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Abstract

Let r ≥ 2 be an integer. A real number α ∈ [0, 1) is a jump for
r if for any ε > 0 and any integer m ≥ r, any r-uniform graph with
n > n0(ε, m) vertices and density at least α + ε contains a subgraph
with m vertices and density at least α+c, where c = c(α) > 0 does not
depend on ε and m. A result of Erdős, Stone and Simonovits implies
that every α ∈ [0, 1) is a jump for r = 2. Erdős asked whether the
same is true for r ≥ 3. Frankl and Rödl gave a negative answer by
showing an infinite sequence of non-jumps for every r ≥ 3. However,
there are still a lot of open questions on determining whether or not
a number is a jump for r ≥ 3. In this paper, we first find an infinite
sequence of non-jumps for r = 4, then extend one of them to every
r ≥ 4. Our approach is based on the techniques developed by Frankl
and Rödl.
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1. Introduction

For a finite set V and a positive integer r we denote by
(
V
r

)
the family of all

r-subsets of V . An r-uniform graph G consists of a set V (G) of vertices and a
set E(G) ⊆ (

V
r

)
of edges. In particular, an r-uniform graph is called a graph if

r = 2 and an r-uniform hypergraph if r ≥ 3. We abbreviate r-uniform graph
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to r-graph. The density of an r-graph G is defined by d(G) = |E(G)|
|(V (G)

r )|
. An r-

graph H is a subgraph of an r-graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
H is an induced subgraph of G if E(H) = E(G) ∩ (

V (H)
r

)
.

By a simple argument (c.f. Katona, Nemetz, Simonovits [8]), the aver-
age of densities of all induced subgraphs of an r-graph G with m ≥ r vertices
is d(G). Therefore, there exists a subgraph of G with m vertices and density
≥ d(G). A natural question is whether there exists a subgraph of G with
m vertices and density ≥ d(G) + c, where c > 0 is a constant? To be more
precise, the concept of ‘jump’ was introduced.

Definition 1.1. Given r ≥ 2, a real number α ∈ [0, 1) is a jump for r if there
exists a constant c > 0 such that for any ε > 0 and any integer m, m ≥ r,
there exists an integer n0(ε,m) such that any r-graph with n > n0(ε,m)
vertices and density ≥ α+ε contains a subgraph with m vertices and density
≥ α + c. A real number α ∈ [0, 1) is called a non-jump for r if α is not a
jump for r.

Erdős and Stone ([4]) proved that every α ∈ [0, 1) is a jump for r = 2. It
easily follows from the following classical result.

For an integer l ≥ r, an r-graph G = (V, E) is called complete l-partite
if V admits a partition into l classes such that an r-subset of V is an edge
if and only if it contains at most one vertex from each class.

Theorem 1.1 (c.f. [4]). Suppose l is a positive integer. For any ε > 0
and any positive integer m, there exists n0(m, ε) such that any graph G on
n > n0(m, ε) vertices with density d(G) ≥ 1− 1

l + ε contains a copy of the
complete (l + 1)-partite graph with partition classes of size m.

Note that the density of a complete (l + 1)-partite graph with partition
classes of size m is greater than 1− 1

l+1 (approaches 1− 1
l+1 when m →∞).

For r ≥ 3, Erdős proved that every α ∈ [0, r!/rr) is a jump. It directly
follows from the following:

Theorem 1.2 (c.f. [2]). For any ε > 0 and any positive integer m, there
exists n0(ε,m) such that any r-graph G on n > n0(ε,m) vertices with density
d(G) ≥ ε contains a copy of the complete r-partite r-graph with partition
classes of size m.



Subgraph Densities in Hypergraphs 283

Note that the density of a complete r-partite r-graph with partition classes
of size m is greater than r!/rr (approaches r!/rr when m →∞).

Furthermore, Erdős proposed the following jumping constant conjecture.

Conjecture 1.3. Every α ∈ [0, 1) is a jump for every integer r ≥ 2.

In [6], Frankl and Rödl disproved this conjecture by showing the following
result.

Theorem 1.4 (c.f. [6]). Suppose r ≥ 3 and l > 2r. Then 1− 1
lr−1 is not a

jump for r.

