VERTEX-DOMINATING CYCLES IN 2-CONNECTED BIPARTITE GRAPHS

Tomoki Yamashita
Department of Mathematics
School of Dentistry, Asahi University
1851 Hozumi, Gifu 501-0296, Japan
e-mail: tomoki@dent.asahi-u.ac.jp

Abstract

A cycle C is a vertex-dominating cycle if every vertex is adjacent to some vertex of C. Bondy and Fan [4] showed that if G is a 2 -connected graph with $\delta(G) \geq \frac{1}{3}(|V(G)|-4)$, then G has a vertex-dominating cycle. In this paper, we prove that if G is a 2 -connected bipartite graph with partite sets V_{1} and V_{2} such that $\delta(G) \geq \frac{1}{3}\left(\max \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\}+1\right)$, then G has a vertex-dominating cycle.

Keywords: vertex-dominating cycle, dominating cycle, bipartite graph. 2000 Mathematics Subject Classification: 05C38, 05C45.

1. Introduction

In this paper, we only consider finite undirected graphs without loops or multiple edges. We denote the degree of a vertex x in a graph G by $d_{G}(x)$. Let $\delta(G)$ be the minimum degree of a graph G. We denote the number of components of G by $\omega(G)$. A connected graph G is defined to be t-tough if $|S| \geq t \cdot \omega(G-S)$ for every cutset S of $V(G)$. The toughness of G, denoted by $t(G)$, is the maximum value of t for which G is t-tough (taking $t\left(K_{n}\right)=\infty$ for all $n \geq 1$). A set S of vertices in a graph G is said to be d-stable if the distance of each pair of distinct vertices in S is at least d.

In 1960, Ore introduced a degree sum condition for hamiltonian cycles.
Theorem 1 (Ore [8]). Let G be a graph on $n \geq 3$ vertices. If $d_{G}(x)+$ $d_{G}(y) \geq n$ for any nonadjacent vertices x and y, then G is hamiltonian.

It is observed that weaker conditions guarantee the existence of hamiltonian cycles by putting a further assumption on graphs. For example, Jung (1972) and Moon and Moser (1963) showed that weaker degree sum conditions guarantee hamiltonian cycles in 1-tough graphs and in bipartite graphs, respectively.

Theorem 2 (Jung [6]). Let G be a 1-tough graph of order $n \geq 11$. If $d_{G}(x)+d_{G}(y) \geq n-4$ for any nonadjacent vertices x and y, then G is hamiltonian.

Theorem 3 (Moon and Moser [7]). Let G be a bipartite graph with partite sets V_{1} and V_{2}, where $\left|V_{1}\right|=\left|V_{2}\right|=n$. If $d_{G}(x)+d_{G}(y) \geq n+1$ for each pair of nonadjacent vertices $x \in V_{1}$ and $y \in V_{2}$, then G is hamiltonian.

A cycle C is a dominating cycle if every edge is incident with some vertex of C. A cycle C is called a vertex-dominating cycle if every vertex is adjacent to some vertex of C. A dominating cycle is can be consider as a generalization of a hamiltonian cycle, and a vertex-dominating cycle as a generalization of a dominating cycle. Therefore there may be weaker sufficient conditions for the existence of dominating cycles or vertex-dominating cycles which correspond to that for hamiltonicity.

Bondy (1980) and Bondy and Fan (1987) gave a degree sum condition for dominating cycles and vertex-dominating cycles, respectively.

Theorem 4 (Bondy [3]). Let G be a 2-connected graph on n vertices. If $d_{G}(x)+d_{G}(y)+d_{G}(z) \geq n+2$ for any independent set of three vertices x, y and z, then any longest cycle is a dominating cycle.

Theorem 5 (Bondy and Fan [4]). Let $k \geq 2$ and let G be a k-connected graph on n vertices. If $\sum_{x \in S} d_{G}(x) \geq n-2 k$ for every 3 -stable set S of G of order $k+1$, then G has a vertex-dominating cycle.

Like hamiltonian cycles, some sufficient conditions for the existence of dominating cycles can be relaxed if we put a further assumption on a graph. In 1989, Bauer, Veldman, Morgana and Schmeichel showed the following result for 1-tough graphs.

Theorem 6 (Bauer et al. [2]). Let G be a 1-tough graph of order n. If $d_{G}(x)+d_{G}(y)+d_{G}(z) \geq n$ for any independent set of three vertices x, y and z, then any longest cycle in G is a dominating cycle.

