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Abstract

In 1960, Dirac put forward the conjecture that r-connected 4-
critical graphs exist for every r ≥ 3. In 1989, Erdős conjectured that
for every r ≥ 3 there exist r-regular 4-critical graphs. A method for
finding r-regular 4-critical graphs and the numbers of such graphs for
r ≤ 10 have been reported in [6, 7]. Results of a computer search for
graphs of degree r = 12, 14, 16 are presented. All the graphs found are
both r-regular and r-connected.
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1. Introduction

A simple graph is 4-critical if it is 4-chromatic and removing any of its edges
leads to a 3-chromatic graph. Erdős conjectured that for every r ≥ 3 there
exist r-regular 4-critical graphs [8]. Dirac posed the conjecture that vertex
r-connected 4-critical graphs exist for every r ≥ 3 [3, 4]. Regular graphs
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satisfying the conjectures of Erdős and Dirac will be called Erdős and Dirac

graphs, respectively.

It follows from the theorem of Brooks [1] that K4 is the only 3-regular
4-critical graph. Various constructions of 4-regular 4-critical graphs were
presented in works [2, 9, 10, 12, 14, 16, 17, 18, 24]. An infinite family of 5-
regular 4-critical graphs was constructed in [13]. More detailed information
on critical graphs and related topics can be found in the book [15]. Examples
of regular 4-critical graphs of degree 4, 6, 8 and 10 have been recently
reported in [5, 6, 7, 21]. In this paper, we describe results of a computer
search for graphs of degree r = 12, 14, 16 that are both Erdős and Dirac
graphs.

2. A Theoretical Basis

For positive integers 1 ≤ a0 < a1 < a2 < · · · < ak ≤ n/2, denote by
C(n; a0, a1, . . . , ak) the graph having the vertex set V = {1, 2, . . . , n} and
the edge set E = {ij : | i − j | ≡ a0, a1, . . . , ak−1, or ak (mod n)}. Such
graphs are known as circulants. Their edges defined by ai are called ai-edges.
It is clear that a circulant is a regular vertex-transitive graph of degree 2k+2
if ak 6= n/2, and of degree 2k+1, otherwise. As an illustration, the structure
of circulant C(97; 1, 23, 38) is shown in Figure 1.

A circulant is called proper if a0 = 1 and (n, ai) = 1 for every i =
1, 2, . . . , k where (a, b) is the greatest common divisor of a and b. Each
proper circulant can be represented as the union of k + 1 Hamiltonian cy-
cles spanned by its ai-edges for i = 0, 1, . . . , k (we call them ai-cycles).
The Hamiltonian 1-cycle 12 . . . n is the main cycle of a circulant. De-
note by Ao and Ae the subsets of all odd and even elements of the set
A = {a1, a2, . . . , ak}, respectively. Since a proper circulant of even order
is always bipartite, only circulants of odd order will be considered. Let a
be any element of {1, 2, . . . , n − 1} for which (n, a) = 1 holds. Define the
function rn,a(b) = min{r ≥ 0 | ra ≡ ±b (mod n)} for b ∈ {0, 1, . . . , n − 1}.
It is clear that {rn,a(b) | 0 ≤ b ≤ n − 1} = {0, 1, . . . , ⌊n

2 ⌋}.
A proper circulant C(n; 1, a1, . . . , ak) is called normal if

(a) n ≡ 1 (mod 6) and ai ≡ 2 (mod 3) for every i ∈ {1, 2, . . . , k}, and

(b) rn,a(b) ≡ 2 (mod 3) for every a ∈ A and b ∈ (A ∪ {1}) \ {a}.

It is easy to verify that if we consider the a1-cycle in a proper circulant
C(n; 1, a1, . . . , ak) as the main cycle, then we obtain the circulant
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C(n; rn,a1
(1), 1, rn,a1

(a2), . . . , rn,a1
(ak)) which is just another representation

of the initial circulant. Such a representation is called an inversion of the
circulant C(n; 1, a1, . . . , ak). Using ai-cycle for i = 1, 2, 3, . . . , k as the main
cycle, one can obtain k inversions of the initial circulant. For instance, the
circulant C(97; 1, 23, 38) has inversions C(97; 38, 1, 11) and C(97; 23, 44, 1).
There exist circulants for which all their inversions coincide, as happens for
C(13; 1, 5) and C(289; 1, 38, 110, 134).

It follows from the next lemma that every normal 4-chromatic circulant
is 4-critical. Lemmas 1–3 have been proved in [6, 7, 21].
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Figure 1. Circulant C(97; 1, 23, 38).
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Lemma 1. If G is a normal circulant, then for every edge e the graph G\e
is 3-chromatic.

