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Abstract

Given a graph G with p vertices, q edges and a positive integer
k, a k-sequentially additive labeling of G is an assignment of distinct
numbers k, k + 1, k + 2, . . . , k + p + q − 1 to the p + q elements of G
so that every edge uv of G receives the sum of the numbers assigned
to the vertices u and v. A graph which admits such an assignment to
its elements is called a k-sequentially additive graph.

In this paper, we give an upper bound for k with respect to which
the given graph may possibly be k-sequentially additive using the in-
dependence number of the graph. Also, we prove a variety of results on
k-sequentially additive graphs, including the number of isolated ver-
tices to be added to a complete graph with four or more vertices to
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be simply sequentially additive and a construction of an infinite family
of k-sequentially additive graphs from a given k-sequentially additive
graph.
Keywords: simply (k-)sequentially additive labelings (graphs), seg-
regated labelings.
2000 Mathematics Subject Classification: 05C78.

1. Introduction

For all notation and terminology, we follow Harary [9] and West [13].
Graph labelings, where the vertices and edges are assigned real values

or subsets of a set subject to certain conditions, have often been motivated
by their utility to various applied fields and their intrinsic mathematical
interest (logico – mathematical). Dozens of graph labeling techniques have
been studied in over 600 papers. An enormous body of literature has grown
around the subject, especially in the last thirty years or so, and is still
getting embellished due to increasing number of application driven concepts
(Gallian [7]).

Labeled graphs are becoming an increasingly useful family of Mathe-
matical Models for a broad range of applications. While the qualitative
labelings of graph elements have inspired research in diverse fields of human
enquiry, such as conflict resolution among individuals, quantitative labelings
of graphs have led to quite intricate fields of application such as Coding The-
ory problems, including the design of good Radar location codes, Synch-set
codes; Missile guidance codes and convolution codes with optimal autocor-
relation properties. Labeled graphs have also been applied in determining
ambiguities in X-Ray Crystallographic analysis, to Design Communication
Network addressing Systems, in determining Optimal Circuit Layouts and
Radio-Astronomy, etc, (see Bloom [4]).

Given a graph G = (V, E), the set N of nonnegative integers, and
a commutative binary operation ∗ : N × N → N , every vertex function
f : V (G) → N induces an edge function f∗ : E(G) → N such that
f∗(uv) = f(u) ∗ f(v)∀ uv ∈ E(G). Often it is of interest to determine
the vertex functions f having a specified property P such that the induced
edge function f∗ has a specified property Q where P and Q may be the
same. In literature, one can find several instances of this problem, for ex-
ample, graceful labelings (Golomb) [8], Rosa [12]) and arithmetic labelings
(Acharya and Hegde [1]).
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In this paper, we are interested in the case where the induced edge function
is the usual sum. Such a vertex function is said to be additive and henceforth
the induced edge function will be written f+.

An additive labeling of a graph G is an injective additive vertex function
f such that the induced edge function f+ is also injective. We adopt the
following notation throughout this paper.

A(G) = set of all additive labelings of G.

f(G) = {f(u) : u ∈ V (G)}, f+(G) = {f+(e) : e ∈ E(G)},
fmin(G) = min

v∈V (G)
f(v), f+

min(G) = min
e∈E(G)

f+(e),

fmax(G) = max
v∈V (G)

f(v), θ(G) = min
f∈A(G)

fmax(G).

If fmax(G) = θ(G), then f is called optimal.

Theorem 1.1 (Acharya and Hegde [1]). For any additive vertex function
f : V (G) → R, where R is the set of real numbers,

∑

e∈E(G)

f+(e) =
∑

u∈V (G)

f(u)d(u)

where d(u) is the degree of the vertex u.

2. k-Sequentially Additive Graphs

An additive labeling f ∈ A(G) of a graph G with p vertices and q edges
is called k-sequentially additive (Bange et al. [3]) if f(G) ∩ f+(G) = φ
and f(G) ∪ f+(G) = {k, k + 1, . . . , k + p + q − 1}. A graph G is called k-
sequentially additive if it has a k-sequentially additive labeling. When k = 1,
the k-sequentially additive labeling is called simply sequential labeling and
the graph admitting simply sequential labeling is called simply sequential
graph. Let Sk(G) denote the set of all k-sequentially additive labelings of G.