Using the techniques developed by Frankl and Rödl in [6], some other non-
jumps were given in [7, 10, 11] and [12]. However, there are still a lot of
open questions on determining whether or not a number is a jump for r ≥ 3.
A well-known question of Erdős is to determine whether or not r!

rr is a jump.
At this moment, the smallest known non-jump for r ≥ 3 is 5r!

2rr given in [7].
Another question raised in [7] is whether there is an interval of non-jumps
for r ≥ 3. By the definition of the ‘jump’, if a number a is a jump, then
there exists a constant c > 0 such that every number in [a, a + c) is a jump.
Consequently, if there is a set of non-jumps whose limits form an interval
(number a is a limit of a set A if there is a sequence {an}∞n=1, an ∈ A such
that limn→∞ an = a), then no number in this interval is a jump. We do
not know whether such a ‘dense enough’ set of non-jumps exists or not. In
this paper we intend to find more non-jumps in addition to the known non-
jumps in [6, 7, 10, 11] and [12]. Our approach is still based on the techniques
developed by Frankl and Rödl in [6].

We first work in the case r = 4 and find a sequence of non-jumps for
r = 4. In Sections 3 and 4, we prove the following result.

Theorem 1.5. Let l ≥ 2 be an integer. Then 1− 7
l2

+ 10
l3

is not a jump for
r = 4.

In Section 5 we extend a special case of Theorem 1.5 (l = 4) to all r ≥ 4.
The following result will be proved.

Theorem 1.6. For r ≥ 4, 23r!
3rr is not a jump for r.

Note that when r = l = 4, Theorems 1.6 and 1.5 coincide.
In the next section, we introduce the Lagrangian of an r-graph and some

other tools to be applied in our proofs.
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2. Lagrangians and Other Tools

We first give a definition of the Lagrangian of an r-graph. More studies of
Lagrangians were given in [5, 6, 9] and [13].

Definition 2.1. For an r-graph G with vertex set {1, 2, . . . ,m}, edge set
E(G) and a vector ~x = (x1, . . . , xm) ∈ Rm, define

λ(G,~x) =
∑

{i1,...,ir}∈E(G)

xi1xi2 . . . xir .

xi is called the weight of vertex i.

Definition 2.2. Let S = {~x = (x1, x2, . . . , xm) :
∑m

i=1 xi = 1, xi ≥ 0 for
i = 1, 2, . . . , m}. The Lagrangian of G, denoted by λ(G), is defined as

λ(G) = max{λ(G,~x) : ~x ∈ S}.

A vector ~x ∈ S is called an optimal vector for λ(G) if λ(G,~x) = λ(G).
We note that if H is a subgraph of an r-graph G, then for any vector ~x

in S, λ(H,~x) ≤ λ(G,~x). We formulate this as follows.

Fact 2.1. Let H be a subgraph of an r-graph G. Then

λ(H) ≤ λ(G).

For an r-graph G and i ∈ V (G) we define Gi to be the (r − 1)-uniform
graph on V − {i} with edge set E(Gi) given by e ∈ E(Gi) if and only if
e ∪ {i} ∈ E(G).

We call two vertices i, j of an r-graph G equivalent if for all f ∈(
V (G)−{i,j}

r−1

)
, f ∈ E(Gi) if and only if f ∈ E(Gj).

The following lemma (proved in [6]) will be useful when calculating
Lagrangians of certain graphs.

Lemma 2.2 (c.f. [6]). Suppose G is an r-graph on vertices {1, 2, . . . ,m}.
1. If vertices i1, i2, . . . , it are pairwise equivalent, then there exists an opti-

mal vector ~y = (y1, y2, . . . , ym) of λ(G) such that yi1 = yi2 = · · · = yit.
2. Let ~y = (y1, y2, . . . , ym) be an optimal vector of λ(G) and yi > 0. Let ŷi

be the restriction of ~y on {1, 2, . . . ,m} \ {i}. Then λ(Gi, ŷi) = rλ(G).
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We also note that for an r-graph G with m vertices, if we take ~u = (u1, . . . ,
um), where each ui = 1/m, then

λ(G) ≥ λ(G,~u) =
|E(G)|

mr
≥ d(G)

r!
− ε

for m ≥ m′(ε).
On the other hand, we introduce the blow-up of an r-graph G which will

allow us to construct r-graphs with large number of vertices and densities
close to r!λ(G).