In 1984, Ash and Jackson gave a minimum degree condition for a bipartite graph.

Theorem 7 (Ash and Jackson [1]). Let G be a 2-connected bipartite graph with partite sets V_{1} and V_{2}, where $\max \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\}=n$. If $\delta(G) \geq(n+3) / 3$, then there exists a longest cycle which is a dominating cycle.

In 2003, Saito and the author showed that Theorem 5 also admits a similar relaxation under an additional assumption on toughness.

Theorem 8 (Saito and Yamashita [9]). Let $k \geq 2$ and G be a k-connected graph on n vertices with $t(G)>k /(k+1)$. If $\sum_{x \in S} d_{G}(x) \geq n-2 k-2$ for every 4 -stable set S of order $k+1$, then G has a vertex-dominating cycle.

In this paper, we give a minimum degree condition for a bipartite graph to have a vertex-dominating cycle.

Theorem 9. Let G be a 2 -connected bipartite graph with partite sets V_{1} and V_{2}, where $\max \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\}=n$. If $\delta(G) \geq(n+1) / 3$, then G has a vertex-dominating cycle.

In Theorem 9, the degree condition is sharp in the following sense. Let m_{i}, n_{i} be positive integers, where $1 \leq i \leq 3$. The graph G is obtained from $K_{m_{1}, n_{1}} \cup K_{m_{2}, n_{2}} \cup K_{m_{3}, n_{3}}$, by adding new two vertices x and y, and joining both x and y to every vertex in three partite sets of order n_{i}. It is easy to see that G is a 2 -connected bipartite graph with partite sets V_{1} and V_{2} and $\delta(G) \leq \max \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\} / 3$, but has no vertex-dominating cycle.

2. Proof of Theorem 9

Before proving Theorem 9, we prepare some definitions and notations, and refer to Diestel [5] for terminology and notations not defined here. For a subgraph H of G and a vertex $x \in V(G)-V(H)$, we also denote $N_{H}(x):=$ $N_{G}(x) \cap V(H)$ and $d_{H}(x):=\left|N_{H}(x)\right|$. For $X \subset V(G), N_{G}(X)$ denote the set of vertices in $G-X$ which are adjacent to some vertex in X. Furthermore, for a subgraph H of G and $X \subset V(G)-V(H)$, we sometimes write $N_{H}(X):=$ $N_{G}(X) \cap V(H)$. If there is no fear of confusion, we often identify a subgraph H of a graph G with its vertex set $V(H)$. For example, we often write $G-H$ instead of $G-V(H)$.

We write a cycle C with a given orientation by \vec{C}. For $x, y \in V(C)$, we denote by $C[x, y]$ a path from x to y on \vec{C}. The reverse sequence of $C[x, y]$ is denoted by $\overleftarrow{C}[y, x]$. We define $C(x, y]=C[x, y]-\{x\}, C[x, y)=C[x, y]-\{y\}$ and $C(x, y)=C[x, y]-\{x, y\}$. For convenience, we consider $C[x, x)=\emptyset$. For $x \in V(C)$, we denote the successor and the predecessor of x on \vec{C} by x^{+}and x^{-}, respectively. A path P connecting x and y is denoted by $P[x, y]$. For a subgraph H of G, a path $P[x, y]$ is called an H-path if $P[x, y] \cap V(H)=\{x, y\}$ and $E(H) \cap E(P)=\emptyset$.

Let S and T be subsets of $V(G)$. Then S is said to dominate T if every vertex in T either belongs to S or has a neighbor in S. If S dominates $V(G)$, then S is called a dominating set.

