DECOMPOSITION OF COMPLETE BIPARTITE DIGRAPHS AND EVEN COMPLETE BIPARTITE MULTIGRAPHS INTO CLOSED TRAILS

Sylwia Cichacz
AGH University of Science and Technology Al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: cichacz@wms.mat.agh.edu.pl

Abstract

It has been shown [3] that any bipartite graph $K_{a, b}$, where a, b are even integers, can be decomposed into closed trails with prescribed even lengths. In this article, we consider the corresponding question for directed bipartite graphs. We show that a complete directed bipartite graph $\overleftrightarrow{K}_{a, b}$ is decomposable into directed closed trails of even lengths greater than 2 , whenever these lengths sum up to the size of the digraph. We use this result to prove that complete bipartite multigraphs can be decomposed in a similar manner.

Keywords: trail, decomposition.
2000 Mathematics Subject Classification: 05C70.

1. Introduction

Consider a graph G (without loops), whose size we denote by $e(G)$. Write $V(G)$ for the vertex set and $E(G)$ for the edge set of a graph or a digraph G. If G is a graph, \overleftrightarrow{G} will denote the digraph obtained from G by replacing each edge $x, y \in E(G)$ by the pair of arcs $\overrightarrow{x y}$ and $\overrightarrow{y x}$.

As in [3] we denote by $\operatorname{Lct}(G)$ the set of all integers l such that there is a closed trail of length l in G. A sequence $\tau=\left(t_{1}, t_{2}, \ldots, t_{p}\right)$ of integers is called admissible for a graph (digraph) G if it adds up to $e(G)$ and $t_{i} \in \operatorname{Lct}(G)$ for all $i \in\{1,2, \ldots, p\}$. We shall write $\left(\left(t_{1}\right)^{s_{1}}, \ldots,\left(t_{l}\right)^{s_{l}}\right)$ for the sequence $(\underbrace{t_{1}, \ldots, t_{1}}_{s_{1}}, \ldots, \underbrace{t_{l}, \ldots, t_{l}}_{s_{l}})$.

Moreover, if $\tau=\left(t_{1}, t_{2}, \ldots, t_{p}\right)$ is an admissible sequence for G and G can be edge-disjointly (arc-disjointly) decomposed into (directed) closed trails $T_{1}, T_{2}, \ldots, T_{p}\left(\vec{T}_{1}, \ldots, \vec{T}_{p}\right)$ of lengths $t_{1}, t_{2}, \ldots, t_{p}$ respectively, then τ is called realizable in G and the sequence $\left(T_{1}, T_{2}, \ldots, T_{p}\right)$ is said to be $a G$ realization of τ or a realization of τ in G.

Let $K_{a, b}$ be a complete bipartite graph with two sets of vertices A and B, such that $|A|=a$ and $|B|=b$. In Section 3, we shall prove the first main result. We show that the complete directed bipartite graph $\overleftrightarrow{K}_{a, b}$ can be decomposed as an edge-disjoint union of directed closed trails of lengths $t_{1}, t_{2}, \ldots, t_{p}$ whenever t_{i} is even and $\sum_{i=1}^{p} t_{i}=2 a b$.

An undirected graph G is said to be even if the degrees of all its vertices are even. Let ${ }^{r} K_{a, b}$ be a complete bipartite graph where each edge $x y$ occurs with multiplicity r. In Section 4, we deal with even multibipartite graphs ${ }^{r} K_{a, b}$. In the first part of this section, we show that if r is even, then for all admissible sequences τ for ${ }^{r} K_{a, b}$, there is a realization of τ in ${ }^{r} K_{a, b}$. In the other part, we focus on graph ${ }^{r} K_{a, b}$, where a, b are even and r is odd.

In [3] M. Horñák, M. Woźniak proved an analogous theorem for a simple bipartite graph.

