SUBGRAPH DENSITIES IN HYPERGRAPHS

Yuejian Peng
Department of Mathematics and Computer Science
Indiana State University
Terre Haute, IN, 47809, USA
e-mail: mapeng@isugw.indstate.edu

Abstract

Let $r \geq 2$ be an integer. A real number $\alpha \in[0,1)$ is a jump for r if for any $\epsilon>0$ and any integer $m \geq r$, any r-uniform graph with $n>n_{0}(\epsilon, m)$ vertices and density at least $\alpha+\epsilon$ contains a subgraph with m vertices and density at least $\alpha+c$, where $c=c(\alpha)>0$ does not depend on ϵ and m. A result of Erdős, Stone and Simonovits implies that every $\alpha \in[0,1)$ is a jump for $r=2$. Erdős asked whether the same is true for $r \geq 3$. Frankl and Rödl gave a negative answer by showing an infinite sequence of non-jumps for every $r \geq 3$. However, there are still a lot of open questions on determining whether or not a number is a jump for $r \geq 3$. In this paper, we first find an infinite sequence of non-jumps for $r=4$, then extend one of them to every $r \geq 4$. Our approach is based on the techniques developed by Frankl and Rödl.

Keywords: Erdős jumping constant conjecture, Lagrangian, optimal vector.
2000 Mathematics Subject Classification: 05D05, 05C65.

1. Introduction

For a finite set V and a positive integer r we denote by $\binom{V}{r}$ the family of all r-subsets of V. An r-uniform graph G consists of a set $V(G)$ of vertices and a set $E(G) \subseteq\binom{V}{r}$ of edges. In particular, an r-uniform graph is called a graph if $r=2$ and an r-uniform hypergraph if $r \geq 3$. We abbreviate r-uniform graph
to r-graph. The density of an r-graph G is defined by $d(G)=\frac{|E(G)|}{\left\lvert\,\left(\left.\begin{array}{c}V(G) \\ r\end{array} \right\rvert\,\right.\right.}$. An r graph H is a subgraph of an r-graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. H is an induced subgraph of G if $E(H)=E(G) \cap\binom{V(H)}{r}$.

By a simple argument (c.f. Katona, Nemetz, Simonovits [8]), the average of densities of all induced subgraphs of an r-graph G with $m \geq r$ vertices is $d(G)$. Therefore, there exists a subgraph of G with m vertices and density $\geq d(G)$. A natural question is whether there exists a subgraph of G with m vertices and density $\geq d(G)+c$, where $c>0$ is a constant? To be more precise, the concept of 'jump' was introduced.

Definition 1.1. Given $r \geq 2$, a real number $\alpha \in[0,1)$ is a jump for r if there exists a constant $c>0$ such that for any $\epsilon>0$ and any integer $m, m \geq r$, there exists an integer $n_{0}(\epsilon, m)$ such that any r-graph with $n>n_{0}(\epsilon, m)$ vertices and density $\geq \alpha+\epsilon$ contains a subgraph with m vertices and density $\geq \alpha+c$. A real number $\alpha \in[0,1)$ is called a non-jump for r if α is not a jump for r.

Erdős and Stone ([4]) proved that every $\alpha \in[0,1$) is a jump for $r=2$. It easily follows from the following classical result.

For an integer $l \geq r$, an r-graph $G=(V, E)$ is called complete l-partite if V admits a partition into l classes such that an r-subset of V is an edge if and only if it contains at most one vertex from each class.

Theorem 1.1 (c.f. [4]). Suppose l is a positive integer. For any $\epsilon>0$ and any positive integer m, there exists $n_{0}(m, \epsilon)$ such that any graph G on $n>n_{0}(m, \epsilon)$ vertices with density $d(G) \geq 1-\frac{1}{l}+\epsilon$ contains a copy of the complete $(l+1)$-partite graph with partition classes of size m.

Note that the density of a complete $(l+1)$-partite graph with partition classes of size m is greater than $1-\frac{1}{l+1}$ (approaches $1-\frac{1}{l+1}$ when $m \rightarrow \infty$).

For $r \geq 3$, Erdős proved that every $\alpha \in\left[0, r!/ r^{r}\right)$ is a jump. It directly follows from the following:

Theorem 1.2 (c.f. [2]). For any $\epsilon>0$ and any positive integer m, there exists $n_{0}(\epsilon, m)$ such that any r-graph G on $n>n_{0}(\epsilon, m)$ vertices with density $d(G) \geq \epsilon$ contains a copy of the complete r-partite r-graph with partition classes of size m.

Note that the density of a complete r-partite r-graph with partition classes of size m is greater than $r!/ r^{r}$ (approaches $r!/ r^{r}$ when $m \rightarrow \infty$).

Furthermore, Erdős proposed the following jumping constant conjecture.
Conjecture 1.3. Every $\alpha \in[0,1)$ is a jump for every integer $r \geq 2$.
In [6], Frankl and Rödl disproved this conjecture by showing the following result.

Theorem 1.4 (c.f. [6]). Suppose $r \geq 3$ and $l>2 r$. Then $1-\frac{1}{l^{r-1}}$ is not a jump for r.

Using the techniques developed by Frankl and Rödl in [6], some other nonjumps were given in $[7,10,11]$ and [12]. However, there are still a lot of open questions on determining whether or not a number is a jump for $r \geq 3$. A well-known question of Erdős is to determine whether or not $\frac{r!}{r^{\eta}}$ is a jump. At this moment, the smallest known non-jump for $r \geq 3$ is $\frac{5 r!}{2 r^{r}}$ given in [7]. Another question raised in [7] is whether there is an interval of non-jumps for $r \geq 3$. By the definition of the 'jump', if a number a is a jump, then there exists a constant $c>0$ such that every number in $[a, a+c)$ is a jump. Consequently, if there is a set of non-jumps whose limits form an interval (number a is a limit of a set A if there is a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}, a_{n} \in A$ such that $\lim _{n \rightarrow \infty} a_{n}=a$), then no number in this interval is a jump. We do not know whether such a 'dense enough' set of non-jumps exists or not. In this paper we intend to find more non-jumps in addition to the known nonjumps in $[6,7,10,11]$ and [12]. Our approach is still based on the techniques developed by Frankl and Rödl in [6].