Remark 1. Let k be any positive integer, Clearly, any graph G has an addi-
tive labeling f such that fmin (G) = k and if f(G)∩f+(G) = φ; for example,
f(vi) = k×2i (where V (G) = {v1, v2, . . . , vp−1}. It follows immediately that
every graph can be embedded as an induced subgraph of a k-sequentially
additive graph, by appending sufficiently many isolated vertices.
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It is easy to create k-sequentially additive graphs, and clearly every graph
with no edges is k-sequentially additive for all k. Hence, we assume that in
what follows, G always has at least one edge. The following result gives a
bound on those k for which such a graph can be k-sequentially additive.

Theorem 2.1. If f is a k-sequentially additive labeling of G, then (2k+1) ≤
f+
min(G) ≤ (2β0(G) + 2k − 1), where β0(G) denotes the vertex independence

number of G and the bounds are sharp.

Proof. If G is k-sequential, then the labels on the vertices of any edge are
at least k and k + 1, so label on the edge is at least 2k + 1.

On the other hand, by the definition of β0(G) not all of the vertices
labeled k, k + 1, . . . , k + β0(G) can be independent. Therefore two of these
values must be on adjacent vertices, and hence

f+
min(G) ≤ (k + β0(G)− 1) + (k + β0(G)) = 2β0(G) + 2k − 1.

To prove that the bounds are sharp it is enough to show that there exists
graphs G for which the upper and lower bounds are achieved. For any
positive k, the one-edged graph with vertex labels k, k + 1, . . . , 2k (where
the edge joins the first two of these) has f+

min(G) = 2k + 1; and the same is
true of the star K1,k with the central vertex labeled k and the others labeled
k + 1, . . . , 2k.

As regards the upper bound, consider the labelings of K3 given in The-
orem 2.2. One can easily see that the upper bounds are achieved in both
the cases.

Proposition 2.1. If G is a k-sequentially additive graph of order p then
k ≤ p− 1 and the bound is best possible.

Proof. Let G be a k-sequentially additive graph with an f ∈ Sk(G). One
can see that f assigns the numbers k, k + 1, . . . , 2k to the k + 1 vertices of
G. Thus G has at least k + 1 vertices and hence k ≤ p− 1.

To show the bound is best possible consider the star K1,n. assign n to
its central vertex and n, n + 1, . . . , 2n to the remaining vertices in a one-
to-one manner. Then it is not hard to verify that the assignment is an
n-sequentially additive labeling of K1,n.

Theorem 2.2. For n > 1, the complete graph Kn is k-sequentially additive
if and only if the pair (n, k) is (2, 1), (3, 1) or (3, 2).
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Proof. By giving the labelings {1, 2}, {1, 2, 4} and {2, 3, 4}, respectively,
to the complete graphs with 2, 3 and 3 vertices one can see that the result
for the pairs (n, k) = (2, 1), (3, 1) and (3, 2) follows.

Suppose k = 2 and Kn is k-sequentially additive. If n 6= 1, then q > 0
and by Proposition 2.1 we have n ≥ 3. Then one has to assign the numbers
2, 3 and 4 to the three of the vertices of Kn. Then the numbers 5, 6 and
7 are obtained on the edges. Thus, the number 8 has to be assigned to
a vertex. So the numbers 10, 11 and 12 are obtained on the edges. The
number 9 is missing and it cannot be obtained on any edge and hence to be
assigned to a vertex. This obtains the numbers 11, 12 and 13 on the edges
contradicting the injectivity of f+. Thus when k = 2 and n ≥ 4, Kn is not
k-sequentially additive.

Now, suppose k ≥ 3 and Kn is k-sequentially additive. If n 6= 1, then
q > 0 and by Proposition 2.1, we have n ≥ 4. Then assigning the numbers
k, k +1, k +2 and k +3 to vertices of K4, we see that f+(v1v4) = f+(v2v3).
Thus when k ≥ 3 and n ≥ 4, Kn is not k-sequentially additive.

Theorem 2.3. The star K1,n is k-sequentially additive if and only if k|n.
Furthermore, for k ≥ 2 any k-sequentially additive labeling of K1,n assigns
k to the central vertex.