Suppose that C(n; 1, a1, . . . , ak) is a 3-chromatic circulant. Denote by fi ∈
{1, 2, 3} the color of the vertex i in some proper 3-coloring, i = 1, 2, . . . , n.
Extend the color sequence f in both directions using the rule fi+mn = fi for
every integer m and i = 1, 2, . . . , n. Then we obtain an n-periodic infinite
word over the alphabet {1, 2, 3} having the property fi 6= fj if |i − j | ∈
A ∪ {1}. The vertex i is called outer if fi−1 6= fi+1 and inner , otherwise.
Denote by c = (c1, c2, . . . , cs) the subsequence of indices of all outer vertices.
A coloring f (possibly not proper) is called periodic if fi 6= fi+1 and cj+1−cj

is odd for every i, j. This means that the number of inner vertices between
any two consecutive outer vertices ci, ci+1 in a periodic coloring is even and
equals, say, 2li. In other words, every maximal subword induced by any
two colors has an even length. A 3-chromatic circulant C(n; 1, a1, . . . , ak)
is periodic if all of its proper 3-colorings are periodic.

There are several known sufficient conditions for a 3-chromatic circulant
to be periodic. They are collected in the following lemma proved in [7].

Lemma 2. A 3-chromatic circulant C(n; 1, a1, . . . , ak) is periodic if there

are some p, q and r (possibly some of them are equal) such that

(1) ap = aq + 3, or

(2) ap + aq − 2 = ar, or

(3) ap + aq = n − 3, or

(4) ap + aq + ar = n + 2.

It should be noted that a periodic circulant can have a non-periodic inver-
sion.

The next lemma provides the necessary and sufficient conditions for
3-colorability of periodic circulants (for proof of this lemma see [7]).

Lemma 3. A circulant C(n; 1, a1, . . . , ak) has a proper periodic 3-coloring

if and only if there exists a nonnegative integer t such that

(1) for every a ∈ Ao there exists a nonnegative integer ma ≤ ⌈a−5
6 ⌉ such

that

n ≥ 6at + 3a − 6man ≥ −n, and
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(2) for every a ∈ Ae there exists a nonnegative integer ma ≤ ⌈a−8
6 ⌉ such

that

4n ≥ 6at + 3a − 6man ≥ 2n.

It follows from Lemmas 1–3 that a normal circulant, which satisfies the
conditions of Lemma 2 but does not satisfy the conditions of Lemma 3,
must be 4-critical, i.e., an Erdős graph. Such a circulant is also a Dirac
graph due to the result of Mader and Watkins that the vertex connectivity of
every connected vertex-transitive graph without K4 is equal to its maximum
degree [19, 20, 22, 23].

Given a circulant C(n; 1, a1, . . . , ak), the conditions of Lemmas 1-3 are
not difficult to verify. But how to find normal circulants? A natural idea is to
write a system of Diophantine equations of the variables n, a1, a2, . . . , ak cor-
responding to the conditions of the normality of a circulant. This technique
has been applied for obtaining 6-, 8-, and 10-regular circulants reported in
[6, 7]. However, this approach is not practically suitable for large values
of n and k because the system becomes very difficult to solve. In the next
section we present a modified technique for searching for normal circulants
with many vertices.

3. Search Method

The main idea of the method is to reduce the search for normal circulants
to finding cliques in an auxiliary graph Hn.

Let n ≡ 1 (mod 6) be given, and we want to find all normal circulants
on n vertices. A number v ∈ {2, 3, . . . , (n − 1)/2} is a vertex of Hn if and
only if (n, v) = 1; v ≡ 2 (mod 3); and rn,v(1) ≡ 2 (mod 3). Two vertices
u and v of Hn are connected by an edge if and only if rn,u(v) ≡ 2 (mod 3)
and rn,v(u) ≡ 2 (mod 3). The method is based on the following lemma.

Lemma 4. A circulant C(n; 1, a1, a2, . . . , ak) is normal if and only if

a1, a2, . . . , ak are vertices of Hn and they induce a clique in Hn.

Lemma 4 follows immediately from the definitions.