Theorem 1 ([3]). If a, b are positive even integers, then if $\sum_{i=1}^{p} t_{i}=a \cdot b$ and there is a closed trail of length t_{i} in $K_{a, b}$ (for all $i \in\{1, \ldots, p\}$), then $K_{a, b}$ can be (edge-disjointly) decomposed into closed trails $T_{1}, T_{2}, \ldots, T_{p}$ of lengths $t_{1}, t_{2}, \ldots, t_{p}$, respectively.

Similar problems were first investigated by P.N. Balister.
Theorem 2 ([1]). Let $L=\sum_{i=1}^{p} t_{i}, t_{i} \geqslant 3$, with $L=\binom{n}{2}$ when n is odd and $\binom{n}{2}-\frac{n}{2}-2 \leqslant L \leqslant\binom{ n}{2}-\frac{n}{2}$ when n is even. Then we can write some subgraph of K_{n} as an edge union of circuits of lengths t_{1}, \ldots, t_{p}.

Recently, also directed graphs and multigraphs were discussed by the same author, see [2].

Theorem 3 ([2]). If $\sum_{i=1}^{p} t_{i}=2\binom{n}{2}$ and $t_{i} \geqslant 2$ for $i=1, \ldots, p$, then $\overleftrightarrow{K}_{n}$ can be decomposed into an edge-disjoint union of directed closed trails of lengths $t_{1}, t_{2}, \ldots, t_{p}$, except in the case when $n=6$ and all $t_{i}=3$.

Analogously as before, let ${ }^{r} K_{n}$ be a complete graph where each edge occurs with multiplicity r.

Theorem 4 ([2]). Assume $n \geqslant 3, \sum_{i=1}^{p} t_{i}=r\binom{n}{2}$, and $t_{i} \geqslant 2$ for $i=$ $1, \ldots, p$. Then ${ }^{r} K_{n}$ can be written as the edge-disjoint union of closed trails of lengths $t_{1}, t_{2}, \ldots, t_{p}$ if and only if either
(a) r is even, or
(b) r and n are both odd and $\sum_{t_{i}>2} t_{i} \geqslant\binom{ n}{2}$.

2. TERMINOLOGY

We say a graph (digraph) G is Eulerian if and only if it has a (directed) closed trail through every edge (arc) of G. Here and subsequently, a (directed) closed trail $T(\vec{T})$ of length n is identified with any sequence $\left(v_{1}, v_{2}, \ldots, v_{n+1}\right)$ of vertices of $T(\vec{T})$ such that $v_{i} v_{i+1}$ are distinct edges of $T(\vec{T})$ for $i=$ $1,2, \ldots, n$. Notice that we do not require the v_{i} to be distinct and undoubtedly $v_{1}=v_{n+1}$. However, it will be regarded as an Eulerian graph (digraph) of order n.

Moreover, given two edge-disjoint undirected closed trails T_{1}, T_{2} which are not disjoint on vertices, we shall write $T_{1} \cdot T_{2}$ for their union, see Figure 1.

Figure 1. Example of $T_{1} \cdot T_{2}$

Observe that $T_{1} \cdot T_{2}$ is a closed trail as well.
Notice that if a and b are positive integers, then clearly

$$
\begin{array}{ll}
\operatorname{Lct}\left(K_{2, b}\right)=\left\{4 i: i=1,2, \ldots, \frac{1}{2} b\right\} & \text { if } b \text { is even } \\
\operatorname{Lct}\left(K_{a, b}\right)=\left\{2 i: i=2,3, \ldots, \frac{1}{2}(a b-4)\right\} \cup\{a b\} & \text { if } a, b \geqslant 4, \text { and } a, b \text { are even } \\
\operatorname{Lct}\left({ }^{r} K_{a, b}\right)=\left\{2 i: i=1,2, \ldots, \frac{1}{2} r a b\right\} & \text { if } a, b \geqslant 1 \text { and } r \text { is even } \\
\operatorname{Lct}\left({ }^{r} K_{a, b}\right)=\left\{2 i: i=1,2, \ldots, \frac{1}{2} r a b\right\} & \text { if } a, b \text { are even and } r \geqslant 2 \\
\operatorname{Lct}\left(\overleftrightarrow{K}_{a, b}\right)=\{2 i: i=1,2, \ldots, a b\} & \text { if } a, b \geqslant 1
\end{array}
$$

