SUBGRAPH DENSITIES IN HYPERGRAPHS

YUEJIAN PENG

Department of Mathematics and Computer Science Indiana State University Terre Haute, IN, 47809, USA

e-mail: mapeng@isugw.indstate.edu

Abstract

Let $r \geq 2$ be an integer. A real number $\alpha \in [0, 1)$ is a jump for r if for any $\epsilon > 0$ and any integer $m \geq r$, any r-uniform graph with $n > n_0(\epsilon, m)$ vertices and density at least $\alpha + \epsilon$ contains a subgraph with m vertices and density at least $\alpha + \epsilon$ contains a subgraph with m vertices and density at least $\alpha + \epsilon$, where $c = c(\alpha) > 0$ does not depend on ϵ and m. A result of Erdős, Stone and Simonovits implies that every $\alpha \in [0, 1)$ is a jump for r = 2. Erdős asked whether the same is true for $r \geq 3$. Frankl and Rödl gave a negative answer by showing an infinite sequence of non-jumps for every $r \geq 3$. However, there are still a lot of open questions on determining whether or not a number is a jump for r = 4, then extend one of them to every $r \geq 4$. Our approach is based on the techniques developed by Frankl and Rödl.

Keywords: Erdős jumping constant conjecture, Lagrangian, optimal vector.

2000 Mathematics Subject Classification: 05D05, 05C65.

1. INTRODUCTION

For a finite set V and a positive integer r we denote by $\binom{V}{r}$ the family of all r-subsets of V. An r-uniform graph G consists of a set V(G) of vertices and a set $E(G) \subseteq \binom{V}{r}$ of edges. In particular, an r-uniform graph is called a graph if r = 2 and an r-uniform hypergraph if $r \ge 3$. We abbreviate r-uniform graph

to *r*-graph. The density of an *r*-graph *G* is defined by $d(G) = \frac{|E(G)|}{|\binom{V(G)}{r}|}$. An *r*-graph *H* is a subgraph of an *r*-graph *G* if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. *H* is an *induced subgraph* of *G* if $E(H) = E(G) \cap \binom{V(H)}{r}$.

By a simple argument (c.f. Katona, Nemetz, Simonovits [8]), the average of densities of all induced subgraphs of an *r*-graph G with $m \ge r$ vertices is d(G). Therefore, there exists a subgraph of G with m vertices and density $\ge d(G)$. A natural question is whether there exists a subgraph of G with m vertices and density $\ge d(G) + c$, where c > 0 is a constant? To be more precise, the concept of 'jump' was introduced.

Definition 1.1. Given $r \ge 2$, a real number $\alpha \in [0, 1)$ is a jump for r if there exists a constant c > 0 such that for any $\epsilon > 0$ and any integer $m, m \ge r$, there exists an integer $n_0(\epsilon, m)$ such that any r-graph with $n > n_0(\epsilon, m)$ vertices and density $\ge \alpha + \epsilon$ contains a subgraph with m vertices and density $\ge \alpha + \epsilon$ contains a subgraph with m vertices and density $\ge \alpha + \epsilon$. A real number $\alpha \in [0, 1)$ is called a non-jump for r if α is not a jump for r.

Erdős and Stone ([4]) proved that every $\alpha \in [0, 1)$ is a jump for r = 2. It easily follows from the following classical result.

For an integer $l \ge r$, an r-graph G = (V, E) is called *complete l-partite* if V admits a partition into l classes such that an r-subset of V is an edge if and only if it contains at most one vertex from each class.

Theorem 1.1 (c.f. [4]). Suppose l is a positive integer. For any $\epsilon > 0$ and any positive integer m, there exists $n_0(m, \epsilon)$ such that any graph G on $n > n_0(m, \epsilon)$ vertices with density $d(G) \ge 1 - \frac{1}{l} + \epsilon$ contains a copy of the complete (l + 1)-partite graph with partition classes of size m.

Note that the density of a complete (l + 1)-partite graph with partition classes of size m is greater than $1 - \frac{1}{l+1}$ (approaches $1 - \frac{1}{l+1}$ when $m \to \infty$).

For $r \geq 3$, Erdős proved that every $\alpha \in [0, r!/r^r)$ is a jump. It directly follows from the following:

Theorem 1.2 (c.f. [2]). For any $\epsilon > 0$ and any positive integer m, there exists $n_0(\epsilon, m)$ such that any r-graph G on $n > n_0(\epsilon, m)$ vertices with density $d(G) \ge \epsilon$ contains a copy of the complete r-partite r-graph with partition classes of size m.

Note that the density of a complete r-partite r-graph with partition classes of size m is greater than $r!/r^r$ (approaches $r!/r^r$ when $m \to \infty$).

Furthermore, Erdős proposed the following jumping constant conjecture.

Conjecture 1.3. Every $\alpha \in [0, 1)$ is a jump for every integer $r \geq 2$.

In [6], Frankl and Rödl disproved this conjecture by showing the following result.

Theorem 1.4 (c.f. [6]). Suppose $r \ge 3$ and l > 2r. Then $1 - \frac{1}{l^{r-1}}$ is not a jump for r.