Let K be a clique of Hn induced by the vertices a1, a2, . . . , ak. Then the
circulant C(n; 1, a1, a2, . . . , ak) is called the corresponding circulant to K.
In order to search for all 4-critical normal circulants on n vertices, it is
sufficient to find all maximal cliques in Hn. It is known that this type
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of problem is generally not polynomially solvable [11]. Fortunately, the
order and the degree of Hn are quite small even for large values of n. The
procedure FindNormalCirculants presented below finds all normal circulants
on n vertices. Denote by NH(v) the neighborhood of a vertex v in a graph H.

procedure FindNormalCirculants (n: the order of a graph, n ≡ 1 (mod 6));

begin

V := ∅; {vertices of Hn}
for all v ∈ {2, 3, . . . , (n − 1)/2} do

if (n, v) = 1 & v ≡ 2 (mod 3) & rn,v(1) ≡ 2 (mod 3) then

V := V ∪ {v};
List := ∅; {adjacency list of Hn}
for all {u, v} ⊂ V × V do

if rn,u(v) ≡ 2 (mod 3) & rn,v(u) ≡ 2 (mod 3) then

begin Listu := Listu ∪ {v}; Listv := Listv ∪ {u}; end;

for all v ∈ V do AddVertexToClique (Hn, ∅, v);

end;

The procedure AddVertexToClique finds all maximal by inclusion cliques in
a given graph. A simple recursion version of this procedure is shown below.
It tries to increase the current clique K of the current graph H by adding a
new vertex v.

procedure AddVertexToClique (H: graph; K: clique; v: vertex);

begin

K := K ∪ {v};
if NH(v) = ∅ then CheckLemmas (K) {K is a clique} else

for all u ∈ NH(v) do AddVertexToClique ( 〈NH(v)〉, K, u);

end;

The procedure CheckLemmas verifies the conditions of Lemma 2 and
Lemma 3 for all inversions of the circulant corresponding to the clique K.
Of course, the symmetry of circulants and other similar properties should
be used for reducing calculations.

The presented algorithm finds all normal circulants of order n irrespect
of their degree r, i.e., none of normal circulants has been skipped. Therefore,
there are no 4-critical normal circulants with up to 53000 vertices except
those reported in [7] and in the Appendix.
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Since the number of cliques in Hn becomes very large when n increases,
our approach is limited by available computing tools. Therefore, in our
opinion, application of other maximal clique enumeration algorithms can
not essentially help.

4. Results of a Computer Search

As a result of the described approach, new Erdős and Dirac graphs have
been obtained.

Theorem. The circulants listed in the Appendix are r-regular r-connected

4-critical graphs for r = 12, 14, 16 (45, 36 and 6 graphs, respectively), i.e.,

they are Erdős and Dirac graphs.

Some of the obtained circulants have the same order. One can check that
they are non-isomorphic since they have different numbers of small cycles.

By canonical representation of a circulant we mean the lexicographic
minimum among all its inversions. For every circulant, the inversion meet-
ing Lemma 2 is presented. The corresponding equation is written after a
circulant and its parameters are marked by bold font.

There are no other normal circulants on at most 53000 vertices which
satisfy the conditions of Lemma 2 but do not satisfy the conditions of
Lemma 3. Nevertheless, we obtain many normal circulants (approx. 300
graphs) for which both Lemmas 2 and 3 do not hold. This means that such
circulants have no proper periodic 3-coloring but may possibly have a non-
periodic one. Their chromatic numbers should be found by other methods.
A complete list of these “suspicious” normal circulants is available from the
authors. It is unknown whether the list of sufficient conditions of Lemma 2
are complete. Therefore, some suspicious normal circulants might be peri-
odic. It is possible that graphs of the list may provide a new lower bound
for the order of normal circulants.
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Appendix. r-regular 4-critical graphs for r = 12, 14, 16.