We first work in the case $r=4$ and find a sequence of non-jumps for $r=4$. In Sections 3 and 4, we prove the following result.
Theorem 1.5. Let $l \geq 2$ be an integer. Then $1-\frac{7}{l^{2}}+\frac{10}{l^{3}}$ is not a jump for $r=4$.

In Section 5 we extend a special case of Theorem $1.5(l=4)$ to all $r \geq 4$. The following result will be proved.
Theorem 1.6. For $r \geq 4, \frac{23 r!}{3 r^{r}}$ is not a jump for r.
Note that when $r=l=4$, Theorems 1.6 and 1.5 coincide.
In the next section, we introduce the Lagrangian of an r-graph and some other tools to be applied in our proofs.

2. Lagrangians and Other Tools

We first give a definition of the Lagrangian of an r-graph. More studies of Lagrangians were given in $[5,6,9]$ and [13].

Definition 2.1. For an r-graph G with vertex set $\{1,2, \ldots, m\}$, edge set $E(G)$ and a vector $\vec{x}=\left(x_{1}, \ldots, x_{m}\right) \in R^{m}$, define

$$
\lambda(G, \vec{x})=\sum_{\left\{i_{1}, \ldots, i_{r}\right\} \in E(G)} x_{i_{1}} x_{i_{2}} \ldots x_{i_{r}} .
$$

x_{i} is called the weight of vertex i.
Definition 2.2. Let $S=\left\{\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{m}\right): \sum_{i=1}^{m} x_{i}=1, x_{i} \geq 0\right.$ for $i=1,2, \ldots, m\}$. The Lagrangian of G, denoted by $\lambda(G)$, is defined as

$$
\lambda(G)=\max \{\lambda(G, \vec{x}): \vec{x} \in S\}
$$

A vector $\vec{x} \in S$ is called an optimal vector for $\lambda(G)$ if $\lambda(G, \vec{x})=\lambda(G)$.
We note that if H is a subgraph of an r-graph G, then for any vector \vec{x} in $S, \lambda(H, \vec{x}) \leq \lambda(G, \vec{x})$. We formulate this as follows.

Fact 2.1. Let H be a subgraph of an r-graph G. Then

$$
\lambda(H) \leq \lambda(G) .
$$

For an r-graph G and $i \in V(G)$ we define G_{i} to be the $(r-1)$-uniform graph on $V-\{i\}$ with edge set $E\left(G_{i}\right)$ given by $e \in E\left(G_{i}\right)$ if and only if $e \cup\{i\} \in E(G)$.

We call two vertices i, j of an r-graph G equivalent if for all $f \in$ $\binom{V(G)-\{i, j\}}{r-1}, f \in E\left(G_{i}\right)$ if and only if $f \in E\left(G_{j}\right)$.

The following lemma (proved in [6]) will be useful when calculating Lagrangians of certain graphs.

Lemma 2.2 (c.f. [6]). Suppose G is an r-graph on vertices $\{1,2, \ldots, m\}$.

1. If vertices $i_{1}, i_{2}, \ldots, i_{t}$ are pairwise equivalent, then there exists an optimal vector $\vec{y}=\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ of $\lambda(G)$ such that $y_{i_{1}}=y_{i_{2}}=\cdots=y_{i_{t}}$.
2. Let $\vec{y}=\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ be an optimal vector of $\lambda(G)$ and $y_{i}>0$. Let \hat{y}_{i} be the restriction of \vec{y} on $\{1,2, \ldots, m\} \backslash\{i\}$. Then $\lambda\left(G_{i}, \hat{y}_{i}\right)=r \lambda(G)$.

We also note that for an r-graph G with m vertices, if we take $\vec{u}=\left(u_{1}, \ldots\right.$, u_{m}), where each $u_{i}=1 / m$, then

$$
\lambda(G) \geq \lambda(G, \vec{u})=\frac{|E(G)|}{m^{r}} \geq \frac{d(G)}{r!}-\epsilon
$$

for $m \geq m^{\prime}(\epsilon)$.
On the other hand, we introduce the blow-up of an r-graph G which will allow us to construct r-graphs with large number of vertices and densities close to $r!\lambda(G)$.

Definition 2.3. Let G be an r-graph with $V(G)=\{1,2, \ldots, m\}$ and (n_{1}, $\left.\ldots, n_{m}\right)$ be a positive integer vector. Define the $\left(n_{1}, \ldots, n_{m}\right)$ blow-up of G, $\left(n_{1}, \ldots, n_{m}\right) \otimes G$ as an m-partite r-graph with vertex set $V_{1} \cup \cdots \cup V_{m},\left|V_{i}\right|=$ $n_{i}, 1 \leq i \leq m$, and edge set $E\left(\left(n_{1}, \ldots, n_{m}\right) \otimes G\right)=\left\{\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{r}}\right\}: v_{i_{k}} \in\right.$ $V_{i_{k}}$ for $\left.1 \leq k \leq r,\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \in E(G)\right\}$. We abbreviate $(n, n, \ldots, n) \otimes G$ to $\vec{n} \otimes G$.

We make the following easy Remark used in [10].
Remark 2.3 (c.f. [10]). Let G be an r-graph with m vertices and $\vec{y}=$ $\left(y_{1}, \ldots, y_{m}\right)$ be an optimal vector of $\lambda(G)$. Then for any $\epsilon>0$, there exists an integer $n_{1}(\epsilon)$, such that for any integer $n \geq n_{1}(\epsilon)$,

$$
\begin{equation*}
d\left(\left(\left\lfloor n y_{1}\right\rfloor,\left\lfloor n y_{2}\right\rfloor, \ldots,\left\lfloor n y_{m}\right\rfloor\right) \otimes G\right) \geq r!\lambda(G)-\epsilon . \tag{1}
\end{equation*}
$$

Let us also state a fact relating the Lagrangian of an r-graph to the Lagrangian of its blow-up used in $[6,7,10,11]$ and [12] as well).

Fact 2.4 (c.f. [6]).

$$
\lambda(\vec{n} \otimes G)=\lambda(G) .
$$

The following lemma proved in [6] gives a necessary and sufficient condition for a number α to be a jump. We need a definition to describe it.