Definition 2.3. Let G be an r-graph with V (G) = {1, 2, . . . ,m} and (n1,
. . . , nm) be a positive integer vector. Define the (n1, . . . , nm) blow-up of G,
(n1, . . . , nm)⊗G as an m-partite r-graph with vertex set V1∪· · ·∪Vm, |Vi| =
ni, 1 ≤ i ≤ m, and edge set E((n1, . . . , nm)⊗G) = {{vi1 , vi2 , . . . , vir} : vik ∈
Vik for 1 ≤ k ≤ r, {i1, i2, . . . , ir} ∈ E(G)}. We abbreviate (n, n, . . . , n) ⊗ G
to ~n⊗G.

We make the following easy Remark used in [10].

Remark 2.3 (c.f. [10]). Let G be an r-graph with m vertices and ~y =
(y1, . . . , ym) be an optimal vector of λ(G). Then for any ε > 0, there exists
an integer n1(ε), such that for any integer n ≥ n1(ε),

d((bny1c, bny2c, . . . , bnymc)⊗G) ≥ r!λ(G)− ε.(1)

Let us also state a fact relating the Lagrangian of an r-graph to the La-
grangian of its blow-up used in [6, 7, 10, 11] and [12] as well).

Fact 2.4 (c.f. [6]). λ(~n⊗G) = λ(G).

The following lemma proved in [6] gives a necessary and sufficient condition
for a number α to be a jump. We need a definition to describe it.

Definition 2.4. For α ∈ [0, 1) and a family F of r-graphs, we say that α is
a threshold for F if for any ε > 0 there exists an n0 = n0(ε) such that any
r-graph G with d(G) ≥ α + ε and |V (G)| > n0 contains some member of F
as a subgraph. We denote this fact by α → F .

Lemma 2.5 (c.f. [6]). The following two properties are equivalent.
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1. α is a jump for r.
2. α → F for some finite family F of r-graphs satisfying λ(F ) > α

r! for all
F ∈ F .

We also need the following lemma proved in [6].

Lemma 2.6 (c.f. [6]). For any σ ≥ 0 and any integer k ≥ r, there exists
t0(k, σ) such that for every t > t0(k, σ), there exists an r-graph A satisfying:

1. |V (A)| = t,
2. |E(A)| ≥ σtr−1,
3. For all V0 ⊂ V (A), r ≤ |V0| ≤ k we have |E(A) ∩ (

V0

r

)| ≤ |V0| − r + 1.

The general approach in proving Theorems 1.5 and 1.6 is sketched as follows:
Let α be a number to be proved to be a non-jump. Assuming that α is a
jump, we will derive a contradiction by the following steps.

Step 1. Construct an r-uniform hypergraph (in Theorem 1.5, r = 4) with
the Lagrangian close to but slightly smaller than α

r! , then use Lemma 2.6 to
add an r-graph with enough number of edges but sparse enough (see prop-
erties 2 and 3 in this Lemma) and obtain an r-graph with the Lagrangian
≥ α

r! + ε for some positive ε. Then we ‘blow up’ this r-graph to an r-graph,
say H with large enough number of vertices and density > α + ε

2 (see Re-
mark 2.3). If α is a jump, then by Lemma 2.5, α is a threshold for some
finite family F of r-graphs with Lagrangians > α

r! . So H must contain some
member of F as a subgraph.

Step 2. We show that any subgraph of H with the number of vertices not
greater than max{|V (F )|, F ∈ F} has the Lagrangian ≤ α

r! and derive a
contradiction.