r = 12

1. (4153; 1, 53, 386, 431, 737, 2075) 2075 + 2075 = 4153 − 3

2. (4153; 1808, 1646, 1649, 1439, 1046, 1) 1649 = 1646 + 3

3. (4453; 791, 938, 1, 1910, 80, 1832) 80 + 1832 = 1910 + 2

4. (4567; 1286, 2282, 1196, 755, 1, 665) 2282 + 2282 = 4567 − 3

5. (4837; 104, 206, 1370, 2207, 2189, 1) 104 + 104 = 206 + 2

6. (5557; 2486, 1, 2489, 1175, 1289, 836) 2489 = 2486 + 3

7. (5629; 2174, 2642, 1, 626, 404, 2177) 2177 = 2174 + 3

8. (5629; 2504, 401, 1, 1124, 944, 404) 404 = 401 + 3

9. (5725; 1, 107, 131, 476, 593, 2567) 593 + 2567 + 2567 = 5725 + 2

10. (5725; 2036, 302, 1, 602, 107, 1439) 302 + 302 = 602 + 2

11. (5893; 791, 1, 587, 1892, 1889, 2237) 1892 = 1889 + 3

12. (5953; 1, 20, 719, 857, 1016, 1574) 719 + 857 = 1574 + 2

13. (6019; 2312, 2663, 1, 233, 230, 464) 233 = 230 + 3

14. (6451; 2228, 524, 1, 2609, 695, 2612) 2612 = 2609 + 3

15. (6913; 2591, 1544, 1049, 2309, 2013, 1) 1544 + 1049 = 2591 + 2

16. (8011; 914, 1, 917, 3017, 149, 1754) 917 = 914 + 3

17. (8731; 2834, 1, 341, 3686, 680, 2300) 341 + 341 = 680 + 2

18. (8917; 1043, 2897, 1, 3572, 980, 4304) 1043 + 3572 + 4304 = 8917 + 2

19. (9217; 1, 266, 530, 3521, 3956, 4217) 266 + 266 = 530 + 2

20. (9805; 4724, 2789, 1, 671, 2837, 2363) 2363 + 2363 = 4724 + 2

21. (10105; 3551, 4319, 1, 3743, 2753, 2621) 3743 + 3743 + 2621 = 10105 + 2

22. (11131; 221, 2711, 3314, 1, 2186, 2405) 221 + 2186 = 2405 + 2

23. (11377; 3437, 1214, 4040, 2048, 1, 5291) 4040 + 2048 + 5291 = 11377 + 2

24. (11581; 1, 833, 1037, 1664, 3608, 4754) 833 + 833 = 1664 + 2

25. (12025; 1727, 1, 566, 563, 3632, 4586) 566 = 563 + 3

26. (12961; 1397, 1, 3008, 2774, 2759, 5546) 2774 + 2774 = 5546 + 2

27. (13093; 4742, 542, 5699, 1109, 1, 4202) 542 + 4202 = 4742 + 2

28. (13687; 419, 1, 1670, 4511, 4094, 3710) 419 + 4094 = 4511 + 2

29. (14185; 1, 11, 3233, 3281, 6464, 6632) 3233 + 3233 = 6464 + 2

30. (14761; 1799, 1, 962, 959, 4280, 5522) 962 = 959 + 3

31. (15325; 6842, 7433, 1052, 3902, 1, 6476) 6842 + 7433 + 1052 = 15325 + 2

32. (16051; 2939, 5627, 2096, 1, 3293, 4190) 2096 + 2096 = 4190 + 2

33. (16189; 2420, 1, 3503, 2483, 3968, 7469) 3503 + 3968 = 7469 + 2

34. (16519; 1, 215, 428, 1385, 1904, 7094) 215 + 215 = 428 + 2

35. (19999; 830, 1, 1655, 7346, 6032, 7685) 1655 + 6032 = 7685 + 2

36. (21997; 1856, 1, 8393, 2669, 7403, 5336) 2669 + 2669 = 5336 + 2

37. (26719; 5018, 3617, 3224, 1, 12350, 2510) 2510 + 2510 = 5018 + 2

38. (27349; 1, 278, 554, 5912, 6632, 10082) 278 + 278 = 554 + 2

39. (29779; 13721, 7241, 6482, 12590, 1, 13808) 7241 + 6482 = 13721 + 2

40. (32161; 635, 7433, 6800, 12692, 3464, 1) 635 + 6800 = 7433 + 2

41. (34213; 11810, 6974, 4358, 2618, 1, 15434) 4358 + 2618 = 6974 + 2

42. (35347; 9818, 7619, 12401, 1, 386, 2201) 7619 + 2201 = 9818 + 2

43. (36661; 1, 221, 224, 2198, 11192, 14057) 224 = 221 + 3

44. (41071; 9800, 182, 17618, 1, 179, 7640) 182 = 179 + 3

45. (43177; 16622, 6320, 1328, 4463, 15296, 1) 1328 + 15296 = 16622 + 2
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r = 14

1. (14275; 1862, 1, 3683, 3221, 6953, 3239, 5297) 3683 + 5297 + 5297 = 14275 + 2

2. (17785; 5813, 3461, 1, 1802, 3464, 7253, 1817) 3464 = 3461 + 3

3. (17971; 2852, 5633, 5432, 2855, 2435, 3374, 1) 2855 = 2852 + 3

4. (17971; 5960, 1, 3374, 2855, 2852, 5432, 2435) 2855 = 2852 + 3

5. (22075; 4568, 2141, 5147, 9134, 7052, 4853, 1) 4568 + 4568 = 9134 + 2

6. (22207; 3305, 8645, 1, 4967, 4343, 8684, 137) 4343 + 4343 = 8684 + 2

7. (22327; 1, 140, 1001, 1004, 4853, 6005, 6281) 1004 = 1001 + 3

8. (25411; 5504, 1, 6746, 608, 6749, 3509, 1052) 6749 = 6746 + 3

9. (26599; 1, 146, 1070, 2138, 4262, 4748, 7652) 1070 + 1070 = 2138 + 2

10. (27619; 11957, 6062, 1, 5897, 12092, 878, 5480) 6062 + 5897 = 11957 + 2

11. (30487; 14519, 9911, 1, 7298, 2861, 3374, 7985) 14519 + 7985 + 7985 = 30487 + 2