Definition 2.4. For $\alpha \in[0,1)$ and a family \mathcal{F} of r-graphs, we say that α is a threshold for \mathcal{F} if for any $\epsilon>0$ there exists an $n_{0}=n_{0}(\epsilon)$ such that any r-graph G with $d(G) \geq \alpha+\epsilon$ and $|V(G)|>n_{0}$ contains some member of \mathcal{F} as a subgraph. We denote this fact by $\alpha \rightarrow \mathcal{F}$.

Lemma 2.5 (c.f. [6]). The following two properties are equivalent.

1. α is a jump for r.
2. $\alpha \rightarrow \mathcal{F}$ for some finite family \mathcal{F} of r-graphs satisfying $\lambda(F)>\frac{\alpha}{r!}$ for all $F \in \mathcal{F}$.

We also need the following lemma proved in [6].
Lemma 2.6 (c.f. [6]). For any $\sigma \geq 0$ and any integer $k \geq r$, there exists $t_{0}(k, \sigma)$ such that for every $t>t_{0}(k, \sigma)$, there exists an r-graph A satisfying:

1. $|V(A)|=t$,
2. $|E(A)| \geq \sigma t^{r-1}$,
3. For all $V_{0} \subset V(A), r \leq\left|V_{0}\right| \leq k$ we have $\left|E(A) \cap\binom{V_{0}}{r}\right| \leq\left|V_{0}\right|-r+1$.

The general approach in proving Theorems 1.5 and 1.6 is sketched as follows: Let α be a number to be proved to be a non-jump. Assuming that α is a jump, we will derive a contradiction by the following steps.

Step 1. Construct an r-uniform hypergraph (in Theorem 1.5, $r=4$) with the Lagrangian close to but slightly smaller than $\frac{\alpha}{r!}$, then use Lemma 2.6 to add an r-graph with enough number of edges but sparse enough (see properties 2 and 3 in this Lemma) and obtain an r-graph with the Lagrangian $\geq \frac{\alpha}{r!}+\epsilon$ for some positive ϵ. Then we 'blow up' this r-graph to an r-graph, say H with large enough number of vertices and density $>\alpha+\frac{\epsilon}{2}$ (see Remark 2.3). If α is a jump, then by Lemma 2.5, α is a threshold for some finite family \mathcal{F} of r-graphs with Lagrangians $>\frac{\alpha}{r!}$. So H must contain some member of \mathcal{F} as a subgraph.

Step 2. We show that any subgraph of H with the number of vertices not greater than $\max \{|V(F)|, F \in \mathcal{F}\}$ has the Lagrangian $\leq \frac{\alpha}{r!}$ and derive a contradiction.

It is easy to construct an r-graph satisfying the property in Step 1, but it is certainly nontrivial to construct an r-graph satisfying the properties in both Steps 1 and 2. In fact, whenever we find such a construction, we can obtain a corresponding non-jump. This method was first developed by Frankl and Rödl in [6], then it was used in [7, 10, 11] and [12] to find more non-jumps by giving this type of construction. The technical part in the proof is to show that the construction satisfies the property in Step 2 (Lemma 3.1).

3. Proof of Theorem 1.5

In this Section, we focus on $r=4$ and give a proof of Theorem 1.5. Let $\alpha=1-\frac{7}{l^{2}}+\frac{10}{l^{3}}$. Let t be a large enough integer determined later. We first define a 4 -graph $G(l, t)$ on l pairwise disjoint sets V_{1}, \ldots, V_{l}, each of cardinality t. The edge set of $G(l, t)$ consists of all 4 -subsets taking exactly one vertex from each of $V_{i}, V_{j}, V_{k}, V_{s}(1 \leq i<j<k<s \leq l)$, all 4-subsets taking 2 vertices from $V_{i}, 1$ vertex from V_{j} and 1 vertex from $V_{k}(1 \leq i \leq l$, $1 \leq j<k \leq l$ and i, j, k are pairwise distinct), and all 4 -subsets taking 3 vertices from V_{i} and 1 vertex from $V_{i+1}\left(1 \leq i \leq l\right.$ and $\left.V_{l+1}=V_{1}\right)$. When $l=2$ or 3 , some of them are vacant.

Note that the density of $G(l, t)$ is close to α if t is large enough. In fact,

$$
\begin{align*}
|E(G(l, t))| & =\binom{l}{4} t^{4}+l\binom{l-1}{2}\binom{t}{2} t^{2}+l\binom{t}{3} t \tag{2}\\
& =\frac{\alpha}{24} l^{4} t^{4}-c_{0}(l) t^{3}+o\left(t^{3}\right)
\end{align*}
$$

where $c_{0}(l)$ is positive (we omit giving the precise calculation here). Let $\vec{u}=\left(u_{1}, \ldots, u_{l t}\right)$, where $u_{i}=1 /(l t)$ for each $i, 1 \leq i \leq l t$, then

$$
\lambda(G(l, t)) \geq \lambda(G(l, t), \vec{u})=\frac{|E(G(l, t))|}{(l t)^{4}}=\frac{\alpha}{24}-\frac{c_{0}(l)}{l^{4} t}+o\left(\frac{1}{t}\right)
$$

which is close to $\frac{\alpha}{24}$ when t is large enough.
We will use Lemma 2.6 to add a 4-graph to $G(l, t)$ so that the Lagrangian of the resulting 4 -graph is $>\frac{\alpha}{24}+\epsilon(t)$ for some $\epsilon(t)>0$. The precise argument is given below.

Suppose that α is a jump. In view of Lemma 2.5, there exists a finite collection \mathcal{F} of 4 -graphs satisfying the following:
(i) $\lambda(F)>\frac{\alpha}{24}$ for all $F \in \mathcal{F}$, and
(ii) α is a threshold for \mathcal{F}.