Using the techniques developed by Frankl and Rödl in [6], some other nonjumps were given in [7, 10, 11] and [12]. However, there are still a lot of open questions on determining whether or not a number is a jump for $r \ge 3$. A well-known question of Erdős is to determine whether or not $\frac{r!}{r^r}$ is a jump. At this moment, the smallest known non-jump for $r \ge 3$ is $\frac{5r!}{2r^r}$ given in [7]. Another question raised in [7] is whether there is an interval of non-jumps for $r \ge 3$. By the definition of the 'jump', if a number *a* is a jump, then there exists a constant c > 0 such that every number in [a, a + c) is a jump. Consequently, if there is a set of non-jumps whose limits form an interval (number *a* is a limit of a set *A* if there is a sequence $\{a_n\}_{n=1}^{\infty}$, $a_n \in A$ such that $\lim_{n\to\infty} a_n = a$), then no number in this interval is a jump. We do not know whether such a 'dense enough' set of non-jumps exists or not. In this paper we intend to find more non-jumps in addition to the known nonjumps in [6, 7, 10, 11] and [12]. Our approach is still based on the techniques developed by Frankl and Rödl in [6].

We first work in the case r = 4 and find a sequence of non-jumps for r = 4. In Sections 3 and 4, we prove the following result.

Theorem 1.5. Let $l \ge 2$ be an integer. Then $1 - \frac{7}{l^2} + \frac{10}{l^3}$ is not a jump for r = 4.

In Section 5 we extend a special case of Theorem 1.5 (l = 4) to all $r \ge 4$. The following result will be proved.

Theorem 1.6. For $r \ge 4$, $\frac{23r!}{3r^r}$ is not a jump for r.

Note that when r = l = 4, Theorems 1.6 and 1.5 coincide.

In the next section, we introduce the Lagrangian of an r-graph and some other tools to be applied in our proofs.

2. LAGRANGIANS AND OTHER TOOLS

We first give a definition of the Lagrangian of an r-graph. More studies of Lagrangians were given in [5, 6, 9] and [13].

Definition 2.1. For an *r*-graph *G* with vertex set $\{1, 2, ..., m\}$, edge set E(G) and a vector $\vec{x} = (x_1, ..., x_m) \in \mathbb{R}^m$, define

$$\lambda(G, \vec{x}) = \sum_{\{i_1, \dots, i_r\} \in E(G)} x_{i_1} x_{i_2} \dots x_{i_r}.$$

 x_i is called the *weight* of vertex *i*.

Definition 2.2. Let $S = \{\vec{x} = (x_1, x_2, \dots, x_m) : \sum_{i=1}^m x_i = 1, x_i \ge 0 \text{ for } i = 1, 2, \dots, m\}$. The Lagrangian of G, denoted by $\lambda(G)$, is defined as

$$\lambda(G) = \max\{\lambda(G, \vec{x}) : \vec{x} \in S\}.$$

A vector $\vec{x} \in S$ is called an *optimal vector* for $\lambda(G)$ if $\lambda(G, \vec{x}) = \lambda(G)$.

We note that if H is a subgraph of an r-graph G, then for any vector \vec{x} in S, $\lambda(H, \vec{x}) \leq \lambda(G, \vec{x})$. We formulate this as follows.

Fact 2.1. Let H be a subgraph of an r-graph G. Then

$$\lambda(H) \le \lambda(G).$$

For an r-graph G and $i \in V(G)$ we define G_i to be the (r-1)-uniform graph on $V - \{i\}$ with edge set $E(G_i)$ given by $e \in E(G_i)$ if and only if $e \cup \{i\} \in E(G)$.

We call two vertices i, j of an r-graph G equivalent if for all $f \in \binom{V(G)-\{i,j\}}{r-1}$, $f \in E(G_i)$ if and only if $f \in E(G_j)$.

The following lemma (proved in [6]) will be useful when calculating Lagrangians of certain graphs.

Lemma 2.2 (c.f. [6]). Suppose G is an r-graph on vertices $\{1, 2, \ldots, m\}$.

- 1. If vertices i_1, i_2, \ldots, i_t are pairwise equivalent, then there exists an optimal vector $\vec{y} = (y_1, y_2, \ldots, y_m)$ of $\lambda(G)$ such that $y_{i_1} = y_{i_2} = \cdots = y_{i_t}$.
- 2. Let $\vec{y} = (y_1, y_2, \dots, y_m)$ be an optimal vector of $\lambda(G)$ and $y_i > 0$. Let \hat{y}_i be the restriction of \vec{y} on $\{1, 2, \dots, m\} \setminus \{i\}$. Then $\lambda(G_i, \hat{y}_i) = r\lambda(G)$.

We also note that for an r-graph G with m vertices, if we take $\vec{u} = (u_1, \ldots, u_m)$, where each $u_i = 1/m$, then

$$\lambda(G) \ge \lambda(G, \vec{u}) = \frac{|E(G)|}{m^r} \ge \frac{d(G)}{r!} - \epsilon$$

for $m \ge m'(\epsilon)$.

On the other hand, we introduce the blow-up of an r-graph G which will allow us to construct r-graphs with large number of vertices and densities close to $r!\lambda(G)$.

Definition 2.3. Let G be an r-graph with $V(G) = \{1, 2, ..., m\}$ and $(n_1, ..., n_m)$ be a positive integer vector. Define the $(n_1, ..., n_m)$ blow-up of G, $(n_1, ..., n_m) \otimes G$ as an m-partite r-graph with vertex set $V_1 \cup \cdots \cup V_m, |V_i| = n_i, 1 \le i \le m$, and edge set $E((n_1, ..., n_m) \otimes G) = \{\{v_{i_1}, v_{i_2}, ..., v_{i_r}\} : v_{i_k} \in V_{i_k} \text{ for } 1 \le k \le r, \{i_1, i_2, ..., i_r\} \in E(G)\}$. We abbreviate $(n, n, ..., n) \otimes G$ to $\vec{n} \otimes G$.

We make the following easy Remark used in [10].