Proof. Let K1,n be a star and assume that k|n. Assign k to its central
vertex and k + 1, k + 2, . . . , 2k, 3k + 1, 3k + 2, . . . , 4k, . . . , 2n− k + 1, 2n−
k + 2, . . . , 2n to the pendant vertices. Then it is easy to verify that K1,n is
k-sequentially additive.

We prove the converse by Strong Induction Principle (Enderton [5],
pp. 87) on n. One can easily verify that the result is true for n = 1, 2.
Suppose that the result is true for all positive integers less than n, i.e., K1,t

is k-sequentially additive for all k dividing t < n. Suppose that K1,n is
k-sequentially additive. Let t be the label assigned to the central vertex u
and m the largest vertex label. Then all the values m+1, m+2, . . . , 2n+ k
are obtained on the edges and their end vertices have label t less (corre-
spondingly). Consequently, m = 2n + k − t. Remove the t vertices with
the labels m + 1 − t, m + 2 − t, . . . , m (and thus the edges labeled m + 1,
m + 2, . . . , m + t (= 2n + k)) (If t = n it is easy to verify that the num-
bers from n + 1 to 2n = m will appear on the remaining vertices of K1,n

and the numbers 2n + 1, 2n + 2, . . . , 3n = f+
max(G), are obtained on the

edges of K1,n), result is a k-sequentially additive labeling of K1,n−t. Thus
by strong induction principle, k|(n−t) and k is at the central vertex so k = t.
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We know that if k|(n − k) then k|n. Hence, K1,n is k-sequentially additive
for k = n with f(u) = k.

Corollary 2.1. For any finite set A of positive integers there is a graph that
is k-sequentially additive for all k ∈ A.

By Theorem 2.3 it follows that K1,4 is not 3-sequentially additive but 1-, 2-
and 4-sequentially additive. Next, we give a construction of infinite families
of k-sequentially additive graphs from a given k-sequentially additive graph.

Conjecture 2.1. For any nonempty finite set B of positive integers there
exists a graph G which is k-sequentially additive if and only if k ∈ B.

Next, we consider caterpillars that by definition, are trees the deletion of
whose end vertices results in a path. We denote Ca,b a caterpillar with
bipartition {A,B} where A = {u1, u2, . . . , ua} and B = {v1, v2, . . . , vb},
a ≤ b. The next result gives a k-sequentially additive labeling of Ca,b for
k = a, b.

Theorem 2.4. A caterpillar Ca,b is k-sequentially additive for k = a, b.

Proof. Let the caterpillar be drawn as a planar graph with the vertices
u1, u2, . . . , ua and v1, v2, . . . , vb constituting its bipartition. Then define the
function f : V (Ca,b) → N by

f(ui) = a + b + i− 1, 1 ≤ i ≤ a,

f(vj) = a + j − 1, 1 ≤ j ≤ b.

Then we get f(Ca,b) = {k = a, a + 1, a + 2, . . . , a + b − 1, a + b, a + b +
1, . . . , 2a+ b− 1} and f+(Ca,b) = {2a+ b, 2a+ b+1, . . . , 2a+ b+a+ b− 2 =
a + (a + b) + (a + b− 1)− 1 = k + p + q − 1}. Hence f is an a-sequentially
additive labeling of Ca,b.

Similarly we can give b-sequentially additive labeling of Ca,b.

Remark 2.1. Using Lemma 2.1 below and a star, one can construct an infi-
nite family of simply sequential caterpillars. But whether a given caterpillar
is simply sequential or not is an interesting problem.
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Figure 1. a-sequentially labeling of Ca,b.

Given a graph G, a vertex u of G and a new set X of Vertices, disjoint from
V (G), we define a new graph G(u,X) with V (G) ∪X as its vertex set and
E(G) ∪ {ux : x ∈ X} as its edge set, respectively.

Lemma 2.1. Let G be a k-sequentially additive graph with ak-sequentially
additive labeling f . Then the graph H = G(u,X) with |X| = ar, where
a = f(u) and r ≥1, is also a k-sequentially additive graph.