We define the following sets \mathcal{F}_{k} and \mathcal{H}_{k} of graphs for each odd integer $k \geq 5$. Let $l, b_{1}, b_{2}, \ldots, b_{l}$ be integers with $l \geq 3$ and $b_{i} \geq(k+1) / 2(1 \leq i \leq l)$. Let $\bigcup_{i=1}^{l} K_{(k-3) / 2, b_{i}}$ denote the vertex-disjoint union of $K_{(k-3) / 2, b_{i}}$ for all $i \in\{1,2, \ldots, l\}$. Then the graph $F_{k, b_{1}, \ldots, b_{l}}$ is obtained from $\bigcup_{i=1}^{l} K_{(k-3) / 2, b_{i}}$ by adding two new vertices x and y, and joining both x and y to every vertex of $\bigcup_{i=1}^{l} K_{(k-3) / 2, b_{i}}$ whose degree in $\bigcup_{i=1}^{l} K_{(k-3) / 2, b_{i}}$ is $(k-3) / 2$. Let \mathcal{F}_{k} be the set of all such graphs. To define \mathcal{H}_{k}, let m, c_{1}, \ldots, c_{m} be integers at least $(k+1) / 2$. The graph $H_{k, c_{1}, \ldots, c_{m}}$ is obtained from $\bigcup_{i=1}^{m} K_{1, c_{i}}$ by adding $(k-1) / 2$ new vertices $x_{1}, \ldots, x_{(k-1) / 2}$, and joining each x_{i} to every vertex of $\bigcup_{i=1}^{m} K_{1, c_{i}}$ whose degree in $\bigcup_{i=1}^{m} K_{1, c_{i}}$ is 1 . Let \mathcal{H}_{k} be the set of all such graphs.

Figure 1. \mathcal{F}_{k} and \mathcal{H}_{k}
To prove Theorem 9 , we use the following result due to Wang.
Theorem 10 (Wang [10]). Let $k \geq 2$ and let G be a 2-connected bipartite graph with partite sets V_{1} and V_{2}. If $d_{G}(x)+d_{G}(y) \geq k+1$ for every pair of nonadjacent vertices x and y, then G contains a cycle of length at least
$\min \{2 a, 2 k\}$ where $a=\min \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\}$, unless $5 \leq k \leq a, k$ is odd and $G \in \mathcal{F}_{k} \cup \mathcal{H}_{k}$.

Proof of Theorem 9. Suppose that G has no vertex-dominating cycle. Let C be a longest cycle in G such that $\omega(G-C)$ is as small as possible, and let $\left|V_{1}\right|=n_{1},\left|V_{2}\right|=n_{2}$ and $n_{1} \leq n_{2}$.

Claim 1. $|C|=\frac{2}{3}\left(2 n_{2}-1\right)$ and $\left|V_{2}-C\right|=\frac{1}{3}\left(n_{2}+1\right)$.
Proof. First suppose that $G \in \mathcal{F}_{k}$. Since $\delta(G)=\frac{1}{2}(k+1)$ and $l \geq 3$, we have

$$
\frac{1}{3}\left(n_{2}+1\right)=\frac{1}{3}\left(\sum_{i=1}^{l} b_{i}+1\right) \geq \frac{1}{3}\left(\frac{l(k+1)}{2}+1\right)=\frac{l}{3} \delta(G)+\frac{1}{3}>\delta(G) .
$$

This contradicts the degree condition. Hence $G \notin \mathcal{F}_{k}$. Next suppose that $G \in \mathcal{H}_{k}$. Since $\delta(G)=\frac{1}{2}(k+1)$ and $m \geq 3$, we get

$$
\frac{1}{3}\left(n_{2}+1\right)=\frac{1}{3}\left(\sum_{i=1}^{m} c_{i}+1\right) \geq \frac{1}{3}\left(\frac{m(k+1)}{2}+1\right)=\frac{m}{3} \delta(G)+\frac{1}{3}>\delta(G),
$$

a contradiction. Therefore $G \notin \mathcal{H}_{k}$.
Since $d_{G}(x)+d_{G}(y) \geq \frac{2}{3}\left(n_{2}+1\right)=\frac{1}{3}\left(2 n_{2}-1\right)+1$ for any $x, y \in V(G)$, we obtain $|C| \geq \min \left\{2 n_{1}, \frac{2}{3}\left(2 n_{2}-1\right)\right\}$ by Theorem 10. Suppose that $|C| \geq$ $2 n_{1}$. Then $V_{1} \subset V(C)$. Since G is 2 -connected, $N_{C}\left(v_{2}\right) \neq \emptyset$ for any $v_{2} \in$ $V_{2}-C$. Hence C is a vertex-dominating cycle, a contradiction. Suppose that $|C|>\frac{2}{3}\left(2 n_{2}-1\right)$. Then $\left|V_{1}-C\right| \leq\left|V_{2}-C\right|<n_{2}-\frac{1}{3}\left(2 n_{2}-1\right)=\frac{1}{3}\left(n_{2}+1\right)$. Since $\delta(G) \geq \frac{1}{3}\left(n_{2}+1\right), N_{C}(v) \neq \emptyset$ for any $v \in V(G-C)$, that is, C is a vertex-dominating cycle, a contradiction. Thus we obtain $|C|=\frac{2}{3}\left(2 n_{2}-1\right)$ and $\left|V_{2}-C\right|=\frac{1}{3}\left(n_{2}+1\right)$.
Note that $\frac{2}{3}\left(2 n_{2}-1\right)$ and $\frac{1}{3}\left(n_{2}+1\right)$ are integers. We shall partition $V_{i}-C$ ($i=1,2$) into three subsets as follows:

$$
\begin{aligned}
& X_{i}:=\left\{x_{i} \in V_{i}-C: N_{C}\left(x_{i}\right) \neq \emptyset, N_{G-C}\left(x_{i}\right) \neq \emptyset\right\}, \\
& Y_{i}:=\left\{y_{i} \in V_{i}-C: N_{G-C}\left(y_{i}\right)=\emptyset\right\} \text { and } \\
& Z_{i}:=\left\{z_{i} \in V_{i}-C: N_{C}\left(z_{i}\right)=\emptyset\right\} .
\end{aligned}
$$

Claim 2. For any $x_{2} \in X_{2},\left|N_{C}\left(x_{2}\right)\right| \geq \frac{1}{3}\left(n_{2}+1\right)-\left(\left|X_{1}\right|+\left|Z_{1}\right|\right) \geq\left|Y_{1}\right|$.

Proof. By the degree condition, for any $x_{2} \in X_{2},\left|N_{C}\left(x_{2}\right)\right| \geq \delta(G)-$ $\left(\left|X_{1}\right|+\left|Z_{1}\right|\right) \geq \frac{1}{3}\left(n_{2}+1\right)-\left(\left|X_{1}\right|+\left|Z_{1}\right|\right)$. Moreover, it follows from Claim 1 that $\left|N_{C}\left(x_{2}\right)\right| \geq \frac{1}{3}\left(n_{2}+1\right)-\left(\left|X_{1}\right|+\left|Z_{1}\right|\right) \geq \frac{1}{3}\left(n_{2}+1\right)-\left(\frac{1}{3}\left(n_{2}+1\right)-\left|Y_{1}\right|\right)$ $\geq\left|Y_{1}\right|$.

Claim 3. Let $z_{i} \in Z_{i}$. Then $N_{G}\left(z_{i}\right)=V_{3-i}-C$ and $\left|V_{3-i}-C\right|=\frac{1}{3}\left(n_{2}+1\right)$.
Proof. Suppose that $z_{i} \in Z_{i}$. By Claim 1 and the definition of Z_{i}, $\frac{1}{3}\left(n_{2}+1\right) \geq\left|V_{3-i}-C\right| \geq d_{G}\left(z_{i}\right) \geq \frac{1}{3}\left(n_{2}+1\right)$. This implies $\left|V_{3-i}-C\right|=$ $d_{G}\left(z_{i}\right)=\frac{1}{3}\left(n_{2}+1\right)$, and so $N_{G}\left(z_{i}\right)=V_{3-i}-C$ and $\left|V_{3-i}-C\right|=\frac{1}{3}\left(n_{2}+1\right)$.

Claim 4. Z_{1} or Z_{2} is non-empty. If Z_{2} is not empty, then $\left|V_{1}\right|=\left|V_{2}\right|$ and Y_{1} is empty.
$\boldsymbol{P r o o f}$. If $Z_{1}=\emptyset$ and $Z_{2}=\emptyset$, then C is a vertex-dominating cycle. Hence $Z_{1} \neq \emptyset$ or $Z_{2} \neq \emptyset$. If $Z_{2} \neq \emptyset$ then, by Claims 1 and $3,\left|V_{1}-C\right|=\left|V_{2}-C\right|=$ $\frac{1}{3}\left(n_{2}+1\right)$, that is, $\left|V_{1}\right|=\left|V_{2}\right|$. By Claim 3 and the definition of Y_{i}, we have $Y_{1}=\emptyset$.

In view of Claim 4 and the symmetry, we may assume in the rest of the proof that Z_{1} is non-empty and consequently Y_{2} is empty.