It is easy to construct an r-graph satisfying the property in Step 1, but it is
certainly nontrivial to construct an r-graph satisfying the properties in both
Steps 1 and 2. In fact, whenever we find such a construction, we can obtain
a corresponding non-jump. This method was first developed by Frankl and
Rödl in [6], then it was used in [7, 10, 11] and [12] to find more non-jumps
by giving this type of construction. The technical part in the proof is to
show that the construction satisfies the property in Step 2 (Lemma 3.1).
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3. Proof of Theorem 1.5

In this Section, we focus on r = 4 and give a proof of Theorem 1.5. Let
α = 1 − 7

l2
+ 10

l3
. Let t be a large enough integer determined later. We

first define a 4-graph G(l, t) on l pairwise disjoint sets V1, . . . , Vl, each of
cardinality t. The edge set of G(l, t) consists of all 4-subsets taking exactly
one vertex from each of Vi, Vj , Vk, Vs (1 ≤ i < j < k < s ≤ l), all 4-subsets
taking 2 vertices from Vi, 1 vertex from Vj and 1 vertex from Vk (1 ≤ i ≤ l,
1 ≤ j < k ≤ l and i, j, k are pairwise distinct), and all 4-subsets taking 3
vertices from Vi and 1 vertex from Vi+1 (1 ≤ i ≤ l and Vl+1 = V1). When
l = 2 or 3, some of them are vacant.

Note that the density of G(l, t) is close to α if t is large enough. In fact,

|E(G(l, t))| =
(

l

4

)
t4 + l

(
l − 1

2

)(
t

2

)
t2 + l

(
t

3

)
t

=
α

24
l4t4 − c0(l)t3 + o(t3),

(2)

where c0(l) is positive (we omit giving the precise calculation here). Let
~u = (u1, . . . , ult), where ui = 1/(lt) for each i, 1 ≤ i ≤ lt, then

λ(G(l, t)) ≥ λ(G(l, t), ~u) =
|E(G(l, t))|

(lt)4
=

α

24
− c0(l)

l4t
+ o

(
1
t

)

which is close to α
24 when t is large enough.

We will use Lemma 2.6 to add a 4-graph to G(l, t) so that the Lagrangian
of the resulting 4-graph is > α

24+ε(t) for some ε(t) > 0. The precise argument
is given below.

Suppose that α is a jump. In view of Lemma 2.5, there exists a finite
collection F of 4-graphs satisfying the following:

(i) λ(F ) > α
24 for all F ∈ F , and

(ii) α is a threshold for F .

Set k0 = maxF∈F |V (F )| and σ0 = c0(l). Let r = 4 in Lemma 2.6 and
t0(k0, σ0) be given as in Lemma 2.6. Take an integer t > max(t0, t1), where
t1 is determined in (3) given later. For each i, 1 ≤ i ≤ l, take a 4-graph
Ai

k0,σ0
(t) satisfying the conditions in Lemma 2.6 with V (Ai

k0,σ0
(t)) = Vi.

The 4-graph G∗(l, t) is obtained by adding all Ai
k0,σ0

(t) to the 4-uniform
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hypegraph G(l, t). Then

λ(G∗(l, t)) ≥ λ(G∗(l, t), ~u) =
|E(G∗(l, t))|

(lt)4
.

In view of the construction of G∗(l, t) and equation (2), we have

|E(G∗(l, t))|
(lt)4

≥ |E(G(l, t))|+ lσ0t
3

(lt)4
(2)

≥ α

24
+

c0(l)
2l4t

(3)

for t ≥ t1. Consequently,

λ(G∗(l, t)) ≥ α

24
+

c0(l)
2l4t

(4)

for t ≥ t1.
Now suppose ~y = (y1, y2, . . . , ylt) is an optimal vector of λ(G∗(l, t)).

Let ε = 6c0(l)
l4t

and n > n1(ε) as in Remark 2.3. Then 4-graph Sn =
(bny1c, . . . , bnyltc) ⊗ G∗(l, t) has density larger than α + ε. Since α is
a threshold for F , some member F of F is a subgraph of Sn for n ≥
max{n0(ε), n1(ε)}. For such F ∈ F , there exists a subgraph M of G∗(l, t)
with |V (M)| ≤ |V (F )| ≤ k0 so that F ⊂ ~n⊗M . By Fact 2.1 and Fact 2.4,
we have

λ(F )
Fact 2.1≤ λ(~n⊗M) Fact 2.4= λ(M).(5)

Theorem 1.5 will follow from the following lemma to be proved in Section 4.