Set $k_{0}=\max _{F \in \mathcal{F}}|V(F)|$ and $\sigma_{0}=c_{0}(l)$. Let $r=4$ in Lemma 2.6 and $t_{0}\left(k_{0}, \sigma_{0}\right)$ be given as in Lemma 2.6. Take an integer $t>\max \left(t_{0}, t_{1}\right)$, where t_{1} is determined in (3) given later. For each $i, 1 \leq i \leq l$, take a 4 -graph $A_{k_{0}, \sigma_{0}}^{i}(t)$ satisfying the conditions in Lemma 2.6 with $V\left(A_{k_{0}, \sigma_{0}}^{i}(t)\right)=V_{i}$. The 4-graph $G^{*}(l, t)$ is obtained by adding all $A_{k_{0}, \sigma_{0}}^{i}(t)$ to the 4-uniform
hypegraph $G(l, t)$. Then

$$
\lambda\left(G^{*}(l, t)\right) \geq \lambda\left(G^{*}(l, t), \vec{u}\right)=\frac{\left|E\left(G^{*}(l, t)\right)\right|}{(l t)^{4}}
$$

In view of the construction of $G^{*}(l, t)$ and equation (2), we have

$$
\begin{equation*}
\frac{\left|E\left(G^{*}(l, t)\right)\right|}{(l t)^{4}} \geq \frac{|E(G(l, t))|+l \sigma_{0} t^{3}}{(l t)^{4}} \stackrel{(2)}{\geq} \frac{\alpha}{24}+\frac{c_{0}(l)}{2 l^{4} t} \tag{3}
\end{equation*}
$$

for $t \geq t_{1}$. Consequently,

$$
\begin{equation*}
\lambda\left(G^{*}(l, t)\right) \geq \frac{\alpha}{24}+\frac{c_{0}(l)}{2 l^{4} t} \tag{4}
\end{equation*}
$$

for $t \geq t_{1}$.
Now suppose $\vec{y}=\left(y_{1}, y_{2}, \ldots, y_{l t}\right)$ is an optimal vector of $\lambda\left(G^{*}(l, t)\right)$. Let $\epsilon=\frac{6 c_{0}(l)}{l^{4} t}$ and $n>n_{1}(\epsilon)$ as in Remark 2.3. Then 4-graph $S_{n}=$ $\left(\left\lfloor n y_{1}\right\rfloor, \ldots,\left\lfloor n y_{l t}\right\rfloor\right) \otimes G^{*}(l, t)$ has density larger than $\alpha+\epsilon$. Since α is a threshold for \mathcal{F}, some member F of \mathcal{F} is a subgraph of S_{n} for $n \geq$ $\max \left\{n_{0}(\epsilon), n_{1}(\epsilon)\right\}$. For such $F \in \mathcal{F}$, there exists a subgraph M of $G^{*}(l, t)$ with $|V(M)| \leq|V(F)| \leq k_{0}$ so that $F \subset \vec{n} \otimes M$. By Fact 2.1 and Fact 2.4, we have

$$
\begin{equation*}
\lambda(F) \stackrel{\text { Fact } 2.1}{\leq} \lambda(\vec{n} \otimes M) \stackrel{\text { Fact }}{=}{ }^{2.4} \lambda(M) \tag{5}
\end{equation*}
$$

Theorem 1.5 will follow from the following lemma to be proved in Section 4.
Lemma 3.1. Let $G^{*}(l, t)$ be a 4-graph constructed the same way as above with k_{0}, σ_{0}, t replaced by any k, σ, t satisfying $t>t_{0}(k, \sigma)$ as given in Lemma 2.6 respectively. Let M be any subgraph of $G^{*}(l, t)$ with $|V(M)| \leq k$. Then

$$
\begin{equation*}
\lambda(M) \leq \frac{1}{24} \alpha \tag{6}
\end{equation*}
$$

holds.
Applying Lemma 3.1 to (5), we have

$$
\lambda(F) \leq \frac{1}{24} \alpha
$$

which contradicts our choice of F, i.e., contradicts the fact that $\lambda(F)>\frac{1}{24} \alpha$ for all $F \in \mathcal{F}$.

To complete the proof of Theorem 1.5, what remains is to show Lemma 3.1.

4. Proof of Lemma 3.1

By Fact 2.1, we may assume that M is an induced subgraph of $G^{*}(l, t)$. For each $s, 1 \leq s \leq l$, let

$$
U_{s}=V(M) \cap V_{s}=\left\{v_{1}^{s}, v_{2}^{s}, \ldots, v_{k_{s}}^{s}\right\} .
$$

We will apply the following Claim proved in [6].
Claim 4.1 (c.f. [6]). If N is the 4 -graph formed from M by removing the edges contained in each U_{s} and inserting the edges $\left\{\left\{v_{1}^{s}, v_{2}^{s}, v_{3}^{s}, v_{j}^{s}\right\}: 1 \leq s \leq\right.$ $\left.l, 4 \leq j \leq k_{s}\right\}$ then $\lambda(M) \leq \lambda(N)$.

By Claim 4.1 the proof of Lemma 3.1 will be complete if we show that $\lambda(N) \leq \frac{\alpha}{24}$. Since $v_{1}^{s}, v_{2}^{s}, v_{3}^{s}$ are pairwise equivalent and $v_{4}^{s}, \ldots v_{k_{s}}^{s}$ are pairwise equivalent we can use Lemma 2.2(part 1) to obtain an optimal vector \vec{z} of $\lambda(N)$ such that

$$
z_{1}^{s}=z_{2}^{s}=z_{3}^{s} \stackrel{\text { def }}{=} \rho_{s}, \quad z_{4}^{s}=z_{5}^{s}=\cdots=z_{k_{s}}^{s} \stackrel{\text { def }}{=} \zeta_{s} .
$$