3. Decomposition of Complete Bipartite Digraphs into Closed Trails

Let $\overleftrightarrow{K}_{a, b}$ be a complete bipartite digraph with vertices sets A and B. It is easy to see that for all admissible sequences τ for $\overleftrightarrow{K}_{1, b}$, there is a realization of τ in $\overleftrightarrow{K}_{1, b}$

Theorem 5. If a sequence $\tau=\left(t_{1}, t_{2}, \ldots, t_{p}\right)$ is admissible for $\overleftrightarrow{K}_{a, b}$, then there is a realization of τ in $\overleftrightarrow{K}_{a, b}$

Proof. We fix the number of the vertex set B and we will argue by induction on a. For $a=1$ Theorem 5 is true. The basic idea of the proof is to consider $\overleftrightarrow{K}_{a, b}$ as an arc-disjoint union of $\overleftrightarrow{K}_{a-1, b}$ and $\overleftrightarrow{K}_{1, b}$, each of which has sizes $2(a-1) b$ and $2 b$, respectively.

Let $\tau=\left(t_{1}, t_{2}, \ldots, t_{p}\right)$ be admissible for $\overleftrightarrow{K}_{a, b}$. If there exist $i_{1}, i_{2}, \ldots, i_{l}$ such that $\sum_{j=1}^{l} t_{i_{j}}=2 b$, then we would be done. There exists a realization of $\tau^{\prime}=\left(t_{i_{1}}, \ldots, t_{i_{l}}\right)$ in $\overleftrightarrow{K}_{1, b}$ and from induction, we obtain the realization of the remaining t_{i} (namely, all except $t_{i_{1}}, \ldots, t_{i_{l}}$) in $\overleftrightarrow{K}_{a-1, b}$. Assume now, that there exists k, such that $\sum_{i=1}^{k-1} t_{i}<2 b$ and $\sum_{i=1}^{k} t_{i}>2 b$. Let $t_{k}=t_{k}^{\prime}+t_{k}^{\prime \prime}$, such that

$$
\sum_{i=1}^{k-1} t_{i}+t_{k}^{\prime}=2 b
$$

Observe that $t_{k}^{\prime}, t_{k}^{\prime \prime} \geqslant 2$ are even and we may find a $\overleftrightarrow{K}_{1, b}$-realization of the sequence $\tau^{\prime}=\left(t_{1}, \ldots, t_{k}^{\prime}\right)$ and from induction a $\overleftrightarrow{K}_{a-1, b}$-realization of $\tau^{\prime \prime}=$ $\left(t_{k}^{\prime \prime}, t_{k+1}, \ldots, t_{p}\right)$. Let $\left(\vec{T}_{1}, \ldots, \vec{T}_{k-1}, \vec{T}_{k}^{\prime}\right)$ and $\left(\vec{T}_{k}^{\prime \prime}, \vec{T}_{k+1} \ldots, \vec{T}_{p}\right)$ are $\overleftrightarrow{K}_{1, b}$ and $\overleftrightarrow{K}_{a-1, b}$-realizations of τ^{\prime} and $\tau^{\prime \prime}$, respectively, such that $e\left(\vec{T}_{k}^{\prime}\right)=t_{k}^{\prime}$ and $e\left(\vec{T}_{k}^{\prime \prime}\right)=t_{k}^{\prime \prime}$.