Proof. Consider an arbitrary vertex u of G and let f(u) = a. Then intro-
duce a set X of ar new vertices labeled

u11, u12, . . . , u1a

u21, u22, . . . , u2a

. . . . . . . . . .

. . . . . . . . . .
ur1, ur2, . . . , ura

and construct the graph H = G(u, X) as mentioned above. Then define a
function

F : V (H) → N by
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F (u) = f(u) if u ∈ V (G).

F (uji) = k + p + q + i− 1 + 2a(j − 1), i = 1, 2, . . . , a and j = 1, 2, . . . , r.

Then it is not hard to verify that F so defined is an extension of f to H.

8

76

4 5

16

17

18

19
24

25

26
27

4 5
8

76

Figure 2. Illustration of Lemma 2.1.

Given a graph G, a set S of vertices of G and a collection X(S) = {Xu :
u ∈ S} of disjoint sets, the graph G(S, S(X)) has V (G)∪ (∪Xu, u ∈ S) as
its vertex set and E(G)∪ (∪Eu, u ∈ S) where Eu = {uy : y ∈ Xu, u ∈ S} as
its edge set.

By repeated application of Lemma 2.1, one can prove that the graph
G(S, S(X)) is also k-sequentially additive.

Theorem 2.5. Let G be a k-sequentially additive graph with a k-sequentially
additive labeling f where Xu is a multiple of f(u) for each u ∈ S. Then the
graph G(S, S(X)) is also k-sequentially additive.

A graph G is called (k, d)-arithmetic (Acharya and Hegde [1]) if f+(G) =
{k, k + d, . . . , k + (q − 1) d} for some f ∈ A(G).

Theorem 2.6. A graph G is k-sequentially additive if and only if the join
G + v has a (k, 1)-arithmetic labeling F with F (v) = 0.
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Proof. Assume that G is a k-sequentially additive graph. Note that
|E(G + v)| = |V (G)| + |E(G)|. Extend a k-sequentially additive labeling
f of G to F by assigning 0 to the vertex v in G + v. Then one can verify
that the extension of f to G + v is a (k, 1)-arithmetic labeling of G + v.

Conversely, suppose f is a (k, 1)-arithmetic labeling of G + v with
F (v) = 0. Then for each u ∈ V (G) the restriction of F to G yields a
k-sequentially additive labeling of G.

Since any graph G must have an even number of vertices of odd degree,
G + v is an eulerian graph if and only if every vertex of G has odd degree.
We call such a graph an odd-degree graph.

Theorem 2.7. If an odd-degree (p, q)-graph G is k-sequentially additive then

(p + q)(2k + p + q − 1) ≡ 0 (mod 4).

Proof. Let G be as in the statement of the theorem. By Theorem 1.1, we
get

∑

u∈V (G)

f(u)+
∑

e∈E(G)

f+(e) =
∑

u∈V (G)

f(u)(1+d(u)) ≡ 0 (mod 2) (since G is odd).

Also, this sum is
∑k+p+q−1

i=k i = (p + q)k + (p + q − 1)(p + q)/2 and the re-
sult follows.

As far as the k-sequential additivity of Ka,b is concerned, we observe that
Ka,b is an odd-degree graph if both a and b are odd. Further, if both a and
b are odd we get a + b + ab ≡ 3 (mod 4). Then by Theorem 2.7 we get

Corollary 2.2. If a and b are both odd then Ka,b is not k-sequentially ad-
ditive for any even k.

For any tree T of order p, we have p + q = 2p − 1 ≡ 1 (mod 2) so that
2p− 1 ≡ 1 or 3 (mod 4). Hence, if T is an odd tree then p + q = 2p− 1 ≡ 3
(mod 4). Then by Theorem 2.7 we get

Corollary 2.3. If an odd-degree tree is k-sequentially additive then k is odd.
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3. Results on non k-Sequentially Additive Graphs

The study of non-k-sequentially additive graphs (labelings) is as important
as that of k-sequentially additive graphs. We define the graph theoretical
arithmetic function R(k, n) as the minimum number of edges in a non-k-
sequentially additive graph of order n ≥ 4. We shall give some good bounds
for R(k, n).