Remark 2.3 (c.f. [10]). Let G be an r-graph with m vertices and $\vec{y} = (y_1, \ldots, y_m)$ be an optimal vector of $\lambda(G)$. Then for any $\epsilon > 0$, there exists an integer $n_1(\epsilon)$, such that for any integer $n \ge n_1(\epsilon)$,

(1)
$$d((\lfloor ny_1 \rfloor, \lfloor ny_2 \rfloor, \dots, \lfloor ny_m \rfloor) \otimes G) \ge r!\lambda(G) - \epsilon.$$

Let us also state a fact relating the Lagrangian of an r-graph to the Lagrangian of its blow-up used in [6, 7, 10, 11] and [12] as well).

Fact 2.4 (c.f. [6]).
$$\lambda(\vec{n} \otimes G) = \lambda(G)$$

The following lemma proved in [6] gives a necessary and sufficient condition for a number α to be a jump. We need a definition to describe it.

Definition 2.4. For $\alpha \in [0, 1)$ and a family \mathcal{F} of *r*-graphs, we say that α is a threshold for \mathcal{F} if for any $\epsilon > 0$ there exists an $n_0 = n_0(\epsilon)$ such that any *r*-graph *G* with $d(G) \ge \alpha + \epsilon$ and $|V(G)| > n_0$ contains some member of \mathcal{F} as a subgraph. We denote this fact by $\alpha \to \mathcal{F}$.

Lemma 2.5 (c.f. [6]). The following two properties are equivalent.

- 1. α is a jump for r.
- 2. $\alpha \to \mathcal{F}$ for some finite family \mathcal{F} of r-graphs satisfying $\lambda(F) > \frac{\alpha}{r!}$ for all $F \in \mathcal{F}$.

We also need the following lemma proved in [6].

Lemma 2.6 (c.f. [6]). For any $\sigma \ge 0$ and any integer $k \ge r$, there exists $t_0(k, \sigma)$ such that for every $t > t_0(k, \sigma)$, there exists an r-graph A satisfying:

- 1. |V(A)| = t,
- 2. $|E(A)| \ge \sigma t^{r-1}$,
- 3. For all $V_0 \subset V(A), r \leq |V_0| \leq k$ we have $|E(A) \cap {V_0 \choose r}| \leq |V_0| r + 1$.

The general approach in proving Theorems 1.5 and 1.6 is sketched as follows: Let α be a number to be proved to be a non-jump. Assuming that α is a jump, we will derive a contradiction by the following steps.

Step 1. Construct an *r*-uniform hypergraph (in Theorem 1.5, r = 4) with the Lagrangian close to but slightly smaller than $\frac{\alpha}{r!}$, then use Lemma 2.6 to add an *r*-graph with enough number of edges but sparse enough (see properties 2 and 3 in this Lemma) and obtain an *r*-graph with the Lagrangian $\geq \frac{\alpha}{r!} + \epsilon$ for some positive ϵ . Then we 'blow up' this *r*-graph to an *r*-graph, say *H* with large enough number of vertices and density $> \alpha + \frac{\epsilon}{2}$ (see Remark 2.3). If α is a jump, then by Lemma 2.5, α is a threshold for some finite family \mathcal{F} of *r*-graphs with Lagrangians $> \frac{\alpha}{r!}$. So *H* must contain some member of \mathcal{F} as a subgraph.

Step 2. We show that any subgraph of H with the number of vertices not greater than $\max\{|V(F)|, F \in \mathcal{F}\}$ has the Lagrangian $\leq \frac{\alpha}{r!}$ and derive a contradiction.

It is easy to construct an r-graph satisfying the property in Step 1, but it is certainly nontrivial to construct an r-graph satisfying the properties in both Steps 1 and 2. In fact, whenever we find such a construction, we can obtain a corresponding non-jump. This method was first developed by Frankl and Rödl in [6], then it was used in [7, 10, 11] and [12] to find more non-jumps by giving this type of construction. The technical part in the proof is to show that the construction satisfies the property in Step 2 (Lemma 3.1).

3. Proof of Theorem 1.5

In this Section, we focus on r = 4 and give a proof of Theorem 1.5. Let $\alpha = 1 - \frac{7}{l^2} + \frac{10}{l^3}$. Let t be a large enough integer determined later. We first define a 4-graph G(l,t) on l pairwise disjoint sets V_1, \ldots, V_l , each of cardinality t. The edge set of G(l,t) consists of all 4-subsets taking exactly one vertex from each of V_i, V_j, V_k, V_s $(1 \le i < j < k < s \le l)$, all 4-subsets taking 2 vertices from V_i , 1 vertex from V_j and 1 vertex from V_k $(1 \le i < l, 1 \le j < k \le l$ and i, j, k are pairwise distinct), and all 4-subsets taking 3 vertices from V_i and 1 vertex from V_{i+1} $(1 \le i \le l$ and $V_{l+1} = V_1$). When l = 2 or 3, some of them are vacant.

Note that the density of G(l, t) is close to α if t is large enough. In fact,

(2)
$$|E(G(l,t))| = {l \choose 4} t^4 + l {l-1 \choose 2} {t \choose 2} t^2 + l {t \choose 3} t^4$$
$$= \frac{\alpha}{24} l^4 t^4 - c_0(l) t^3 + o(t^3),$$

where $c_0(l)$ is positive (we omit giving the precise calculation here). Let $\vec{u} = (u_1, \ldots, u_{lt})$, where $u_i = 1/(lt)$ for each $i, 1 \le i \le lt$, then

$$\lambda(G(l,t)) \ge \lambda(G(l,t), \vec{u}) = \frac{|E(G(l,t))|}{(lt)^4} = \frac{\alpha}{24} - \frac{c_0(l)}{l^4 t} + o\left(\frac{1}{t}\right)$$

which is close to $\frac{\alpha}{24}$ when t is large enough.