Now pick a vertex $v \in B$ of \vec{T}_{k}^{\prime}. It is easy to verify that we may write the closed directed trail \vec{T}_{k}^{\prime} as $\left(v, v_{1}, \ldots, v_{t_{k}^{\prime}-1}, v\right)$. Now we pick a vertex $w \in B$ of $\vec{T}_{k}^{\prime \prime}$. We may also write $\vec{T}_{k}^{\prime \prime}$ as $\left(w, w_{1}, \ldots, w_{t_{k}^{\prime \prime}-1}, w\right)$. Notice that without losing generality, we may have chosen the realization of τ^{\prime} in such a way that $v=w$. In such a case, if we denote $\vec{T}_{k}=$ $\left(w, w_{1}, \ldots, w_{t_{k}^{\prime \prime}-1}, w, v_{1}, \ldots, v_{t_{k}^{\prime}-1}, w\right)$, then \vec{T}_{k} is a closed directed trail of length t_{k} and the sequence $\left(\vec{T}_{1}, \ldots, \vec{T}_{p}\right)$ is an $\overleftrightarrow{K}_{a, b}$-realization of τ.

4. Decomposition of Complete Bipartite even Multigraphs into Closed Trails

Let ${ }^{r} K_{a, b}$ be the complete bipartite graph with vertices sets A and B such that $|A|=a$ and $|B|=b$. There is no loss of generality in assuming that $a \leqslant b$.

Theorem 6. If a sequence $\tau=\left(t_{1}, t_{2}, \ldots, t_{p}\right)$ is admissible for ${ }^{r} K_{a, b}$, where $a, b \geqslant 1, r$ is even, then there is a realization of τ in ${ }^{r} K_{a, b}$.

Proof. We will argue by induction on r. For $r=2$, use Theorem 5 and forget the orientations of the edges. The basic idea of the proof is to consider ${ }^{r} K_{a, b}$ as an edge-disjoint union of ${ }^{2} K_{a, b}$ and ${ }^{r-2} K_{a, b}$, each of which has sizes $2 a b$ and $(r-2) a b$, respectively.

Let $\tau=\left(t_{1}, t_{2}, \ldots, t_{p}\right)$ be admissible for ${ }^{r} K_{a, b}$.
If there exist $i_{1}, i_{2}, \ldots, i_{l}$ such that $\sum_{j=1}^{l} t_{i_{j}}=2 a b$, then we would be done. There exists a realization of $\tau^{\prime}=\left(t_{i_{1}}, \ldots, t_{i_{l}}\right)$ in ${ }^{2} K_{a, b}$ and we obtain the realization of the remaining t_{i} (namely, all except $t_{i_{1}}, \ldots, t_{i_{l}}$) in ${ }^{r-2} K_{a, b}$ by induction.

Assume now that there exists k such that $\sum_{i=1}^{k-1} t_{i}<2 a b$ and $\sum_{i=1}^{k} t_{i}>$ $2 a b$. Let us introduce $t_{k}^{\prime}, t_{k}^{\prime \prime}$ such that $t_{k}=t_{k}^{\prime}+t_{k}^{\prime \prime}$ and

$$
\sum_{i=1}^{k-1} t_{i}+t_{k}^{\prime}=2 a b
$$

Observe that $t_{k}^{\prime}, t_{k}^{\prime \prime} \geqslant 2$ are even and the sequence $\tau^{\prime}=\left(t_{1}, \ldots, t_{k}^{\prime}\right)$ is realizable in ${ }^{2} K_{a, b}$, whereas the sequence $\tau^{\prime \prime}=\left(t_{k}^{\prime \prime}, t_{k+1}, \ldots, t_{p}\right)$, from induction, is realizable in ${ }^{r-2} K_{a, b}$. Notice that we may choose these realizations in such a way that the proper T_{k}^{\prime} and $T_{k}^{\prime \prime}$ have a common vertex. In such a case, if we denote T_{k} to be $T_{k}^{\prime} \cdot T_{k}^{\prime \prime}$, then $\left(T_{1}, T_{2}, \ldots, T_{p}\right)$ is a ${ }^{r} K_{a, b}$-realization of τ.