For an odd positive integer k ≥ 1, the smallest non-k-sequentially addi-
tive graph of order 4 is 2K2, so that R(k, 4) = 2 for odd positive integer k.
For any even integer k ≥2, the smallest non k-sequentially additive graph is
K1,3 so that R(k, 4) = 3.

When n is an odd positive integer, any graph G of order nmust contain
a point of even degree so that G can never be an odd-degree graph. Hence,
in this case, we cannot apply Theorem 2.7 to deduce the non-k-sequential
additivity of G.

We must, therefore, discover some other method of deducing the non-
k-sequential additivity of a given graph G, or else we must find a structural
necessary condition for a graph to be k-sequentially additive. Both of these
alternatives seem to pose formidable difficulties. Bange et al. [3] have shown
that the cycle C5 is 1-sequentially additive and we have verified all the other
graphs of order ≤ 5 and found that C5 is the smallest graph of order 5 which
is not 1-sequentially additive, whence R(1, 5) = 5.

Theorem 3.1. Let n = 2r, r ≥ 2.

(a) If k is odd, then

R(k, n) ≤





r if r ≡ 2 or 3 (mod 4),
r + 1 if r ≡ 0 (mod 4),
r + 2 if r ≡ 1 (mod 4).

(b) If k is even, then

R(k, n) ≤





r if r ≡ 2 (mod 4),
r + 1 if r ≡ 3 (mod 4),

r + 2 if r ≡ 0 (mod 4),
r + 3 if r ≡ 1 (mod 4).



Further Results on Sequentially Additive Graphs 261

Proof. For each case, we construct a graph G having the specified number
of vertices and edges as given below that is not k-sequentially additive (by
Theorem 2.7):

(a) k odd,

r ≡ 2 or 3 (mod 4), let G1 = rK2,

r ≡ 0 (mod 4), let G2 = K1,3 ∪ (r − 2) K2,

r ≡ 1 (mod 4), let G3 = 2K1,3 ∪ (r − 4) K2.

(b) Let T be the tree obtained from two copies of K1,2 with their centers
joined by an edge. Then, when k is even and

r ≡ 0 (mod 4), let G4 = T ∪ (r − 3) K2,

r ≡ 1 (mod 4), let G5 = T ∪K1,3 ∪ (r − 5) K2,

r ≡ 2 (mod 4), let G6 = rK2,

r ≡ 3 (mod 4) then let G7 = K1,3 ∪ (r − 2)K2.

Conjecture 3.1. In Theorem 3.1, equality holds in each case.

Let C(k, n) be the minimum number of edges in a non-k-sequentially ad-
ditive connected graph of order n ≥ 4. We shall give some good bounds
for C(k, n). One can verify that C(1, n) is not defined for n ≤ 3 (i.e., all
connected graphs with n ≤ 3 are k-sequentially additive for k = 1) and is de-
fined for n ≥ 4 (as there are graphs with n ≥ 4 which are not k-sequentially
additive for any k).

Theorem 3.2. For 6 ≤ n ≡ 0 (mod 2) and k ≡ 1 (mod 2), C(k, n) ≤ n+1.

Proof. For n = 6 let G be the graph shown in Figure 3(a) and for even
n ≥ 8 let G be the graph shown in Figure 3(b). In each case, G is an odd-
degree graph and hence by Theorem 2.7, the required inequality follows.

Conjecture 3.2. C(k, n) = n + 1 for all n ≥ 6 and odd k ≥ 1.

Next, we give a result on the minimum number of isolated vertices to be
added to a graph to make it k-sequentially additive. Let Fn denote the nth
Fibonacci number given by Fn = Fn−1 + Fn−2 for n > 2 where F1 = 1 and
F2 = 2.
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(b)

(a)

u1 u2 ur = ( n - 6 ) / 2

Figure 3. Odd-degree graphs.

Theorem 3.3. The minimum number of isolated vertices required to be in-
troduced to make the complete graph Kn simply sequentially additive is

Fn+1 + Fn −(n+1) C2 − 2

where Fn is the nth Fibonacci number.

Proof. Denote the vertices of Kn by v1, v2, . . . , vn. Then define a function
f : V (Kn) → N , by

f(v1) = 1, f(v2) = 2 and f(vi) = f(vi−1) + f(vi−2) + 1, 3 ≤ i ≤ n.