We will use Lemma 2.6 to add a 4-graph to G(l, t) so that the Lagrangian of the resulting 4-graph is $> \frac{\alpha}{24} + \epsilon(t)$ for some $\epsilon(t) > 0$. The precise argument is given below.

Suppose that α is a jump. In view of Lemma 2.5, there exists a finite collection \mathcal{F} of 4-graphs satisfying the following:

- (i) $\lambda(F) > \frac{\alpha}{24}$ for all $F \in \mathcal{F}$, and
- (ii) α is a threshold for \mathcal{F} .

Set $k_0 = \max_{F \in \mathcal{F}} |V(F)|$ and $\sigma_0 = c_0(l)$. Let r = 4 in Lemma 2.6 and $t_0(k_0, \sigma_0)$ be given as in Lemma 2.6. Take an integer $t > \max(t_0, t_1)$, where t_1 is determined in (3) given later. For each $i, 1 \le i \le l$, take a 4-graph $A^i_{k_0,\sigma_0}(t)$ satisfying the conditions in Lemma 2.6 with $V(A^i_{k_0,\sigma_0}(t)) = V_i$. The 4-graph $G^*(l,t)$ is obtained by adding all $A^i_{k_0,\sigma_0}(t)$ to the 4-uniform

hypegraph G(l, t). Then

$$\lambda(G^*(l,t)) \ge \lambda(G^*(l,t), \vec{u}) = \frac{|E(G^*(l,t))|}{(lt)^4}.$$

In view of the construction of $G^*(l, t)$ and equation (2), we have

(3)
$$\frac{|E(G^*(l,t))|}{(lt)^4} \ge \frac{|E(G(l,t))| + l\sigma_0 t^3}{(lt)^4} \stackrel{(2)}{\ge} \frac{\alpha}{24} + \frac{c_0(l)}{2l^4t}$$

for $t \geq t_1$. Consequently,

(4)
$$\lambda(G^*(l,t)) \ge \frac{\alpha}{24} + \frac{c_0(l)}{2l^4t}$$

for $t \geq t_1$.

Now suppose $\vec{y} = (y_1, y_2, \ldots, y_{lt})$ is an optimal vector of $\lambda(G^*(l, t))$. Let $\epsilon = \frac{6c_0(l)}{l^4t}$ and $n > n_1(\epsilon)$ as in Remark 2.3. Then 4-graph $S_n = (\lfloor ny_1 \rfloor, \ldots, \lfloor ny_{lt} \rfloor) \otimes G^*(l, t)$ has density larger than $\alpha + \epsilon$. Since α is a threshold for \mathcal{F} , some member F of \mathcal{F} is a subgraph of S_n for $n \geq \max\{n_0(\epsilon), n_1(\epsilon)\}$. For such $F \in \mathcal{F}$, there exists a subgraph M of $G^*(l, t)$ with $|V(M)| \leq |V(F)| \leq k_0$ so that $F \subset \vec{n} \otimes M$. By Fact 2.1 and Fact 2.4, we have

(5)
$$\lambda(F) \stackrel{\text{Fact 2.1}}{\leq} \lambda(\vec{n} \otimes M) \stackrel{\text{Fact 2.4}}{=} \lambda(M).$$

Theorem 1.5 will follow from the following lemma to be proved in Section 4.

Lemma 3.1. Let $G^*(l,t)$ be a 4-graph constructed the same way as above with k_0, σ_0, t replaced by any k, σ, t satisfying $t > t_0(k, \sigma)$ as given in Lemma 2.6 respectively. Let M be any subgraph of $G^*(l,t)$ with $|V(M)| \le k$. Then

(6)
$$\lambda(M) \le \frac{1}{24}\alpha$$

holds.

Applying Lemma 3.1 to (5), we have

$$\lambda(F) \le \frac{1}{24}\alpha$$

which contradicts our choice of F, i.e., contradicts the fact that $\lambda(F) > \frac{1}{24}\alpha$ for all $F \in \mathcal{F}$.

288

To complete the proof of Theorem 1.5, what remains is to show Lemma 3.1.

4. Proof of Lemma 3.1

By Fact 2.1, we may assume that M is an induced subgraph of $G^*(l, t)$. For each $s, 1 \leq s \leq l$, let

$$U_s = V(M) \cap V_s = \{v_1^s, v_2^s, \dots, v_{k_s}^s\}.$$

We will apply the following Claim proved in [6].

Claim 4.1 (c.f. [6]). If N is the 4-graph formed from M by removing the edges contained in each U_s and inserting the edges $\{\{v_1^s, v_2^s, v_3^s, v_j^s\}: 1 \le s \le l, 4 \le j \le k_s\}$ then $\lambda(M) \le \lambda(N)$.