If $X_{2}=\emptyset$, let $x_{a}, x_{b} \in X_{1}$; otherwise let $x_{a} \in X_{1} \cup X_{2}$ and $x_{b} \in X_{2}$. By Claims 3 and $4, X_{1} \cup X_{2} \cup Z_{1} \cup Z_{2}$ is contained in a component of $G-C$. Hence there exists a path $P_{0}\left[x_{a}, x_{b}\right]$ in $G-C$. We can choose x_{a}, x_{b} such that (i) $a \in N_{C}\left(x_{a}\right)$ and $b \in N_{C}\left(x_{b}\right)(a \neq b)$ are as close as possible on C, and (ii) $\left|P_{0}\right|$ is as large as possible, subject to (i). Let $C_{0}=x_{b} C[b, a] P_{0}\left[x_{a}, x_{b}\right]$, $U_{i}:=C(b, a) \cap V_{i}$ and $U_{i}^{\prime}:=C(a, b) \cap V_{i}$. We give an orientation on C such that $|C(a, b)| \leq|C(b, a)|$. By the choice of x_{a} and x_{b}, we have

$$
\begin{equation*}
|C(a, b)| \leq \frac{1}{2}|C|-1=\frac{1}{3}\left(2 n_{2}-1\right)-1=2\left(\frac{1}{3}\left(n_{2}+1\right)-1\right) \tag{1}
\end{equation*}
$$

Claim 5. $C[b, a]$ dominates $X_{1} \cup X_{2} \cup Y_{1} \cup U_{1}$.
Proof. By the choice of x_{a} and $x_{b}, N_{G}(x) \cap C(a, b)=\emptyset$ for any $x \in X_{1} \cup X_{2}$. Hence $N_{G}(x) \cap C[b, a] \neq \emptyset$ for any $x \in X_{1} \cup X_{2}$, and so $C[b, a]$ dominates X_{1} and X_{2}. It follows from (1) that $\left|U_{2}\right| \leq \frac{1}{3}\left(n_{2}+1\right)-1$. Therefore $N_{G}\left(y_{1}\right) \cap$ $C[b, a] \neq \emptyset$ for any $y_{1} \in Y_{1}$. Moreover, by the choice of x_{a} and $x_{b}, N_{G}\left(U_{1}\right) \cap$ $X_{2}=\emptyset$, and so $N_{G}\left(u_{1}\right) \cap C[b, a] \neq \emptyset$ for any $u_{1} \in U_{1}$. Hence $C[b, a]$ dominates Y_{1} and U_{1}.

Case 1. $|C(a, b)|$ is even.
Then $x_{a} \in X_{1}$ and $x_{b} \in X_{2}$. By Claim 3, $\left\{x_{a}, x_{b}\right\}$ dominates Z_{1} and Z_{2}. Hence if C_{0} dominates U_{2} then by Claim $5, C_{0}$ is a vertex-dominating cycle. Thus, we may assume that C_{0} does not dominate U_{2}, that is, there exists $u_{2} \in U_{2}$ such that $N_{G}\left(u_{2}\right) \subset U_{1} \cup Y_{1}$. By the degree condition, we have

$$
\begin{equation*}
\frac{1}{3}\left(n_{2}+1\right) \leq d_{G}\left(u_{2}\right) \leq\left|U_{1}\right|+\left|Y_{1}\right| \leq \frac{1}{2}|C(a, b)|+\left|Y_{1}\right| \tag{2}
\end{equation*}
$$

and by Claim 1,

$$
\begin{equation*}
|C|=\frac{3}{2}\left(2 n_{2}-1\right) \leq 2|C(a, b)|+4\left|Y_{1}\right|-2 . \tag{3}
\end{equation*}
$$

By combining (1) and (2), we have $\left|Y_{1}\right| \geq 1$. Assume that $\left|Y_{1}\right| \geq 2$. Since $u_{2} \neq b^{-},|C(a, b)| \geq 4$. It follows from Claim 2 and (3) that

$$
\begin{aligned}
& \left(\left|N_{C}\left(X_{2}\right)\right|+1\right)(|C(a, b)|+1)-|C| \\
& \geq\left(\left|Y_{1}\right|+1\right)(|C(a, b)|+1)-\left(2|C(a, b)|+4\left|Y_{1}\right|-2\right) \\
& =\left(\left|Y_{1}\right|-1\right)(|C(a, b)|-3)>0,
\end{aligned}
$$

and so $\left(\left|N_{C}\left(X_{2}\right)\right|+1\right)(|C(a, b)|+1)>|C|$. On the other hand, by the choice of x_{a} and $x_{b}, C-N_{C}\left(\left\{x_{a}\right\} \cup X_{2}\right)$ consists of at least $\left|N_{C}\left(X_{2}\right)\right|+1$ paths of order at least $|C(a, b)|$. This implies $|C| \geq\left(\left|N_{C}\left(X_{2}\right)\right|+1\right)(|C(a, b)|+1)$. Thus we get a contradiction.