Let w_{s} be the sum of the total weights in U_{s}. Let $P=\left\{s: w_{s}>0\right\}$ and $p=|P|$. Without loss of generality, we may assume that $P=\{1,2, \ldots, p\}$. We may also assume that $p \geq 2$. Otherwise,
$\lambda(N)=\rho_{1}^{3}\left(1-3 \rho_{1}\right) \leq \frac{1}{256}<\frac{1}{24}\left(1-\frac{7}{2^{2}}+\frac{10}{2^{3}}\right) \leq \frac{1}{24}\left(1-\frac{7}{l^{2}}+\frac{10}{l^{3}}\right)=\frac{\alpha}{24}$
since $1-\frac{7}{x^{2}}+\frac{10}{x^{3}}$ increases when $x \geq 3$ increases and $1-\frac{7}{2^{2}}+\frac{10}{2^{3}}<1-\frac{7}{3^{2}}+\frac{10}{3^{3}}$.
So we may assume that $2 \leq p \leq l$. For each $s \in P$ take a vertex $u_{s} \in U_{s}$ with positive weight as follows: if $\zeta_{s}>0$ then $u_{s}=v_{4}^{s}$ otherwise $u_{s}=v_{1}^{s}$. The vertex u_{s} receives non-zero weight. Let \hat{z}^{s} be the restriction of \vec{z} on $V\left(N_{u_{s}}\right)$. Then by Lemma 2.2 (part 2) we have

$$
4 \lambda(N)=\lambda\left(N_{u_{s}}, \hat{z}^{s}\right) .
$$

Moreover by considering the edges containing vertex u_{s} we have

$$
\begin{aligned}
\lambda\left(N_{u_{s}}, \hat{z}^{s}\right) \leq & \sum_{1 \leq i<j<k \leq p ; i, j, k \neq s} w_{i} w_{j} w_{k}+w_{s} \sum_{1 \leq i<j \leq p ; i, j \neq s} w_{i} w_{j} \\
+ & \sum_{1 \leq i<j \leq p ; i, j \neq s}\left(\frac{w_{j}^{2}}{2} w_{i}+\frac{w_{i}^{2}}{2} w_{j}\right)+\frac{w_{s}^{2}}{2} w_{s+1} \\
+ & {\left[\frac{1}{6}\left(w_{s-1}-3 \rho_{s-1}\right)^{3}+\frac{3 \rho_{s-1}}{2}\left(w_{s-1}-3 \rho_{s-1}\right)^{2}\right.} \\
& \left.+3 \rho_{s-1}^{2}\left(w_{s-1}-3 \rho_{s-1}\right)+\rho_{s-1}^{3}\right]+\rho_{s}^{3}
\end{aligned}
$$

where all subscripts are modulo p. Note that

$$
\begin{aligned}
& \frac{1}{6}\left(w_{s-1}-3 \rho_{s-1}\right)^{3}+\frac{3 \rho_{s-1}}{2}\left(w_{s-1}-3 \rho_{s-1}\right)^{2}+3 \rho_{s-1}^{2}\left(w_{s-1}-3 \rho_{s-1}\right)+\rho_{s-1}^{3} \\
& \leq \frac{\left(w_{s-1}-3 \rho_{s-1}\right)^{3}+9 \rho_{s-1}\left(w_{s-1}-3 \rho_{s-1}\right)^{2}+27 \rho_{s-1}^{2}\left(w_{s-1}-3 \rho_{s-1}\right)+27 \rho_{s-1}^{3}}{6} \\
& \quad-\rho_{s-1}^{3}=\frac{w_{s-1}^{3}}{6}-\rho_{s-1}^{3}
\end{aligned}
$$

Therefore,

$$
\begin{align*}
4 p \lambda(N)= & \sum_{s=1}^{p} \lambda\left(N_{u_{s}}, \hat{z}^{s}\right) \\
\leq & p \sum_{1 \leq i<j<k \leq p} w_{i} w_{j} w_{k}+\frac{p-2}{2} \sum_{1 \leq i<j \leq p}\left(w_{i}^{2} w_{j}+w_{j}^{2} w_{i}\right) \tag{8}\\
& +\frac{1}{2} \sum_{s=1}^{p} w_{s}^{2} w_{s+1}+\frac{1}{6} \sum_{s=1}^{p} w_{s}^{3}
\end{align*}
$$

If $p=2$, then

$$
8 \lambda(N) \leq \frac{w_{1}^{3}}{6}+\frac{w_{2}^{3}}{6}+\frac{w_{1}^{2} w_{2}}{2}+\frac{w_{1} w_{2}^{2}}{2}=\frac{\left(w_{1}+w_{2}\right)^{3}}{6}=\frac{1}{6}
$$

This implies that

$$
\lambda(N) \leq \frac{1}{48}=\frac{1}{24}\left(1-\frac{7}{2^{2}}+\frac{10}{2^{3}}\right) \leq \frac{1}{24}\left(1-\frac{7}{l^{2}}+\frac{10}{l^{3}}\right)=\frac{\alpha}{24} .
$$

So we may assume that $p \geq 3$ from now on. We separate the right hand side of (8) into two parts as follows:

$$
\begin{gather*}
f\left(w_{1}, w_{2}, \ldots, w_{p}\right)=\sum_{1 \leq i<j<k \leq p} w_{i} w_{j} w_{k}+\frac{1}{2} \sum_{s=1}^{p} w_{s}^{2} w_{s+1} . \tag{9}\\
g\left(w_{1}, w_{2}, \ldots, w_{p}\right)=(p-1) \sum_{1 \leq i<j<k \leq p} w_{i} w_{j} w_{k} \\
+\frac{1}{6} \sum_{s=1}^{p} w_{s}^{3}+\frac{p-2}{2} \sum_{1 \leq i<j \leq p}\left(w_{i}^{2} w_{j}+w_{j}^{2} w_{i}\right) .
\end{gather*}
$$

Note that
$f\left(\frac{1}{p}, \frac{1}{p}, \ldots, \frac{1}{p}\right)+g\left(\frac{1}{p}, \frac{1}{p}, \ldots, \frac{1}{p}\right)=\frac{p}{6}\left(1-\frac{7}{p^{2}}+\frac{10}{p^{3}}\right) \leq \frac{p}{6}\left(1-\frac{7}{l^{2}}+\frac{10}{l^{3}}\right)=\frac{p \alpha}{6}$.

Therefore, Lemma 3.1 follows from the following two Claims.

Claim 4.2. If function $f\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ reaches the maximum at (a_{1}, a_{2}, $\left.\ldots, a_{p}\right)$ under the constraints $\sum_{i=1}^{p} a_{i}=1 ; a_{i} \geq 0$, then $a_{1}=a_{2}=\cdots=$ $a_{p}=\frac{1}{p}$.

