]
dominates U ′

1 and Y1. Hence there exists u′2 ∈ U ′
2 such that NG(u′2) ⊂

U ′
1∪Y1, otherwise xaC[a, b]xbP0xa is a vertex-dominating cycle. Since |U1| =
|U ′

1| = 1
3(n2 + 1)− 1, we see that y1 ∈ NG(u2) and y1 ∈ NG(u′2).

Let v′2 ∈ C(a, u′2] and v2 ∈ C(b, u2] such that (i) y1 ∈ NG(v2) and
y1 ∈ NG(v′2) and (ii) C(a, v′2] ∪ C(b, v2] is inclusion-minimal, subject to (i).
By the existence of the C-path v2y1v

′
2, there exists a C-path P1[w2, w

′
2] join-

ing C(b, v2] and C(a, v′2]. Choose P1 such that C(a,w′2]∪C(b, w2] is inclusion-
minimal. By the choice of v′2 and P1, N(w)∩(Y1∪C(b, w2)) = ∅ for any w ∈
C(a,w′2). Thus, since |C(a,w′2)| ≤ |C(a, b)| ≤ 2

(
1
3(n2 + 1)− 1

)
, N(w) ∩

(C[w′2, b] ∪ C[w2, a]) 6= ∅ for any w ∈ C(a,w′2). Hence C[w′2, b] ∪ C[w2, a]
dominates C(a,w′2). Similarly, C[w′2, b]∪C[w2, a] dominates C(b, w2). More-
over, since u2 ∈ C[b, w′2]∪C[w2, a], C[w′2, b]∪C[w2, a] dominates Y1. Hence
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xa
←−
C [a,w2)P1[w2, w

′
2]C(w′2, b]P0[xb, xa] is a vertex-dominating cycle. This

completes the proof of Case 1.

Case 2. |C(a, b)| is odd.
Note that xa ∈ Xi and xb ∈ Xi for i = 1 or i = 2.

Case 2.1. Z2 = ∅.
Then X2 6= ∅ and |X2| = 1

3(n2 + 1), otherwise C is a hamiltonian cycle by
Claim 4. By the choice of xa and xb, note that xa, xb ∈ X2. By Claim
3, {xa, xb} dominates Z1. Hence there exists u2 ∈ U2 such that NG(u2) ⊂
U1 ∪ Y1, otherwise C0 is a vertex-dominating cycle. Since u2 6= a+, b−, we
have

(4) |C(a, b)| ≥ 5.

Since a+, b− ∈ V2 and |C(a, b)| is odd,

(5)
1
3
(n2 + 1) ≤ dG(u2) ≤ |U1|+ |Y1| ≤ 1

2
(|C(a, b)| − 1) + |Y1|,

and by Claim 1,

(6) |C| = 2
3
(2n2 − 1) ≤ 2|C(a, b)|+ 4|Y1| − 4.

By (1) and (5), we have |Y1| ≥ 2. Since C −NC(X2) has at least |NC(X2)|
paths of order at least |C(a, b)|, we have |C| ≥ |NC(X2)|(|C(a, b)| + 1).
Assume that |Y1| ≥ 4. It follows from Claim 2, (4) and (6) that

|NC(X2)|(|C(a, b)|+ 1)− |C|
≥ |Y1|(|C(a, b)|+ 1)− (2|C(a, b)|+ 4|Y1| − 4)

= (|Y1| − 2)(|C(a, b)| − 3)− 2 > 0,

a contradiction. Therefore |Y1| = 2 or |Y1| = 3.

Claim 6. (i) X1 = ∅,
(ii) |Z1| = 1

3(n2 + 1)− |Y1| and
(iii) NC(X2) = NC(x2) for any x2 ∈ X2.
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Proof. First, suppose that X1 6= ∅, say x1 ∈ X1. Since C−NC({x1}∪X2)
has at least |NC(X2)|+1 paths of order at least |C(a, b)|, |C| ≥ |NC({x1}∪
X2)|(|C(a, b)|+ 1). By Claim 2, (4) and (6),

|NC({x1} ∪X2)|(|C(a, b)|+ 1)− |C|
≥ (|Y1|+ 1)(|C(a, b)|+ 1)− (2|C(a, b)|+ 4|Y1| − 4)

= (|Y1| − 1)(|C(a, b)| − 3) + 2 > 0,

a contradiction. Next suppose that |Z1| < 1
3(n2 + 1) − |Y1| or NC(X2) >

NC(x2) for some x2 ∈ X2. Then, by Claim 2, |NC(X2)| ≥ |Y1| + 1. By a
similar argument as above, we obtain a contradiction.

Since |Y1| ≥ 2, we have |X2| ≥ 2 and by Claim 6 (iii), we can choose
xa, xb with xa 6= xb. By Claim 3 and Claims 6 (i) and (ii), we obtain
|P0| = |X2| + |Z1| − |Y1| + 1 = 2

3(n2 + 1) − 2|Y1| + 1. On the other hand,
by (1) and (5), |C(a, b)| = 2

3(n2 + 1)− 2|Y1|+ 1. Hence C0 and C have the
same length. Since C(a, b) ∪ Y1 is contained in a component of G− C0 and
|X2−P0| = |Y1|−1, we have ω(G−C0) = |Y1|. Note that ω(G−C) = |Y1|+1.
Therefore ω(G− C) > ω(G− C0). This contradicts the choice of C.

Case 2.2. Z2 6= ∅.
Then Y1 = ∅ by Claim 3. Since |U1| ≤ 1

3(n2 + 1)− 1, N(u2)∩C[b, a] 6= ∅ for
any u2 ∈ U2, that is, C[b, a] dominates U2. Suppose that xa 6= xb. By Claim
3, P0[xa, xb] dominates Z1 and Z2, and so C0 is a vertex-dominating cycle.
Therefore xa = xb. By the 2-connectivity of G and the choice of xa and
xb, there exists xd ∈ X1 ∪X2 such that xd 6= xa and NC(xd) ∩ C(b, a) 6= ∅,
say d ∈ NC(xd) ∩ C(b, a). Choose xd such that min{|C(b, d)|, |C(d, a)|} as
small as possible. Without loss of generality, we may assume that |C(b, d)| ≥
|C(d, a)|. By the choice of xd, C[a, d] dominates X1 and X2. By Claim 3,
there exists a path P3[xa, xd] in G− C, which dominates Z1 and Z2. Since
|C[a, b]| ≥ 3, we have |C(d, a)| ≤ 1

2(|C|−2)−1 ≤ 2
(

1
3(n2 + 1)− 1

)−1. Since
|C(d, a)∩V1|, |C(d, a)∩V2| ≤ 1

3(n2 +1)−1 and Y1 = Y2 = ∅, we can see that
C[a, d] dominates C(d, a). Hence xaC[a, d]P3[xd, xa] is a vertex-dominating
cycle. This completes the proof of Case 2.2 and the proof of Theorem 9.
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