By Claim 4.1 the proof of Lemma 3.1 will be complete if we show that $\lambda(N) \leq \frac{\alpha}{24}$. Since v_1^s, v_2^s, v_3^s are pairwise equivalent and $v_4^s, \ldots v_{k_s}^s$ are pairwise equivalent we can use Lemma 2.2(part 1) to obtain an optimal vector \vec{z} of $\lambda(N)$ such that

$$z_1^s = z_2^s = z_3^s \stackrel{\text{def}}{=} \rho_s, \qquad z_4^s = z_5^s = \dots = z_{k_s}^s \stackrel{\text{def}}{=} \zeta_s.$$

Let w_s be the sum of the total weights in U_s . Let $P = \{s : w_s > 0\}$ and p = |P|. Without loss of generality, we may assume that $P = \{1, 2, ..., p\}$. We may also assume that $p \ge 2$. Otherwise,

$$\lambda(N) = \rho_1^3 (1 - 3\rho_1) \le \frac{1}{256} < \frac{1}{24} \left(1 - \frac{7}{2^2} + \frac{10}{2^3} \right) \le \frac{1}{24} \left(1 - \frac{7}{l^2} + \frac{10}{l^3} \right) = \frac{\alpha}{24}$$

since $1 - \frac{7}{x^2} + \frac{10}{x^3}$ increases when $x \ge 3$ increases and $1 - \frac{7}{2^2} + \frac{10}{2^3} < 1 - \frac{7}{3^2} + \frac{10}{3^3}$.

So we may assume that $2 \le p \le l$. For each $s \in P$ take a vertex $u_s \in U_s$ with positive weight as follows: if $\zeta_s > 0$ then $u_s = v_4^s$ otherwise $u_s = v_1^s$. The vertex u_s receives non-zero weight. Let \hat{z}^s be the restriction of \vec{z} on $V(N_{u_s})$. Then by Lemma 2.2(part 2) we have

$$4\lambda(N) = \lambda(N_{u_s}, \hat{z}^s).$$

Moreover by considering the edges containing vertex u_s we have

$$\lambda(N_{u_s}, \hat{z}^s) \leq \sum_{1 \leq i < j < k \leq p; i, j, k \neq s} w_i w_j w_k + w_s \sum_{1 \leq i < j \leq p; i, j \neq s} w_i w_j$$

$$+ \sum_{1 \leq i < j \leq p; i, j \neq s} \left(\frac{w_j^2}{2} w_i + \frac{w_i^2}{2} w_j \right) + \frac{w_s^2}{2} w_{s+1}$$

$$+ \left[\frac{1}{6} (w_{s-1} - 3\rho_{s-1})^3 + \frac{3\rho_{s-1}}{2} (w_{s-1} - 3\rho_{s-1})^2 + 3\rho_{s-1}^2 (w_{s-1} - 3\rho_{s-1}) + \rho_{s-1}^3 \right] + \rho_s^3,$$

where all subscripts are modulo p. Note that

$$\frac{\frac{1}{6}(w_{s-1}-3\rho_{s-1})^3 + \frac{3\rho_{s-1}}{2}(w_{s-1}-3\rho_{s-1})^2 + 3\rho_{s-1}^2(w_{s-1}-3\rho_{s-1}) + \rho_{s-1}^3}{6} \le \frac{(w_{s-1}-3\rho_{s-1})^3 + 9\rho_{s-1}(w_{s-1}-3\rho_{s-1})^2 + 27\rho_{s-1}^2(w_{s-1}-3\rho_{s-1}) + 27\rho_{s-1}^3}{6} - \rho_{s-1}^3 = \frac{w_{s-1}^3}{6} - \rho_{s-1}^3.$$

Therefore,

(8)

$$4p\lambda(N) = \sum_{s=1}^{p} \lambda(N_{u_s}, \hat{z}^s)$$

$$\leq p \sum_{1 \le i < j < k \le p} w_i w_j w_k + \frac{p-2}{2} \sum_{1 \le i < j \le p} (w_i^2 w_j + w_j^2 w_i)$$

$$+ \frac{1}{2} \sum_{s=1}^{p} w_s^2 w_{s+1} + \frac{1}{6} \sum_{s=1}^{p} w_s^3.$$

If p = 2, then

$$8\lambda(N) \le \frac{w_1^3}{6} + \frac{w_2^3}{6} + \frac{w_1^2w_2}{2} + \frac{w_1w_2^2}{2} = \frac{(w_1 + w_2)^3}{6} = \frac{1}{6}$$

290

This implies that

$$\lambda(N) \le \frac{1}{48} = \frac{1}{24} \left(1 - \frac{7}{2^2} + \frac{10}{2^3} \right) \le \frac{1}{24} \left(1 - \frac{7}{l^2} + \frac{10}{l^3} \right) = \frac{\alpha}{24}$$

So we may assume that $p \ge 3$ from now on. We separate the right hand side of (8) into two parts as follows:

(9)
$$f(w_1, w_2, \dots, w_p) = \sum_{1 \le i < j < k \le p} w_i w_j w_k + \frac{1}{2} \sum_{s=1}^p w_s^2 w_{s+1}.$$

(10)
$$g(w_1, w_2, \dots, w_p) = (p-1) \sum_{1 \le i < j < k \le p} w_i w_j w_k$$

$$+ \frac{1}{6} \sum_{s=1}^{1} w_s^3 + \frac{p-2}{2} \sum_{1 \le i < j \le p} \left(w_i^2 w_j + w_j^2 w_i \right)$$

Note that

$$f\left(\frac{1}{p}, \frac{1}{p}, \dots, \frac{1}{p}\right) + g\left(\frac{1}{p}, \frac{1}{p}, \dots, \frac{1}{p}\right) = \frac{p}{6}\left(1 - \frac{7}{p^2} + \frac{10}{p^3}\right) \le \frac{p}{6}\left(1 - \frac{7}{l^2} + \frac{10}{l^3}\right) = \frac{p\alpha}{6}.$$

Therefore, Lemma 3.1 follows from the following two Claims.