The proof of Claim 4.2 will be given later.
Claim 4.3. If function $g\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ reaches the maximum at $\left(a_{1}, a_{2}\right.$, \ldots, a_{p}) under the constraints $\sum_{i=1}^{p} a_{i}=1 ; a_{i} \geq 0$, then $a_{1}=a_{2}=\cdots=$ $a_{p}=\frac{1}{p}$.

Proof of Claim 4.3. Suppose that $g\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ reaches the maximum at $\left(a_{1}, a_{2}, \ldots, a_{p}\right)$. We first note that $q=\left|\left\{i: a_{i}>0\right\}\right| \geq 3$. If $q=1$, then by a direct calculation, $g(1,0,0, \ldots, 0) \leq g\left(\frac{1}{p}, \frac{1}{p}, \ldots, \frac{1}{p}\right)$ when $p \geq 3$. If $q=2$, without loss of generality, assume that $a_{1}>0$ and $a_{2}>0$, then it is not difficult to show that

$$
g\left(a_{1}, a_{2}, 0, \ldots, 0\right) \leq g\left(\frac{1}{2}, \frac{1}{2}, 0, \ldots, 0\right) \leq g\left(\frac{1}{p}, \frac{1}{p}, \ldots, \frac{1}{p}\right) .
$$

Now we are going to show that $a_{1}=a_{2}=\cdots=a_{p}=\frac{1}{p}$. If not, without loss of generality, assume that $a_{2}>a_{1}$, we will show that $g\left(a_{1}+\epsilon, a_{2}-\right.$ $\left.\epsilon, a_{3}, \ldots, a_{p}\right)-g\left(a_{1}, a_{2}, a_{3}, \ldots, a_{p}\right)>0$ for small enough $\epsilon>0$ and get a contradiction. In fact

$$
\begin{aligned}
& g\left(a_{1}+\epsilon, a_{2}-\epsilon, a_{3}, \ldots, a_{p}\right)-g\left(a_{1}, a_{2}, a_{3}, \ldots, a_{p}\right) \\
& =(p-1)\left[\left(a_{1}+\epsilon\right)\left(a_{2}-\epsilon\right)-a_{1} a_{2}\right]\left(1-a_{1}-a_{2}\right) \\
& +\frac{1}{6}\left[\left(a_{1}+\epsilon\right)^{3}+\left(a_{2}-\epsilon\right)^{3}-a_{1}^{3}-a_{2}^{3}\right] \\
& +\frac{p-2}{2}\left[\left(a_{1}+\epsilon\right)^{2}\left(a_{2}-\epsilon\right)+\left(a_{1}+\epsilon\right)\left(a_{2}-\epsilon\right)^{2}-a_{1}^{2} a_{2}-a_{1} a_{2}^{2}\right] \\
& =\left(a_{2}-a_{1}\right)\left[p-1-\left(\frac{p}{2}+\frac{1}{2}\right)\left(a_{1}+a_{2}\right)\right] \epsilon+o(\epsilon)>0
\end{aligned}
$$

for small enough $\epsilon>0$ since the coefficient of $\epsilon,\left(a_{2}-a_{1}\right)\left[p-1-\left(\frac{p}{2}+\frac{1}{2}\right)\right.$ $\left.\left(a_{1}+a_{2}\right)\right]$ is positive under the assumption that $a_{2}>a_{1}, p \geq 3$ and $a_{1}+$ $a_{2}<1$ (since $q \geq 3$). This contradicts to the assumption that g reaches the maximum at $\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ and Claim 4.3 follows.
Now we will prove Claim 4.2.
Proof of Claim 4.2. We will use induction on p. If $p=3$, it is enough to show the following Claim.

Claim 4.4.

$$
\begin{align*}
f\left(a_{1}, a_{2}, a_{3}\right) & =a_{1} a_{2} a_{3}+\frac{1}{2} a_{1}^{2} a_{2}+\frac{1}{2} a_{2}^{2} a_{3}+\frac{1}{2} a_{3}^{2} a_{1} \\
& \leq f(1 / 3,1 / 3,1 / 3)=\frac{5}{54} \tag{11}
\end{align*}
$$

holds under the constraints $\sum_{i=1}^{3} a_{i}=1 ; a_{i} \geq 0$.
Proof of Claim 4.4. By the theory of Lagrange multipliers (see [1]), if $f\left(a_{1}, a_{2}, a_{3}\right)$ attains the maximum at $\left(a_{1}, a_{2}, a_{3}\right)$, then either $\frac{\partial f}{\partial a_{1}}=\frac{\partial f}{\partial a_{2}}=$ $\frac{\partial f}{\partial a_{3}}$, i.e.,

$$
\begin{equation*}
a_{2} a_{3}+\frac{1}{2} a_{3}^{2}+a_{1} a_{2}=a_{1} a_{3}+\frac{1}{2} a_{1}^{2}+a_{2} a_{3}=a_{1} a_{2}+\frac{1}{2} a_{2}^{2}+a_{3} a_{1} \tag{12}
\end{equation*}
$$

or some $a_{i}=0$.

If some $a_{i}=0$, then it is easy to verify that $f\left(a_{1}, a_{2}, a_{3}\right) \leq \frac{2}{27}$.
Now assume that none of a_{1}, a_{2}, a_{3} is 0 , then (12) holds. In this case,

$$
\frac{\partial f}{\partial a_{1}}=\frac{\partial f}{\partial a_{2}}=\frac{\partial f}{\partial a_{3}}=a_{1} \frac{\partial f}{\partial a_{1}}+a_{2} \frac{\partial f}{\partial a_{2}}+a_{3} \frac{\partial f}{\partial a_{3}}=3 f\left(a_{1}, a_{2}, a_{3}\right) .
$$

Therefore,

$$
\begin{aligned}
9 f\left(a_{1}, a_{2}, a_{3}\right) & =\frac{\partial f}{\partial a_{1}}+\frac{\partial f}{\partial a_{2}}+\frac{\partial f}{\partial a_{3}} \\
& =2\left(a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}\right)+\frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}{2} \\
& =\frac{1}{2}+\left(a_{1} a_{2}+a_{2} a_{3}+a_{1} a_{3}\right) \\
& \leq \frac{1}{2}+\frac{1}{3}=\frac{5}{6} .
\end{aligned}
$$