Then one can see that f(v1) = F2−1, f(v2) = F3−1, . . . , f(vn) = Fn+1−1.
Thus, f is injective. As f(vi) = f(vi−1)+f(vi−2)+1, f+

max(Kn) = f(vn−1)+
f(vn).

Hence, by recursion we have f+
max(Kn−1)+1 = f(vn). So that the n− 1

new edges joining vn to v1, v2, . . . , vn−1 receive the numbers given by

f+(vnv1) = f+
max(Kn−1) + 1 + f(v1),

f+(vnv2) = f+
max(Kn−1) + 1 + f(v2), . . . ,

f+(vnvn−1) = f+
max(Kn−1) + 1 + f(vn−1).

As f is injective the above numbers are all distinct. Thus, all the edge
numbers are distinct with f(Kn) ∩ f+(Kn) = φ.
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To show that f as defined above is an optimal additive labeling for Kn, we
use induction. One can easily verify that f is an optimal labeling for the
complete graph with two and three vertices. Suppose that the result is true
for Kn−1, i.e., fmax(Kn−1) = θ(Kn−1). We know that f+

max(Kn−1) + 1 =
f(vn). Any of the missing numbers less than f+

max(Kn−1) assigned to vn will
violate the injectivity of either f or f+.

Hence, f+
max(Kn−1) + 1 = θ(Kn). Thus, f is optimal.

Now, edge numbers f+(Kn) and vertex numbers f(Kn) are all distinct and
belong to the set {1, 2, . . . , Fn + Fn+1 − 2}, where Fn + Fn+1 − 2 is the
maximum number. But Kn has nC2 edges and n vertices. Therefore, number
of numbers missing from {1, 2, . . . , Fn + Fn+1 − 2} is

Fn + Fn+1 − 2− (n +n C2) = Fn + Fn+1 − 2−n+1 C2.

Hence, the number of isolated vertices to be added to Kn to make it simply
sequentially additive is Fn + Fn+1 −n+1 C2 − 2. One can see that the above
labeling is optimal for Kn, i.e., there is no other additive labeling in which
the largest vertex number is less than the one defined by f . Introduce Fn +
Fn+1 −n+1 C2 − 2 isolated vertices and assign the missing numbers to them
in a one-to-one manner. Then the resulting graph is simply sequentially
additive.

It is interesting to consider the problem of finding the minimum number of
isolated vertices required to embed a given graph, or other non k-sequentially
additive graphs.

Bange et al. [3] have proved that the cycle Cn is simply sequentially
additive if and only if n ≡ 0 or 1 (mod 3). Thus, the cycles Cn where n ≡ 2
(mod 3) are not simply sequentially additive. The following figure shows
that the minimum number of isolated vertices to be added to these cycles
to make it simply sequentially additive is only one. So, we strongly believe,

Conjecture 3.3. The minimum number of isolated vertices to be added to
the cycles Cn where n ≡ 2 (mod 3) to make it simply sequentially additive
is exactly one.

4. k-Segregated Graphs

A k-sequentially additive labeling is said to be k-segregated, if the vertices
are labeled k, k + 1, . . . , k + p− 1, and the edges are labeled k + p, k + p +
1, . . . , k + p + q − 1.
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A graph is k-segregatable if it has a k-segregated labeling.
For an example, consider the star K1.4 which is k-segregatable for k =

1, 4 but not for k = 2, 3 (see Figure 4).
Thus, a k-segregated labeling has the property that f(G) = {k, k + 1,

. . . , k + p− 1} and f+(G) = {k + p, k + p + 1, . . . , k + p + q − 1}.

Lemma 4.1. Every connected 1-segregatable graph is a tree.

Proof. Let G be a connected graph. Connectedness of G implies that
q ≥ p − 1. As the maximum possible edge label is 2p − 1 it follows that
q = p− 1. Since G is connected and q = p− 1, it must be a tree.

3
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Figure 4. Sequentially additive cycles with one isolated vertex.

Theorem 4.1. A connected graph G is 1-segregatable if and only if it is a
star.