Hence $\left|Y_{1}\right|=1$, say $y_{1} \in Y_{1}$. By (1) and (2), $|C(a, b)|=|C(b, a)|=$ $2\left(\frac{1}{3}\left(n_{2}+1\right)-1\right)$. Therefore $N_{C}\left(X_{1} \cup X_{2}\right)=\{a, b\}$, and so $\{a, b\}$ dominates X_{1} and X_{2}. By using the same argument as the proof of Claim 5, $C[a, b]$ dominates U_{1}^{\prime} and Y_{1}. Hence there exists $u_{2}^{\prime} \in U_{2}^{\prime}$ such that $N_{G}\left(u_{2}^{\prime}\right) \subset$ $U_{1}^{\prime} \cup Y_{1}$, otherwise $x_{a} C[a, b] x_{b} P_{0} x_{a}$ is a vertex-dominating cycle. Since $\left|U_{1}\right|=$ $\left|U_{1}^{\prime}\right|=\frac{1}{3}\left(n_{2}+1\right)-1$, we see that $y_{1} \in N_{G}\left(u_{2}\right)$ and $y_{1} \in N_{G}\left(u_{2}^{\prime}\right)$.

Let $v_{2}^{\prime} \in C\left(a, u_{2}^{\prime}\right]$ and $v_{2} \in C\left(b, u_{2}\right]$ such that (i) $y_{1} \in N_{G}\left(v_{2}\right)$ and $y_{1} \in N_{G}\left(v_{2}^{\prime}\right)$ and (ii) $C\left(a, v_{2}^{\prime}\right] \cup C\left(b, v_{2}\right]$ is inclusion-minimal, subject to (i). By the existence of the C-path $v_{2} y_{1} v_{2}^{\prime}$, there exists a C-path $P_{1}\left[w_{2}, w_{2}^{\prime}\right]$ joining $C\left(b, v_{2}\right]$ and $C\left(a, v_{2}^{\prime}\right]$. Choose P_{1} such that $C\left(a, w_{2}^{\prime}\right] \cup C\left(b, w_{2}\right]$ is inclusionminimal. By the choice of v_{2}^{\prime} and $P_{1}, N(w) \cap\left(Y_{1} \cup C\left(b, w_{2}\right)\right)=\emptyset$ for any $w \in$ $C\left(a, w_{2}^{\prime}\right)$. Thus, since $\left|C\left(a, w_{2}^{\prime}\right)\right| \leq|C(a, b)| \leq 2\left(\frac{1}{3}\left(n_{2}+1\right)-1\right), N(w) \cap$ $\left(C\left[w_{2}^{\prime}, b\right] \cup C\left[w_{2}, a\right]\right) \neq \emptyset$ for any $w \in C\left(a, w_{2}^{\prime}\right)$. Hence $C\left[w_{2}^{\prime}, b\right] \cup C\left[w_{2}, a\right]$ dominates $C\left(a, w_{2}^{\prime}\right)$. Similarly, $C\left[w_{2}^{\prime}, b\right] \cup C\left[w_{2}, a\right]$ dominates $C\left(b, w_{2}\right)$. Moreover, since $u_{2} \in C\left[b, w_{2}^{\prime}\right] \cup C\left[w_{2}, a\right], C\left[w_{2}^{\prime}, b\right] \cup C\left[w_{2}, a\right]$ dominates Y_{1}. Hence
$x_{a} \overleftarrow{C}\left[a, w_{2}\right) P_{1}\left[w_{2}, w_{2}^{\prime}\right] C\left(w_{2}^{\prime}, b\right] P_{0}\left[x_{b}, x_{a}\right]$ is a vertex-dominating cycle. This completes the proof of Case 1 .