Lemma 3.1. Let G∗(l, t) be a 4-graph constructed the same way as above
with k0, σ0, t replaced by any k, σ, t satisfying t > t0(k, σ) as given in Lemma
2.6 respectively. Let M be any subgraph of G∗(l, t) with |V (M)| ≤ k. Then

λ(M) ≤ 1
24

α(6)

holds.

Applying Lemma 3.1 to (5), we have

λ(F ) ≤ 1
24

α

which contradicts our choice of F , i.e., contradicts the fact that λ(F ) > 1
24α

for all F ∈ F .



Subgraph Densities in Hypergraphs 289

To complete the proof of Theorem 1.5, what remains is to show Lemma 3.1.

4. Proof of Lemma 3.1

By Fact 2.1, we may assume that M is an induced subgraph of G∗(l, t). For
each s, 1 ≤ s ≤ l, let

Us = V (M) ∩ Vs = {vs
1, v

s
2, . . . , v

s
ks
}.

We will apply the following Claim proved in [6].

Claim 4.1 (c.f. [6]). If N is the 4-graph formed from M by removing the
edges contained in each Us and inserting the edges {{vs

1, v
s
2, v

s
3, v

s
j} : 1 ≤ s ≤

l, 4 ≤ j ≤ ks} then λ(M) ≤ λ(N).

By Claim 4.1 the proof of Lemma 3.1 will be complete if we show that
λ(N) ≤ α

24 . Since vs
1, v

s
2, v

s
3 are pairwise equivalent and vs

4, . . . v
s
ks

are pairwise
equivalent we can use Lemma 2.2(part 1) to obtain an optimal vector ~z of
λ(N) such that

zs
1 = zs

2 = zs
3

def= ρs, zs
4 = zs

5 = · · · = zs
ks

def= ζs.

Let ws be the sum of the total weights in Us. Let P = {s : ws > 0} and
p = |P |. Without loss of generality, we may assume that P = {1, 2, . . . , p}.
We may also assume that p ≥ 2. Otherwise,

λ(N) = ρ3
1(1− 3ρ1) ≤ 1

256
<

1
24

(
1− 7

22
+

10
23

)
≤ 1

24

(
1− 7

l2
+

10
l3

)
=

α

24

since 1− 7
x2 + 10

x3 increases when x ≥ 3 increases and 1− 7
22 + 10

23 < 1− 7
32 + 10

33 .
So we may assume that 2 ≤ p ≤ l. For each s ∈ P take a vertex us ∈ Us

with positive weight as follows: if ζs > 0 then us = vs
4 otherwise us = vs

1.
The vertex us receives non-zero weight. Let ẑs be the restriction of ~z on
V (Nus). Then by Lemma 2.2(part 2) we have

4λ(N) = λ(Nus , ẑ
s).

Moreover by considering the edges containing vertex us we have
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λ(Nus , ẑ
s) ≤

∑

1≤i<j<k≤p;i,j,k 6=s

wiwjwk + ws

∑

1≤i<j≤p;i,j 6=s

wiwj

+
∑

1≤i<j≤p;i,j 6=s

(
w2

j

2
wi +

w2
i

2
wj

)
+

w2
s

2
ws+1

+
[
1
6
(ws−1 − 3ρs−1)3 +

3ρs−1

2
(ws−1 − 3ρs−1)2

+ 3ρ2
s−1(ws−1 − 3ρs−1) + ρ3

s−1

]
+ ρ3

s,

(7)

where all subscripts are modulo p. Note that

1
6
(ws−1 − 3ρs−1)3 +

3ρs−1

2
(ws−1 − 3ρs−1)2 + 3ρ2

s−1(ws−1 − 3ρs−1) + ρ3
s−1

≤ (ws−1−3ρs−1)3+9ρs−1(ws−1−3ρs−1)2+27ρ2
s−1(ws−1−3ρs−1)+27ρ3

s−1

6

−ρ3
s−1 =

w3
s−1

6
− ρ3

s−1.

Therefore,

4pλ(N) =
p∑

s=1

λ(Nus , ẑ
s)

≤ p
∑

1≤i<j<k≤p

wiwjwk +
p− 2

2

∑

1≤i<j≤p

(w2
i wj + w2

j wi)(8)

+
1
2

p∑

s=1

w2
sws+1 +

1
6

p∑

s=1

w3
s .