Claim 4.2. If function $f(a_1, a_2, ..., a_p)$ reaches the maximum at $(a_1, a_2, ..., a_p)$ under the constraints $\sum_{i=1}^{p} a_i = 1; a_i \ge 0$, then $a_1 = a_2 = \cdots = a_p = \frac{1}{p}$.

The proof of Claim 4.2 will be given later.

Claim 4.3. If function $g(a_1, a_2, \ldots, a_p)$ reaches the maximum at (a_1, a_2, \ldots, a_p) under the constraints $\sum_{i=1}^{p} a_i = 1; a_i \ge 0$, then $a_1 = a_2 = \cdots = a_p = \frac{1}{p}$.

Proof of Claim 4.3. Suppose that $g(a_1, a_2, \ldots, a_p)$ reaches the maximum at (a_1, a_2, \ldots, a_p) . We first note that $q = |\{i : a_i > 0\}| \ge 3$. If q = 1, then by a direct calculation, $g(1, 0, 0, \ldots, 0) \le g(\frac{1}{p}, \frac{1}{p}, \ldots, \frac{1}{p})$ when $p \ge 3$. If q = 2, without loss of generality, assume that $a_1 > 0$ and $a_2 > 0$, then it is not difficult to show that

$$g(a_1, a_2, 0, \dots, 0) \le g\left(\frac{1}{2}, \frac{1}{2}, 0, \dots, 0\right) \le g\left(\frac{1}{p}, \frac{1}{p}, \dots, \frac{1}{p}\right).$$

Now we are going to show that $a_1 = a_2 = \cdots = a_p = \frac{1}{p}$. If not, without loss of generality, assume that $a_2 > a_1$, we will show that $g(a_1 + \epsilon, a_2 - \epsilon, a_3, \ldots, a_p) - g(a_1, a_2, a_3, \ldots, a_p) > 0$ for small enough $\epsilon > 0$ and get a contradiction. In fact

$$g(a_{1} + \epsilon, a_{2} - \epsilon, a_{3}, \dots, a_{p}) - g(a_{1}, a_{2}, a_{3}, \dots, a_{p})$$

$$= (p-1)[(a_{1} + \epsilon)(a_{2} - \epsilon) - a_{1}a_{2}](1 - a_{1} - a_{2})$$

$$+ \frac{1}{6} \left[(a_{1} + \epsilon)^{3} + (a_{2} - \epsilon)^{3} - a_{1}^{3} - a_{2}^{3} \right]$$

$$+ \frac{p-2}{2} \left[(a_{1} + \epsilon)^{2}(a_{2} - \epsilon) + (a_{1} + \epsilon)(a_{2} - \epsilon)^{2} - a_{1}^{2}a_{2} - a_{1}a_{2}^{2} \right]$$

$$= (a_{2} - a_{1}) \left[p - 1 - \left(\frac{p}{2} + \frac{1}{2} \right) (a_{1} + a_{2}) \right] \epsilon + o(\epsilon) > 0$$

for small enough $\epsilon > 0$ since the coefficient of ϵ , $(a_2 - a_1)[p - 1 - (\frac{p}{2} + \frac{1}{2})(a_1 + a_2)]$ is positive under the assumption that $a_2 > a_1$, $p \ge 3$ and $a_1 + a_2 < 1$ (since $q \ge 3$). This contradicts to the assumption that g reaches the maximum at (a_1, a_2, \ldots, a_p) and Claim 4.3 follows.

Now we will prove Claim 4.2.

Proof of Claim 4.2. We will use induction on p. If p = 3, it is enough to show the following Claim.

Claim 4.4.

(11)
$$f(a_1, a_2, a_3) = a_1 a_2 a_3 + \frac{1}{2} a_1^2 a_2 + \frac{1}{2} a_2^2 a_3 + \frac{1}{2} a_3^2 a_1$$
$$\leq f(1/3, 1/3, 1/3) = \frac{5}{54}$$

holds under the constraints $\sum_{i=1}^{3} a_i = 1$; $a_i \ge 0$.

Proof of Claim 4.4. By the theory of Lagrange multipliers (see [1]), if $f(a_1, a_2, a_3)$ attains the maximum at (a_1, a_2, a_3) , then either $\frac{\partial f}{\partial a_1} = \frac{\partial f}{\partial a_2} = \frac{\partial f}{\partial a_3}$, i.e.,

(12) $a_2a_3 + \frac{1}{2}a_3^2 + a_1a_2 = a_1a_3 + \frac{1}{2}a_1^2 + a_2a_3 = a_1a_2 + \frac{1}{2}a_2^2 + a_3a_1,$

or some $a_i = 0$.

SUBGRAPH DENSITIES IN HYPERGRAPHS

If some $a_i = 0$, then it is easy to verify that $f(a_1, a_2, a_3) \leq \frac{2}{27}$. Now assume that none of a_1, a_2, a_3 is 0, then (12) holds. In this case,

$$\frac{\partial f}{\partial a_1} = \frac{\partial f}{\partial a_2} = \frac{\partial f}{\partial a_3} = a_1 \frac{\partial f}{\partial a_1} + a_2 \frac{\partial f}{\partial a_2} + a_3 \frac{\partial f}{\partial a_3} = 3f(a_1, a_2, a_3).$$

Therefore,

$$9f(a_1, a_2, a_3) = \frac{\partial f}{\partial a_1} + \frac{\partial f}{\partial a_2} + \frac{\partial f}{\partial a_3}$$

= $2(a_1a_2 + a_1a_3 + a_2a_3) + \frac{a_1^2 + a_2^2 + a_3^2}{2}$
= $\frac{1}{2} + (a_1a_2 + a_2a_3 + a_1a_3)$
 $\leq \frac{1}{2} + \frac{1}{3} = \frac{5}{6}.$

This implies that $f(a_1, a_2, a_3) \leq \frac{5}{54} = f(1/3, 1/3, 1/3)$ and completes the proof of Claim 4.4.