Case 2. $|C(a, b)|$ is odd.
Note that $x_{a} \in X_{i}$ and $x_{b} \in X_{i}$ for $i=1$ or $i=2$.
Case 2.1. $Z_{2}=\emptyset$.
Then $X_{2} \neq \emptyset$ and $\left|X_{2}\right|=\frac{1}{3}\left(n_{2}+1\right)$, otherwise C is a hamiltonian cycle by Claim 4. By the choice of x_{a} and x_{b}, note that $x_{a}, x_{b} \in X_{2}$. By Claim $3,\left\{x_{a}, x_{b}\right\}$ dominates Z_{1}. Hence there exists $u_{2} \in U_{2}$ such that $N_{G}\left(u_{2}\right) \subset$ $U_{1} \cup Y_{1}$, otherwise C_{0} is a vertex-dominating cycle. Since $u_{2} \neq a^{+}, b^{-}$, we have

$$
\begin{equation*}
|C(a, b)| \geq 5 . \tag{4}
\end{equation*}
$$

Since $a^{+}, b^{-} \in V_{2}$ and $|C(a, b)|$ is odd,

$$
\begin{equation*}
\frac{1}{3}\left(n_{2}+1\right) \leq d_{G}\left(u_{2}\right) \leq\left|U_{1}\right|+\left|Y_{1}\right| \leq \frac{1}{2}(|C(a, b)|-1)+\left|Y_{1}\right|, \tag{5}
\end{equation*}
$$

and by Claim 1 ,

$$
\begin{equation*}
|C|=\frac{2}{3}\left(2 n_{2}-1\right) \leq 2|C(a, b)|+4\left|Y_{1}\right|-4 . \tag{6}
\end{equation*}
$$

By (1) and (5), we have $\left|Y_{1}\right| \geq 2$. Since $C-N_{C}\left(X_{2}\right)$ has at least $\left|N_{C}\left(X_{2}\right)\right|$ paths of order at least $|C(a, b)|$, we have $|C| \geq\left|N_{C}\left(X_{2}\right)\right|(|C(a, b)|+1)$. Assume that $\left|Y_{1}\right| \geq 4$. It follows from Claim 2, (4) and (6) that

$$
\begin{aligned}
& \left|N_{C}\left(X_{2}\right)\right|(|C(a, b)|+1)-|C| \\
& \geq\left|Y_{1}\right|(|C(a, b)|+1)-\left(2|C(a, b)|+4\left|Y_{1}\right|-4\right) \\
& =\left(\left|Y_{1}\right|-2\right)(|C(a, b)|-3)-2>0,
\end{aligned}
$$

a contradiction. Therefore $\left|Y_{1}\right|=2$ or $\left|Y_{1}\right|=3$.
Claim 6. (i) $X_{1}=\emptyset$,
(ii) $\left|Z_{1}\right|=\frac{1}{3}\left(n_{2}+1\right)-\left|Y_{1}\right|$ and
(iii) $N_{C}\left(X_{2}\right)=N_{C}\left(x_{2}\right)$ for any $x_{2} \in X_{2}$.

Proof. First, suppose that $X_{1} \neq \emptyset$, say $x_{1} \in X_{1}$. Since $C-N_{C}\left(\left\{x_{1}\right\} \cup X_{2}\right)$ has at least $\left|N_{C}\left(X_{2}\right)\right|+1$ paths of order at least $|C(a, b)|,|C| \geq \mid N_{C}\left(\left\{x_{1}\right\} \cup\right.$ $\left.X_{2}\right) \mid(|C(a, b)|+1)$. By Claim 2, (4) and (6),

$$
\begin{aligned}
& \left|N_{C}\left(\left\{x_{1}\right\} \cup X_{2}\right)\right|(|C(a, b)|+1)-|C| \\
& \geq\left(\left|Y_{1}\right|+1\right)(|C(a, b)|+1)-\left(2|C(a, b)|+4\left|Y_{1}\right|-4\right) \\
& =\left(\left|Y_{1}\right|-1\right)(|C(a, b)|-3)+2>0,
\end{aligned}
$$

a contradiction. Next suppose that $\left|Z_{1}\right|<\frac{1}{3}\left(n_{2}+1\right)-\left|Y_{1}\right|$ or $N_{C}\left(X_{2}\right)>$ $N_{C}\left(x_{2}\right)$ for some $x_{2} \in X_{2}$. Then, by Claim $2,\left|N_{C}\left(X_{2}\right)\right| \geq\left|Y_{1}\right|+1$. By a similar argument as above, we obtain a contradiction.