If p = 2, then

8λ(N) ≤ w3
1

6
+

w3
2

6
+

w2
1w2

2
+

w1w
2
2

2
=

(w1 + w2)3

6
=

1
6
.



Subgraph Densities in Hypergraphs 291

This implies that

λ(N) ≤ 1
48

=
1
24

(
1− 7

22
+

10
23

)
≤ 1

24

(
1− 7

l2
+

10
l3

)
=

α

24
.

So we may assume that p ≥ 3 from now on. We separate the right
hand side of (8) into two parts as follows:

f(w1, w2, . . . , wp) =
∑

1≤i<j<k≤p

wiwjwk +
1
2

p∑

s=1

w2
sws+1.(9)

g(w1, w2, . . . , wp) = (p− 1)
∑

1≤i<j<k≤p

wiwjwk

+
1
6

p∑

s=1

w3
s +

p− 2
2

∑

1≤i<j≤p

(
w2

i wj + w2
j wi

)
.

(10)

Note that

f

(
1
p
,
1
p
, . . . ,

1
p

)
+g

(
1
p
,
1
p
, . . . ,

1
p

)
=

p

6

(
1− 7

p2
+

10
p3

)
≤ p

6

(
1− 7

l2
+

10
l3

)
=

pα

6
.

Therefore, Lemma 3.1 follows from the following two Claims.

Claim 4.2. If function f(a1, a2, . . . , ap) reaches the maximum at (a1, a2,
. . . , ap) under the constraints

∑p
i=1 ai = 1; ai ≥ 0, then a1 = a2 = · · · =

ap = 1
p .

The proof of Claim 4.2 will be given later.

Claim 4.3. If function g(a1, a2, . . . , ap) reaches the maximum at (a1, a2,
. . . , ap) under the constraints

∑p
i=1 ai = 1; ai ≥ 0, then a1 = a2 = · · · =

ap = 1
p .

Proof of Claim 4.3. Suppose that g(a1, a2, . . . , ap) reaches the maxi-
mum at (a1, a2, . . . , ap). We first note that q = |{i : ai > 0}| ≥ 3. If q = 1,
then by a direct calculation, g(1, 0, 0, . . . , 0) ≤ g(1

p , 1
p , . . . , 1

p) when p ≥ 3. If
q = 2, without loss of generality, assume that a1 > 0 and a2 > 0, then it is
not difficult to show that

g (a1, a2, 0, . . . , 0) ≤ g

(
1
2
,
1
2
, 0, . . . , 0

)
≤ g

(
1
p
,
1
p
, . . . ,

1
p

)
.
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Now we are going to show that a1 = a2 = · · · = ap = 1
p . If not, without

loss of generality, assume that a2 > a1, we will show that g(a1 + ε, a2 −
ε, a3, . . . , ap) − g(a1, a2, a3, . . . , ap) > 0 for small enough ε > 0 and get a
contradiction. In fact

g(a1 + ε, a2 − ε, a3, . . . , ap)− g(a1, a2, a3, . . . , ap)

= (p− 1)[(a1 + ε)(a2 − ε)− a1a2](1− a1 − a2)

+
1
6

[
(a1 + ε)3 + (a2 − ε)3 − a3

1 − a3
2

]

+
p− 2

2
[
(a1 + ε)2(a2 − ε) + (a1 + ε)(a2 − ε)2 − a2

1a2 − a1a
2
2

]

= (a2 − a1)
[
p− 1−

(
p

2
+

1
2

)
(a1 + a2)

]
ε + o(ε) > 0

for small enough ε > 0 since the coefficient of ε, (a2 − a1)[p − 1 − (p
2 + 1

2)
(a1 + a2)] is positive under the assumption that a2 > a1, p ≥ 3 and a1 +
a2 < 1(since q ≥ 3). This contradicts to the assumption that g reaches the
maximum at (a1, a2, . . . , ap) and Claim 4.3 follows.

Now we will prove Claim 4.2.

Proof of Claim 4.2. We will use induction on p. If p = 3, it is enough
to show the following Claim.

Claim 4.4.

f(a1, a2, a3) = a1a2a3 +
1
2
a2

1a2 +
1
2
a2

2a3 +
1
2
a2

3a1

≤ f(1/3, 1/3, 1/3) =
5
54

(11)

holds under the constraints
∑3

i=1 ai = 1; ai ≥ 0.