Proof. It is easy to see that if the central vertex of K1,n is assigned n+1 and
other vertices are numbered 1, 2, . . . , n, the result is a 1-segregated labeling.
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Conversely, assume that G is a connected graph of order p having a 1-
segregated labeling f . Let f(ui) = i, 1 ≤ i ≤ p. By lemma 4.1, G is a tree.
Since f+(G) = {p + 1, p + 2, . . . , 2p− 1}, f+(uiuj) ≥ p + 1. Hence, u1 must
be adjacent to up, otherwise, if u1uj ∈ E(G) for any j, 2 ≤ j ≤ p− 1, then
f+(u1uj) = j + 1 ≤ p < p + 1, a contradiction, so, j = p. Assume that
up is not adjacent to some vertex; let ui be the one with least i. But then
f+(uiuj) = i + j ≤ i + p− 1, which is impossible since f is injective.

Thus, it follows that each of u1, u2, . . . , up−1 must be adjacent to up and
so that G must be a star.

Figure 5 shows a star which is 1-segrated and 4-segregated. From the label-
ing given in the figure it follows that a star K1,n is 1-, n-segregatable.

4

85 6 7

5

41 2 3

Figure 5. 1-segregatable and 4-segregatable star.

Next, we describe a simple construction of a 1-segregatable graph:
Label the vertices of a totally disconnected graph by 1, 2, . . . , p. Suc-

cessively join a pair of vertices whose labels sum to p + 1, to p + 2, and so
forth.

The following result shows that at most p−1 edges can be added in this
way.

Theorem 4.2. If G is a 1-segregated graph of order p, then it has at most
p− 1 edges and consequently its minimum degree δ is 0 or 1.

Proof. As the maximum possible edge label is 2p−1 it follows that q ≤ p−1.
As, δp ≤ 2q in any graph G with q edges, we get δp/2 ≤ p− 1. Hence, δ ≤ 1
as claimed.
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Thus, K1 and K2 are the only connected regular graphs which are 1-segre-
gated.

Theorem 4.3. If G is 1-segregated, then the join G+Kt, is 1-sequentially
additive.

Proof. Let G be a 1-segregatable graph of order p. Join the vertices of G
to every vertex of Kt. Then assign the numbers

f+
max(G) + 1 + (i− 1)(p + 1), i = 1, 2, . . . , t

to the vertices of Kt. Then one can see that the above assignment is a
1-sequentially additive labeling of G + Kt.

Next, we give some classes of graphs which are k-sequentially additive for
certain values of k.

Corollary 4.1. The complete tripartite graph Ka,b,1 is a 1-sequentially ad-
ditive graph.

Proof. Since the star K1,a is 1-segregated, the result follows from Theo-
rem 2.5.

A (p, q)-graph G is said to be strongly k-indexable (Acharya and Hegde
[1, 2]) if its vertices can be labeled with 0, 1, 2, . . . , p − 1 so that the edges
receive numbers k, k +1, k +2, . . . , k + q− 1 when each edge is assigned the
sum of numbers assigned to its ends.

Enomoto et al. [5] have introduced the concept of super edge magic
labelings: A graph G is said to be super edge magic if it admits a bijection
f : V ∪ E → {1, 2, . . . , p + q} with f(V ) = {1, 2, . . . , p} and f(E) = {p +
1, p + 2, . . . , p + q} such that f(u) + f(v) + f(uv) = c(f), a constant.

Theorem 4.4 (Hegde and Shetty [11]). A graph is super edge magic if and
only if it is strongly k-indexable for some positive integer k.

Theorem 4.5. A (p, q)-graph G is 1-segregated if and only if it is strongly
(p− q)-indexable and hence super edge magic.

Proof. Suppose G has a strong (p − q)-indexer f , i.e., f(ui) = i, 0 ≤
i ≤ p − 1 so that f+(G) = {p − q, p − q + 1, . . . , p − 1}. Then, define a
function F by F (ui) = p − f(ui), 1 ≤ i ≤ p. Then for any edge uiuj of
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G we get p + 1 ≤ f(ui) + f(ui) ≤ p + q. Since f is injective this implies
that the values assigned to the edges of G by F are precisely the numbers
p + 1, p + 2, . . . , p + q. Thus, f is a 1-segregated labeling of G.

The converse can be proved on similar lines.
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