Since $\left|Y_{1}\right| \geq 2$, we have $\left|X_{2}\right| \geq 2$ and by Claim 6 (iii), we can choose x_{a}, x_{b} with $x_{a} \neq x_{b}$. By Claim 3 and Claims 6 (i) and (ii), we obtain $\left|P_{0}\right|=\left|X_{2}\right|+\left|Z_{1}\right|-\left|Y_{1}\right|+1=\frac{2}{3}\left(n_{2}+1\right)-2\left|Y_{1}\right|+1$. On the other hand, by (1) and (5), $|C(a, b)|=\frac{2}{3}\left(n_{2}+1\right)-2\left|Y_{1}\right|+1$. Hence C_{0} and C have the same length. Since $C(a, b) \cup Y_{1}$ is contained in a component of $G-C_{0}$ and $\left|X_{2}-P_{0}\right|=\left|Y_{1}\right|-1$, we have $\omega\left(G-C_{0}\right)=\left|Y_{1}\right|$. Note that $\omega(G-C)=\left|Y_{1}\right|+1$. Therefore $\omega(G-C)>\omega\left(G-C_{0}\right)$. This contradicts the choice of C.

Case 2.2. $Z_{2} \neq \emptyset$.
Then $Y_{1}=\emptyset$ by Claim 3. Since $\left|U_{1}\right| \leq \frac{1}{3}\left(n_{2}+1\right)-1, N\left(u_{2}\right) \cap C[b, a] \neq \emptyset$ for any $u_{2} \in U_{2}$, that is, $C[b, a]$ dominates U_{2}. Suppose that $x_{a} \neq x_{b}$. By Claim 3, $P_{0}\left[x_{a}, x_{b}\right]$ dominates Z_{1} and Z_{2}, and so C_{0} is a vertex-dominating cycle. Therefore $x_{a}=x_{b}$. By the 2-connectivity of G and the choice of x_{a} and x_{b}, there exists $x_{d} \in X_{1} \cup X_{2}$ such that $x_{d} \neq x_{a}$ and $N_{C}\left(x_{d}\right) \cap C(b, a) \neq \emptyset$, say $d \in N_{C}\left(x_{d}\right) \cap C(b, a)$. Choose x_{d} such that $\min \{|C(b, d)|,|C(d, a)|\}$ as small as possible. Without loss of generality, we may assume that $|C(b, d)| \geq$ $|C(d, a)|$. By the choice of $x_{d}, C[a, d]$ dominates X_{1} and X_{2}. By Claim 3, there exists a path $P_{3}\left[x_{a}, x_{d}\right]$ in $G-C$, which dominates Z_{1} and Z_{2}. Since $|C[a, b]| \geq 3$, we have $|C(d, a)| \leq \frac{1}{2}(|C|-2)-1 \leq 2\left(\frac{1}{3}\left(n_{2}+1\right)-1\right)-1$. Since $\left|C(d, a) \cap V_{1}\right|,\left|C(d, a) \cap V_{2}\right| \leq \frac{1}{3}\left(n_{2}+1\right)-1$ and $Y_{1}=Y_{2}=\emptyset$, we can see that $C[a, d]$ dominates $C(d, a)$. Hence $x_{a} C[a, d] P_{3}\left[x_{d}, x_{a}\right]$ is a vertex-dominating cycle. This completes the proof of Case 2.2 and the proof of Theorem 9.

References

[1] P. Ash and B. Jackson, Dominating cycles in bipartite graphs, in: Progress in Graph Theory, 1984, 81-87.
[2] D. Bauer, H.J. Veldman, A. Morgana and E.F. Schmeichel, Long cycles in graphs with large degree sum, Discrete Math. 79 (1989/90) 59-70.
[3] J.A. Bondy, Longest paths and cycles in graphs with high degree, Research Report CORR 80-16, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada (1980).
[4] J.A. Bondy and G. Fan, A sufficient condition for dominating cycles, Discrete Math. 67 (1987) 205-208.
[5] R. Diestel, Graph Theory, (2nd ed.) (Springer-Verlag, 2000).
[6] H.A. Jung, On maximal circuits in finite graphs, Ann. Discrete Math. 3 (1978) 129-144.
[7] J. Moon and L. Moser, On hamiltonian bipartite graphs, Israel J. Math. 1 (1963) 163-165.
[8] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
[9] A. Saito and T. Yamashita, A Note on Dominating Cycles in Tough Graphs, Ars Combinatoria 69 (2003) 3-8.
[10] H. Wang, On Long Cycles in a 2-connected Bipartite Graph, Graphs and Combin. 12 (1996) 373-384.

Received 28 April 2006
Revised 23 February 2007
Accepted 23 February 2007