Proof of Claim 4.4. By the theory of Lagrange multipliers (see [1]), if
f(a1, a2, a3) attains the maximum at (a1, a2, a3), then either ∂f

∂a1
= ∂f

∂a2
=

∂f
∂a3

, i.e.,

a2a3 +
1
2
a2

3 + a1a2 = a1a3 +
1
2
a2

1 + a2a3 = a1a2 +
1
2
a2

2 + a3a1,(12)

or some ai = 0.
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If some ai = 0, then it is easy to verify that f(a1, a2, a3) ≤ 2
27 .

Now assume that none of a1, a2, a3 is 0, then (12) holds. In this case,

∂f

∂a1
=

∂f

∂a2
=

∂f

∂a3
= a1

∂f

∂a1
+ a2

∂f

∂a2
+ a3

∂f

∂a3
= 3f(a1, a2, a3).

Therefore,

9f(a1, a2, a3) =
∂f

∂a1
+

∂f

∂a2
+

∂f

∂a3

= 2(a1a2 + a1a3 + a2a3) +
a2

1 + a2
2 + a2

3

2

=
1
2

+ (a1a2 + a2a3 + a1a3)

≤ 1
2

+
1
3

=
5
6
.

This implies that f(a1, a2, a3) ≤ 5
54 = f(1/3, 1/3, 1/3) and completes the

proof of Claim 4.4.

Now let us apply the induction on p and continue the proof of Claim 4.2.
Suppose that f(a1, . . . , ap) has the maximum at (a1, . . . , ap). If some ai = 0,
say ap = 0, then by induction assumption, f(a1, . . . , ap−1, 0) ≤ 1

6(1− 3
p−1 +

5
(p−1)2

) < 1
6(1 − 3

p + 5
p2 ) = f(1/p, 1/p, . . . , 1/p). Therefore, each ai > 0 and

∂f
∂a1

= ∂f
∂a2

= · · · = ∂f
∂ap

. By a direct calculation, for each i, 1 ≤ i ≤ p,

∂f

∂ai
=

∑

1≤j<k≤p;j,k 6=i

ajak + aiai+1 +
a2

i−1

2
,

where all subscripts here are modulo p. Then for each i, 1 ≤ i ≤ p,

∂f

∂ai
=

p∑

i=1

ai
∂f

∂ai
= 3f(a1, . . . , ap).

Therefore,

3pf(a1, . . . , ap) =
p∑

i=1

∂f

∂ai

= (p− 2)
∑

1≤i<j≤p

aiaj +
p∑

i=1

a2
i

2
+

p∑

i=1

aiai+1.(13)
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If p ≥ 5, then we apply aiai+1 ≤ a2
i +a2

i+1

2 to the above inequality and obtain
that

3pf(a1, . . . , ap) ≤ (p− 2)
∑

1≤i<j≤p

aiaj +
p∑

i=1

3a2
i

2

=
3
2

+ (p− 5)
∑

1≤i<j≤p

aiaj

≤ 3
2

+ (p− 5)

(
p
2

)

p2
=

p2 − 3p + 5
2p

.

Therefore,

f(a1, . . . , ap) ≤ 1
6

(
1− 3

p
+

5
p2

)
= f(1/p, 1/p, . . . , 1/p).

If p = 4, then (13) is equivalent to

12f(a1, a2, a3, a4) = 2
∑

1≤i<j≤4

aiaj +
4∑

i=1

a2
i

2
+ (a1a2 + a2a3 + a3a4 + a4a1)

=
1
2

+
∑

1≤i<j≤4

aiaj + (a1a2 + a2a3 + a3a4 + a4a1)

def= h(a1, a2, a3, a4).

It is enough to show that

h(a1, a2, a3, a4) ≤ h(1/4, 1/4, 1/4, 1/4) =
9
8
.(14)

In fact, h(a1, a2, a3, a4) has the maximum either at some ai = 0 or satisfy

∂h

∂a1
=

∂h

∂a2
=

∂h

∂a3
=

∂h

∂a4
.