Notice that if r is odd and a, b are even, then there can be at most $a b\left\lfloor\frac{r}{2}\right\rfloor$ trails of length two, so we easily conclude that the sequence $\tau_{1}=\left(2^{\frac{r a b}{2}}\right)$ is not realizable in ${ }^{r} K_{a, b}$, then because $6 \notin \operatorname{Lct}\left(K_{2, b}\right)$ also the sequence $\tau_{2}=\left(2^{\frac{(r-1) a b}{2}}, 6,2 b-6\right)$ is not realizable in ${ }^{r} K_{2, b}(b \geqslant 6)$. According to the above remark we will consider now for ${ }^{r} K_{a, b}$ an admissible sequence $\tau=\left(t_{1}, t_{2}, \ldots, t_{p}\right)$ such that $\sum_{t_{i} \equiv 0(\bmod 4)} t_{i}+\sum_{t_{i} \equiv 2(\bmod 4)}\left(t_{i}-2\right) \geqslant a b$ if $a=2$, or $\sum_{t_{i}>2} t_{i} \geqslant a b$ if $a \geqslant 4$.

Theorem 7. Let $r \geqslant 1, r$ is odd and a, b are even. Then an admissible sequence $\tau=\left(t_{1}, t_{2}, \ldots, t_{p}\right)$ for ${ }^{r} K_{a, b}$ is realizable in ${ }^{r} K_{a, b}$ if and only if τ is such that

$$
\begin{array}{ll}
\sum_{t_{i} \equiv 0(\bmod 4)} t_{i}+\sum_{t_{i} \equiv 2(\bmod 4)}\left(t_{i}-2\right) \geqslant a b & \text { if } a=2 \\
\sum_{t_{i}>2} t_{i} \geqslant a b & \text { if } a \geqslant 4
\end{array}
$$

Before we prove Theorem 7 we shall need two observations.
Observation 8. Let $r \geqslant 3, r$ is odd and let $a=2, b$ be even. If $\tau=$ $\left(t_{1}, t_{2}, \ldots, t_{p}\right)$ is admissible for ${ }^{r} K_{2, b}$ and there exist $i_{1}, i_{2}, \ldots, i_{l}$ such that $t_{i_{j}} \equiv 0(\bmod 4)$ and different from them m such that $t_{m}=t_{m}^{\prime}+t_{m}^{\prime \prime}$, where $t_{m}^{\prime} \geqslant 4, t_{m}^{\prime \prime} \geqslant 0$ and $\sum_{j=1}^{l} t_{i_{j}}+t_{m}^{\prime}=2 b$, then τ is ${ }^{r} K_{2, b}$-realizable.

Proof. The basic idea of the proof is to consider ${ }^{r} K_{2, b}$ as an edge-disjoint union of $K_{2, b}\left(G_{1}\right)$ and ${ }^{r-1} K_{2, b}\left(G_{2}\right)$, each of which has sizes $2 b$ and $2(r-$ $1) b$, respectively. Notice that $t_{m}^{\prime} \geqslant 4$ and $t_{m}^{\prime} \equiv 0(\bmod 4)$. It follows that $\left\{t_{i_{1}}, \ldots, t_{i_{1}}, t_{m}^{\prime}\right\} \subset \operatorname{Lct}\left(K_{2, b}\right)$ and from Theorem 1 we may decompose graph G_{1} into closed trails $T_{i_{1}}, T_{i_{2}}, \ldots, T_{i_{l}}, T_{m}^{\prime}$ of lengths $t_{i_{1}}, t_{i_{2}}, \ldots, t_{i_{l}}, t_{m}^{\prime}$, respectively.