Now let us apply the induction on p and continue the proof of Claim 4.2. Suppose that $f(a_1, \ldots, a_p)$ has the maximum at (a_1, \ldots, a_p) . If some $a_i = 0$, say $a_p = 0$, then by induction assumption, $f(a_1, \ldots, a_{p-1}, 0) \leq \frac{1}{6}(1 - \frac{3}{p-1} + \frac{5}{(p-1)^2}) < \frac{1}{6}(1 - \frac{3}{p} + \frac{5}{p^2}) = f(1/p, 1/p, \ldots, 1/p)$. Therefore, each $a_i > 0$ and $\frac{\partial f}{\partial a_1} = \frac{\partial f}{\partial a_2} = \cdots = \frac{\partial f}{\partial a_p}$. By a direct calculation, for each $i, 1 \leq i \leq p$,

$$\frac{\partial f}{\partial a_i} = \sum_{1 \le j < k \le p; j, k \ne i} a_j a_k + a_i a_{i+1} + \frac{a_{i-1}^2}{2},$$

where all subscripts here are modulo p. Then for each $i, 1 \leq i \leq p$,

$$\frac{\partial f}{\partial a_i} = \sum_{i=1}^p a_i \frac{\partial f}{\partial a_i} = 3f(a_1, \dots, a_p).$$

Therefore,

(13)

$$3pf(a_1, \dots, a_p) = \sum_{i=1}^p \frac{\partial f}{\partial a_i}$$

$$= (p-2) \sum_{1 \le i < j \le p} a_i a_j + \sum_{i=1}^p \frac{a_i^2}{2} + \sum_{i=1}^p a_i a_{i+1}.$$

If $p \ge 5$, then we apply $a_i a_{i+1} \le \frac{a_i^2 + a_{i+1}^2}{2}$ to the above inequality and obtain that

$$3pf(a_1, \dots, a_p) \le (p-2) \sum_{1 \le i < j \le p} a_i a_j + \sum_{i=1}^p \frac{3a_i^2}{2}$$
$$= \frac{3}{2} + (p-5) \sum_{1 \le i < j \le p} a_i a_j$$
$$\le \frac{3}{2} + (p-5) \frac{\binom{p}{2}}{p^2} = \frac{p^2 - 3p + 5}{2p}.$$

Therefore,

$$f(a_1, \dots, a_p) \le \frac{1}{6} \left(1 - \frac{3}{p} + \frac{5}{p^2} \right) = f(1/p, 1/p, \dots, 1/p).$$

If p = 4, then (13) is equivalent to

$$12f(a_1, a_2, a_3, a_4) = 2 \sum_{1 \le i < j \le 4} a_i a_j + \sum_{i=1}^4 \frac{a_i^2}{2} + (a_1 a_2 + a_2 a_3 + a_3 a_4 + a_4 a_1)$$
$$= \frac{1}{2} + \sum_{1 \le i < j \le 4} a_i a_j + (a_1 a_2 + a_2 a_3 + a_3 a_4 + a_4 a_1)$$
$$\stackrel{\text{def}}{=} h(a_1, a_2, a_3, a_4).$$

It is enough to show that

(14)
$$h(a_1, a_2, a_3, a_4) \le h(1/4, 1/4, 1/4, 1/4) = \frac{9}{8}.$$

In fact, $h(a_1, a_2, a_3, a_4)$ has the maximum either at some $a_i = 0$ or satisfy

$$\frac{\partial h}{\partial a_1} = \frac{\partial h}{\partial a_2} = \frac{\partial h}{\partial a_3} = \frac{\partial h}{\partial a_4}.$$

By a direct calculation, the above equation implies that $a_1 = a_2 = a_3 = a_4$.

If $|\{i : a_i = 0, 1 \le i \le 4\}| = 3$ or 2, then (14) is clearly true. If one of a_i is 0, without loss of generality, assuming that $a_4 = 0$, then

SUBGRAPH DENSITIES IN HYPERGRAPHS

$$h(a_1, a_2, a_3, 0) = \frac{1}{2} + 2(a_1a_2 + a_2a_3) + a_1a_3 \le \frac{1}{2} + 2a_2(1 - a_2) + \frac{(1 - a_2)^2}{4}$$
$$= -\frac{7}{4}\left(a_2 - \frac{3}{7}\right)^2 + \frac{15}{14} < \frac{9}{8}.$$

The proof of Claim 4.2 is completed.

5. Proof of Theorem 1.6

Theorem 1.6 extends Theorem 1.5 for the case l = 4 to every integer $r \ge 4$. The proof is based on an extension of the 4-graph $G^*(l,t)$ in Section 3 for the case l = 4.

Suppose that $\frac{23r!}{3r^{\tau}}$ is a jump for $r \ge 4$. In view of Lemma 2.5, there exists a finite collection \mathcal{F} of r-graphs satisfying the following:

(i) $\lambda(F) > \frac{23}{3r^r}$ for all $F \in \mathcal{F}$, and

(ii) $\frac{23r!}{3r^r}$ is a threshold for \mathcal{F} .

Set $k_0 = \max_{F \in \mathcal{F}} |V(F)|$. Let $\sigma_0 = c_0(4)$ be the number defined as in Section 3. Let r = 4 in Lemma 2.6 and $t_0(k_0, \sigma_0)$ be given as in Lemma 2.6. Take an integer $t > \max(t_0, t_1)$, where t_1 is the number from (3). Now define $G^*(4, t)$ (i.e., l = 4) the same way as in Section 3. with the new k_0 . For simplicity, we simply write $G^*(4, t)$ as G(t).