12. (31183; 692, 5192, 5486, 13241, 1, 3998, 1382) 692 + 692 = 1382 + 2

13. (32059; 1, 686, 3140, 6836, 7790, 11498, 12182) 686 + 11498 = 12182 + 2

14. (32107; 9896, 1, 4409, 11036, 1268, 3143, 6524) 1268 + 3143 = 4409 + 2

15. (32737; 5615, 695, 1, 599, 11504, 1145, 12197) 695 + 11504 = 12197 + 2

16. (32737; 13916, 10919, 1, 1844, 13847, 3653, 14570) 10919 + 3653 = 14570 + 2

17. (32821; 9017, 4607, 1, 10379, 2762, 9212, 1046) 4607 + 4607 = 9212 + 2

18. (33493; 4331, 1, 10337, 2537, 15392, 5882, 12872) 10337 + 2537 = 12872 + 2

19. (33937; 2282, 1403, 980, 13607, 1, 8924, 2381) 1403 + 980 = 2381 + 2

20. (34213; 14777, 14774, 3335, 13910, 3593, 16007, 1) 14777 = 14774 + 3

21. (34483; 11594, 665, 7145, 1, 1079, 6602, 1328) 665 + 665 = 1328 + 2

22. (35287; 3572, 1, 11036, 8990, 14606, 7376, 3845) 3572 + 11036 = 14606 + 2

23. (36259; 1, 137, 2054, 4106, 6416, 15989, 16289) 2054 + 2054 = 4106 + 2

24. (36697; 14987, 7826, 1, 11645, 3344, 16943, 17759) 11645 + 3344 = 14987 + 2

25. (37687; 1, 224, 410, 5243, 13838, 16103, 16325) 224 + 16103 = 16325 + 2

26. (38629; 7967, 2267, 14222, 14645, 3488, 17708, 1) 14222 + 3488 = 17708 + 2

27. (38953; 16283, 11912, 1, 15281, 2906, 12785, 3500) 12785 + 3500 = 16283 + 2

28. (39271; 1, 1118, 8909, 9389, 13232, 19031, 19124) 1118 + 19031 + 19124 = 39271 + 2

29. (39493; 2579, 19481, 10250, 8753, 2582, 19409, 1) 2582 = 2579 + 3

30. (40099; 10526, 1, 14642, 19382, 10193, 19322, 10286) 10526 + 19382 + 10193 = 40099 + 2

31. (40345; 572, 4538, 1, 3968, 13244, 7877, 6386) 572 + 3968 = 4538 + 2

32. (40687; 2186, 5138, 1, 11300, 8162, 389, 2183) 2186 = 2183 + 3

33. (40711; 1, 458, 746, 3956, 4700, 6998, 10073) 746 + 3956 = 4700 + 2

34. (40771; 12710, 3305, 7814, 14786, 11117, 1, 17357) 3305 + 7814 = 11117 + 2

35. (42397; 12983, 19823, 2288, 15269, 3551, 8756, 1) 12983 + 2288 = 15269 + 2

36. (43621; 10769, 14867, 1, 11048, 21566, 4100, 830) 10769 + 4100 = 14867 + 2

r = 16

1. (19897; 4382, 6887, 4052, 1, 3824, 4151, 326, 230) 3824 + 230 = 4052 + 2

2. (28279; 13604, 10049, 8408, 1, 10868, 6545, 5660, 6962) 10868 + 10868 + 6545 = 28279 + 2

3. (31339; 6095, 13025, 7328, 5018, 1355, 3665, 1, 6929) 3665 + 3665 = 7328 + 2

4. (34987; 11339, 1, 11639, 14141, 8015, 1793, 8012, 6104) 8015 = 8012 + 3

5. (41779; 16415, 10130, 3539, 7694, 4022, 10133, 1, 12485) 10133 = 10130 + 3

6. (48055; 6542, 13772, 13697, 1, 6887, 6701, 3704, 3113) 6887 + 6887 = 13772 + 2
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