This implies that $f\left(a_{1}, a_{2}, a_{3}\right) \leq \frac{5}{54}=f(1 / 3,1 / 3,1 / 3)$ and completes the proof of Claim 4.4.
Now let us apply the induction on p and continue the proof of Claim 4.2. Suppose that $f\left(a_{1}, \ldots, a_{p}\right)$ has the maximum at $\left(a_{1}, \ldots, a_{p}\right)$. If some $a_{i}=0$, say $a_{p}=0$, then by induction assumption, $f\left(a_{1}, \ldots, a_{p-1}, 0\right) \leq \frac{1}{6}\left(1-\frac{3}{p-1}+\right.$ $\left.\frac{5}{(p-1)^{2}}\right)<\frac{1}{6}\left(1-\frac{3}{p}+\frac{5}{p^{2}}\right)=f(1 / p, 1 / p, \ldots, 1 / p)$. Therefore, each $a_{i}>0$ and $\frac{\partial f}{\partial a_{1}}=\frac{\partial f}{\partial a_{2}}=\cdots=\frac{\partial f}{\partial a_{p}}$. By a direct calculation, for each $i, 1 \leq i \leq p$,

$$
\frac{\partial f}{\partial a_{i}}=\sum_{1 \leq j<k \leq p ; j, k \neq i} a_{j} a_{k}+a_{i} a_{i+1}+\frac{a_{i-1}^{2}}{2},
$$

where all subscripts here are modulo p. Then for each $i, 1 \leq i \leq p$,

$$
\frac{\partial f}{\partial a_{i}}=\sum_{i=1}^{p} a_{i} \frac{\partial f}{\partial a_{i}}=3 f\left(a_{1}, \ldots, a_{p}\right) .
$$

Therefore,

$$
\begin{align*}
3 p f\left(a_{1}, \ldots, a_{p}\right) & =\sum_{i=1}^{p} \frac{\partial f}{\partial a_{i}} \\
& =(p-2) \sum_{1 \leq i<j \leq p} a_{i} a_{j}+\sum_{i=1}^{p} \frac{a_{i}^{2}}{2}+\sum_{i=1}^{p} a_{i} a_{i+1} . \tag{13}
\end{align*}
$$

If $p \geq 5$, then we apply $a_{i} a_{i+1} \leq \frac{a_{i}^{2}+a_{i+1}^{2}}{2}$ to the above inequality and obtain that

$$
\begin{aligned}
3 p f\left(a_{1}, \ldots, a_{p}\right) & \leq(p-2) \sum_{1 \leq i<j \leq p} a_{i} a_{j}+\sum_{i=1}^{p} \frac{3 a_{i}^{2}}{2} \\
& =\frac{3}{2}+(p-5) \sum_{1 \leq i<j \leq p} a_{i} a_{j} \\
& \leq \frac{3}{2}+(p-5) \frac{\binom{p}{2}}{p^{2}}=\frac{p^{2}-3 p+5}{2 p} .
\end{aligned}
$$

Therefore,

$$
f\left(a_{1}, \ldots, a_{p}\right) \leq \frac{1}{6}\left(1-\frac{3}{p}+\frac{5}{p^{2}}\right)=f(1 / p, 1 / p, \ldots, 1 / p)
$$

If $p=4$, then (13) is equivalent to

$$
\begin{aligned}
12 f\left(a_{1}, a_{2}, a_{3}, a_{4}\right) & =2 \sum_{1 \leq i<j \leq 4} a_{i} a_{j}+\sum_{i=1}^{4} \frac{a_{i}^{2}}{2}+\left(a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{4}+a_{4} a_{1}\right) \\
& =\frac{1}{2}+\sum_{1 \leq i<j \leq 4} a_{i} a_{j}+\left(a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{4}+a_{4} a_{1}\right) \\
& \stackrel{\text { def }}{=} h\left(a_{1}, a_{2}, a_{3}, a_{4}\right) .
\end{aligned}
$$

It is enough to show that

$$
\begin{equation*}
h\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \leq h(1 / 4,1 / 4,1 / 4,1 / 4)=\frac{9}{8} \tag{14}
\end{equation*}
$$

In fact, $h\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ has the maximum either at some $a_{i}=0$ or satisfy

$$
\frac{\partial h}{\partial a_{1}}=\frac{\partial h}{\partial a_{2}}=\frac{\partial h}{\partial a_{3}}=\frac{\partial h}{\partial a_{4}}
$$

By a direct calculation, the above equation implies that $a_{1}=a_{2}=a_{3}=a_{4}$.
If $\left|\left\{i: a_{i}=0,1 \leq i \leq 4\right\}\right|=3$ or 2 , then (14) is clearly true. If one of a_{i} is 0 , without loss of generality, assuming that $a_{4}=0$, then

$$
\begin{aligned}
h\left(a_{1}, a_{2}, a_{3}, 0\right) & =\frac{1}{2}+2\left(a_{1} a_{2}+a_{2} a_{3}\right)+a_{1} a_{3} \leq \frac{1}{2}+2 a_{2}\left(1-a_{2}\right)+\frac{\left(1-a_{2}\right)^{2}}{4} \\
& =-\frac{7}{4}\left(a_{2}-\frac{3}{7}\right)^{2}+\frac{15}{14}<\frac{9}{8} .
\end{aligned}
$$

The proof of Claim 4.2 is completed.

5. Proof of Theorem 1.6

Theorem 1.6 extends Theorem 1.5 for the case $l=4$ to every integer $r \geq 4$. The proof is based on an extension of the 4 -graph $G^{*}(l, t)$ in Section 3 for the case $l=4$.

Suppose that $\frac{23 r!}{3 r^{r}}$ is a jump for $r \geq 4$. In view of Lemma 2.5, there exists a finite collection \mathcal{F} of r-graphs satisfying the following:
(i) $\lambda(F)>\frac{23}{3 r^{r}}$ for all $F \in \mathcal{F}$, and
(ii) $\frac{23 r!}{3 r^{r}}$ is a threshold for \mathcal{F}.