By a direct calculation, the above equation implies that a1 = a2 = a3 = a4.
If |{i : ai = 0, 1 ≤ i ≤ 4}| = 3 or 2, then (14) is clearly true. If one of ai

is 0, without loss of generality, assuming that a4 = 0, then
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h(a1, a2, a3, 0) =
1
2

+ 2(a1a2 + a2a3) + a1a3 ≤ 1
2

+ 2a2(1− a2) +
(1− a2)2

4

= −7
4

(
a2 − 3

7

)2

+
15
14

<
9
8
.

The proof of Claim 4.2 is completed.

5. Proof of Theorem 1.6

Theorem 1.6 extends Theorem 1.5 for the case l = 4 to every integer r ≥ 4.
The proof is based on an extension of the 4-graph G∗(l, t) in Section 3 for
the case l = 4.

Suppose that 23r!
3rr is a jump for r ≥ 4. In view of Lemma 2.5, there

exists a finite collection F of r-graphs satisfying the following:

(i) λ(F ) > 23
3rr for all F ∈ F , and

(ii) 23r!
3rr is a threshold for F .

Set k0 = maxF∈F |V (F )|. Let σ0 = c0(4) be the number defined as in Section
3. Let r = 4 in Lemma 2.6 and t0(k0, σ0) be given as in Lemma 2.6. Take an
integer t > max(t0, t1), where t1 is the number from (3). Now define G∗(4, t)
(i.e., l = 4) the same way as in Section 3. with the new k0. For simplicity,
we simply write G∗(4, t) as G(t).

Since Theorem 1.5 holds, we may assume that r ≥ 5. Based on the
4-graph G(t), we construct an r-graph G(r)(t) on r pairwise disjoint sets
V1, V2, V3, V4, V5, . . . , Vr, each of cardinality t. The edge set of G(r)(t) consists
of all r-subsets in the form of {u1, u2, u3, u4, u5, . . . , ur}, where {u1, u2, u3, u4}
is an edge in G(t) and for each j, 5 ≤ j ≤ r, uj ∈ Vj . Notice that

|E(G(r)(t))| = tr−4|E(G(t))|.(15)

Take l = 4 in (3), we get

|E(G(t))| ≥ 23
3

t4 +
c0(l)t3

2
.(16)

Therefore,

λ(G(r)(t)) ≥ |E(G(r)(t))|
(rt)r

(15),(16)
≥

23
3rr

+
c0(l)
2rrt

.
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Similar to the case that Theorem 1.5 follows from Lemma 3.1, Theorem 1.6
follows from the following Lemma.

Lemma 5.1. Let M (r) be a subgraph of G(r)(t) with |V (M (r))| ≤ k0. Then

λ(M (r)) ≤ 23
3rr

(17)

holds.

Proof of Lemma 5.1. By Fact 2.1, we may assume that M (r) is an
induced subgraph of G(r)(t). Let M (4) be the 4-graph defined on ∪4

i=1Vi by
taking the edge set to be {e ∩ (∪4

i=1Vi), where e is an edge of the r-graph
M (r)}. Note that |V (M (4))| ≤ |V (M (r))| ≤ k0. Let ~ξ be an optimal vector
for λ(M (r)). Define Ui = V (M) ∩ Vi for 1 ≤ i ≤ r. Let ai be the sum of
the weights in Ui, 1 ≤ i ≤ r respectively. Let ~ξ(4) be the restriction of ~ξ on
V (M (4)). In view of the relationship between M (r) and M (4), we have

λ(M (r)) = λ(M (4), ~ξ(4))×
r∏

i=5

ai.(18)

Applying Lemma 3.1(take l = 4 there) with the constraints replaced by∑4
i=1 ai = 1−∑r

i=5 ai, we obtain that

λ
(
M (4), ~ξ(4)

)
≤ 1

24
23
32

(
1−

r∑

i=5

ai

)4

.

Therefore,

λ
(
M (r)

)
≤ 1

24
23
32

(
1−

r∑

i=5

ai

)4 r∏

i=5

ai.

Since geometric mean is no more than arithmetic mean, we obtain that

λ(M (r)) ≤ 1
24

23
32

44 1
rr

=
23
3rr

.

This completes the proof of Lemma 5.1.
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