Since Theorem 1.5 holds, we may assume that $r \geq 5$. Based on the 4-graph G(t), we construct an *r*-graph $G^{(r)}(t)$ on *r* pairwise disjoint sets $V_1, V_2, V_3, V_4, V_5, \ldots, V_r$, each of cardinality *t*. The edge set of $G^{(r)}(t)$ consists of all *r*-subsets in the form of $\{u_1, u_2, u_3, u_4, u_5, \ldots, u_r\}$, where $\{u_1, u_2, u_3, u_4\}$ is an edge in G(t) and for each $j, 5 \leq j \leq r, u_j \in V_j$. Notice that

(15)
$$|E(G^{(r)}(t))| = t^{r-4} |E(G(t))|.$$

Take l = 4 in (3), we get

(16)
$$|E(G(t))| \ge \frac{23}{3}t^4 + \frac{c_0(l)t^3}{2}$$

Therefore,

$$\lambda(G^{(r)}(t)) \geq \frac{|E(G^{(r)}(t))|}{(rt)^r}$$

$$\stackrel{(15),(16)}{\geq} \frac{23}{3r^r} + \frac{c_0(l)}{2r^r t}.$$

Similar to the case that Theorem 1.5 follows from Lemma 3.1, Theorem 1.6 follows from the following Lemma.

Lemma 5.1. Let $M^{(r)}$ be a subgraph of $G^{(r)}(t)$ with $|V(M^{(r)})| \leq k_0$. Then

(17)
$$\lambda(M^{(r)}) \le \frac{23}{3r^r}$$

holds.

Proof of Lemma 5.1. By Fact 2.1, we may assume that $M^{(r)}$ is an induced subgraph of $G^{(r)}(t)$. Let $M^{(4)}$ be the 4-graph defined on $\cup_{i=1}^{4} V_i$ by taking the edge set to be $\{e \cap (\cup_{i=1}^{4} V_i), \text{ where } e \text{ is an edge of the } r\text{-graph } M^{(r)}\}$. Note that $|V(M^{(4)})| \leq |V(M^{(r)})| \leq k_0$. Let $\vec{\xi}$ be an optimal vector for $\lambda(M^{(r)})$. Define $U_i = V(M) \cap V_i$ for $1 \leq i \leq r$. Let a_i be the sum of the weights in $U_i, 1 \leq i \leq r$ respectively. Let $\vec{\xi}^{(4)}$ be the restriction of $\vec{\xi}$ on $V(M^{(4)})$. In view of the relationship between $M^{(r)}$ and $M^{(4)}$, we have

(18)
$$\lambda(M^{(r)}) = \lambda(M^{(4)}, \xi^{(4)}) \times \prod_{i=5}^{r} a_i$$

Applying Lemma 3.1(take l = 4 there) with the constraints replaced by $\sum_{i=1}^{4} a_i = 1 - \sum_{i=5}^{r} a_i$, we obtain that

$$\lambda\left(M^{(4)},\xi^{(4)}\right) \le \frac{1}{24}\frac{23}{32}\left(1-\sum_{i=5}^{r}a_i\right)^4.$$

Therefore,

$$\lambda\left(M^{(r)}\right) \le \frac{1}{24} \frac{23}{32} \left(1 - \sum_{i=5}^{r} a_i\right)^4 \prod_{i=5}^{r} a_i.$$

Since geometric mean is no more than arithmetic mean, we obtain that

$$\lambda(M^{(r)}) \le \frac{1}{24} \frac{23}{32} 4^4 \frac{1}{r^r} = \frac{23}{3r^r}.$$

This completes the proof of Lemma 5.1.

296

Acknowledgments

I am very thankful to the anonymous referee for many helpful comments.

References

- D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Academic Press, New York, NY, 1982).
- P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964) 183–190.
- [3] P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci. Mat. Hung. Acad. 1 (1966) 51–57.
- [4] P. Erdős and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946) 1087–1091.
- [5] P. Frankl and Z. Füredi, Extremal problems whose solutions are the blow-ups of the small Witt-designs, J. Combin. Theory (A) 52 (1989) 129–147.
- [6] P. Frankl and V. Rödl, Hypergraphs do not jump, Combinatorica 4 (1984) 149–159.
- [7] P. Frankl, Y. Peng, V. Rödl and J. Talbot, A note on the jumping constant conjecture of Erdős, J. Combin. Theory (B) 97 (2007) 204–216.
- [8] G. Katona, T. Nemetz and M. Simonovits, On a graph problem of Turán, Mat. Lapok 15 (1964) 228–238.
- T.S. Motzkin and E.G. Straus, Maxima for graphs and a new proof of a theorem of Turán, Canad. J. Math. 17 (1965) 533–540.
- [10] Y. Peng, Non-jumping numbers for 4-uniform hypergraphs, Graphs and Combinatorics 23 (2007) 97–110.
- [11] Y. Peng, Using Lagrangians of hypergraphs to find non-jumping numbers (I), submitted.
- [12] Y. Peng, Using Lagrangians of hypergraphs to find non-jumping numbers (II), Discrete Math. 307 (2007) 1754–1766.
- [13] J. Talbot, Lagrangians of hypergraphs, Combinatorics, Probability & Computing 11 (2002) 199–216.

Received 5 April 2006 Revised 18 September 2006 Accepted 18 September 2006