Set $k_{0}=\max _{F \in \mathcal{F}}|V(F)|$. Let $\sigma_{0}=c_{0}(4)$ be the number defined as in Section 3. Let $r=4$ in Lemma 2.6 and $t_{0}\left(k_{0}, \sigma_{0}\right)$ be given as in Lemma 2.6. Take an integer $t>\max \left(t_{0}, t_{1}\right)$, where t_{1} is the number from (3). Now define $G^{*}(4, t)$ (i.e., $l=4$) the same way as in Section 3 . with the new k_{0}. For simplicity, we simply write $G^{*}(4, t)$ as $G(t)$.

Since Theorem 1.5 holds, we may assume that $r \geq 5$. Based on the 4-graph $G(t)$, we construct an r-graph $G^{(r)}(t)$ on r pairwise disjoint sets $V_{1}, V_{2}, V_{3}, V_{4}, V_{5}, \ldots, V_{r}$, each of cardinality t. The edge set of $G^{(r)}(t)$ consists of all r-subsets in the form of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, \ldots, u_{r}\right\}$, where $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is an edge in $G(t)$ and for each $j, 5 \leq j \leq r, u_{j} \in V_{j}$. Notice that

$$
\begin{equation*}
\left|E\left(G^{(r)}(t)\right)\right|=t^{r-4}|E(G(t))| . \tag{15}
\end{equation*}
$$

Take $l=4$ in (3), we get

$$
\begin{equation*}
|E(G(t))| \geq \frac{23}{3} t^{4}+\frac{c_{0}(l) t^{3}}{2} \tag{16}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\lambda\left(G^{(r)}(t)\right) & \geq \frac{\left|E\left(G^{(r)}(t)\right)\right|}{(r t)^{r}} \\
& \stackrel{(15),(16)}{23} \frac{23}{3 r^{r}}+\frac{c_{0}(l)}{2 r^{r} t} .
\end{aligned}
$$

Similar to the case that Theorem 1.5 follows from Lemma 3.1, Theorem 1.6 follows from the following Lemma.

Lemma 5.1. Let $M^{(r)}$ be a subgraph of $G^{(r)}(t)$ with $\left|V\left(M^{(r)}\right)\right| \leq k_{0}$. Then

$$
\begin{equation*}
\lambda\left(M^{(r)}\right) \leq \frac{23}{3 r^{r}} \tag{17}
\end{equation*}
$$

holds.
Proof of Lemma 5.1. By Fact 2.1, we may assume that $M^{(r)}$ is an induced subgraph of $G^{(r)}(t)$. Let $M^{(4)}$ be the 4 -graph defined on $\cup_{i=1}^{4} V_{i}$ by taking the edge set to be $\left\{e \cap\left(\cup_{i=1}^{4} V_{i}\right)\right.$, where e is an edge of the r-graph $\left.M^{(r)}\right\}$. Note that $\left|V\left(M^{(4)}\right)\right| \leq\left|V\left(M^{(r)}\right)\right| \leq k_{0}$. Let $\vec{\xi}$ be an optimal vector for $\lambda\left(M^{(r)}\right)$. Define $U_{i}=V(M) \cap V_{i}$ for $1 \leq i \leq r$. Let a_{i} be the sum of the weights in $U_{i}, 1 \leq i \leq r$ respectively. Let $\xi^{(\overrightarrow{4})}$ be the restriction of $\vec{\xi}$ on $V\left(M^{(4)}\right)$. In view of the relationship between $M^{(r)}$ and $M^{(4)}$, we have

$$
\begin{equation*}
\lambda\left(M^{(r)}\right)=\lambda\left(M^{(4)}, \overrightarrow{\xi^{(4)}}\right) \times \prod_{i=5}^{r} a_{i} . \tag{18}
\end{equation*}
$$

Applying Lemma 3.1 (take $l=4$ there) with the constraints replaced by $\sum_{i=1}^{4} a_{i}=1-\sum_{i=5}^{r} a_{i}$, we obtain that

$$
\lambda\left(M^{(4)}, \xi^{\overrightarrow{(4)}}\right) \leq \frac{1}{24} \frac{23}{32}\left(1-\sum_{i=5}^{r} a_{i}\right)^{4} .
$$

Therefore,

$$
\lambda\left(M^{(r)}\right) \leq \frac{1}{24} \frac{23}{32}\left(1-\sum_{i=5}^{r} a_{i}\right)^{4} \prod_{i=5}^{r} a_{i} .
$$

Since geometric mean is no more than arithmetic mean, we obtain that

$$
\lambda\left(M^{(r)}\right) \leq \frac{1}{24} \frac{23}{32} 4^{4} \frac{1}{r^{r}}=\frac{23}{3 r^{r}} .
$$

This completes the proof of Lemma 5.1.

Acknowledgments

I am very thankful to the anonymous referee for many helpful comments.

References

[1] D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Academic Press, New York, NY, 1982).
[2] P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964) 183-190.
[3] P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci. Mat. Hung. Acad. 1 (1966) 51-57.
[4] P. Erdős and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946) 1087-1091.
[5] P. Frankl and Z. Füredi, Extremal problems whose solutions are the blow-ups of the small Witt-designs, J. Combin. Theory (A) 52 (1989) 129-147.
[6] P. Frankl and V. Rödl, Hypergraphs do not jump, Combinatorica 4 (1984) 149-159.
[7] P. Frankl, Y. Peng, V. Rödl and J. Talbot, A note on the jumping constant conjecture of Erdős, J. Combin. Theory (B) 97 (2007) 204-216.
[8] G. Katona, T. Nemetz and M. Simonovits, On a graph problem of Turán, Mat. Lapok 15 (1964) 228-238.
[9] T.S. Motzkin and E.G. Straus, Maxima for graphs and a new proof of a theorem of Turán, Canad. J. Math. 17 (1965) 533-540.
[10] Y. Peng, Non-jumping numbers for 4-uniform hypergraphs, Graphs and Combinatorics 23 (2007) 97-110.
[11] Y. Peng, Using Lagrangians of hypergraphs to find non-jumping numbers (I), submitted.
[12] Y. Peng, Using Lagrangians of hypergraphs to find non-jumping numbers (II), Discrete Math. 307 (2007) 1754-1766.
[13] J. Talbot, Lagrangians of hypergraphs, Combinatorics, Probability \& Computing 11 (2002) 199-216.

Received 5 April 2006
Revised 18 September 2006
Accepted 18 September 2006