From Theorem 6, we obtain the realization of the remaining t_{i} (namely, all except $t_{i_{1}}, \ldots, t_{i_{l}}$ and t_{m}, but including $t_{m}^{\prime \prime}$ if $\left.t_{m}^{\prime \prime}>0\right)$ in G_{2}.

Moreover, if $t_{m}^{\prime \prime}>0$, we may choose these realizations in such a way that the proper T_{m}^{\prime} and $T_{m}^{\prime \prime}$ have a common vertex. If now T_{m} is a closed trail being an union of $T_{m}^{\prime} . T_{m}^{\prime \prime}\left(T_{m}^{\prime}\right.$ if $\left.t_{m}^{\prime \prime}=0\right)$, then $\left(T_{1}, T_{2}, \ldots, T_{p}\right)$ make up a ${ }^{r} K_{2, b}$-realization of τ.

Observation 9. Let $r \geqslant 3, r$ is odd and let $a, b \geqslant 4$ be even. To show that τ is realizable in ${ }^{r} K_{a, b}$, it is enough to find indicators $i_{1}, \ldots, i_{l}, m(l \geqslant 0)$ such that $t_{i_{j}} \geqslant 4(1 \leqslant j \leqslant l), t_{m}=t_{m}^{\prime}+t_{m}^{\prime \prime}$, where $t_{m}^{\prime} \geqslant 4$, $t_{m}^{\prime \prime} \geqslant 0$ and $\sum_{j=1}^{l} t_{i_{j}}+t_{m}^{\prime}=a b$.

Proof. Analogously as in the proof of Observation 8 we consider ${ }^{r} K_{a, b}$ as an edge-disjoint union of $K_{a, b}\left(G_{1}\right)$ and ${ }^{r-1} K_{a, b}\left(G_{2}\right)$. By our assumptions $t_{m}^{\prime} \geqslant 4$ is even and it implies that $\left\{t_{i_{1}}, \ldots, t_{i_{l}}, t_{m}^{\prime}\right\} \subset \operatorname{Lct}\left(K_{a, b}\right)$. From Theorem 1 , we may decompose G_{1} into closed trails $T_{i_{1}}, \ldots, T_{i_{l}}, T_{m}^{\prime}$ of lengths $t_{i_{1}}, \ldots, t_{i_{l}}, t_{m}^{\prime}$, respectively. Then we may also decompose G_{2} into closed
trails of lengths equal to $t_{m}^{\prime \prime}$ (if $t_{m}^{\prime \prime}>0$) and the remaining t_{i} (namely, all except $t_{i_{1}}, \ldots, t_{i_{l}}$ and t_{m}), respectively from Theorem 6 .

If $t_{m}^{\prime \prime}>0$, then we may carry out these decompositions of G_{1} and G_{2} in such a way that T_{m}^{\prime} and $T_{m}^{\prime \prime}$ have a common vertex. If we denote T_{m} to be $T_{m}^{\prime} \cdot T_{m}^{\prime \prime}\left(\right.$ if $\left.t_{m}^{\prime \prime}>0\right)$ or $T_{m}^{\prime}\left(\right.$ if $\left.t_{m}^{\prime \prime}=0\right)$, then $\left(T_{1}, T_{2}, \ldots, T_{p}\right)$ is a ${ }^{r} K_{a, b^{-}}$ realization of τ.

Proof of Theorem 7.

Necessity. Suppose that τ is an admissible sequence for ${ }^{r} K_{a, b}$. Notice that if we consider, in a closed trail T of ${ }^{r} K_{a, b}$, the set of edges with odd multiplicity, and forget the multiplicity, as the trail is Eulerian, we obtain closed trails in $K_{a, b}$. If r is odd, the set of these trails must cover the edge set of $K_{a, b}$. It follows that:

If $a=2$ and τ is such that $\sum_{t_{i} \equiv 0(\bmod 4)} t_{i}+\sum_{t_{i} \equiv 2(\bmod 4)}\left(t_{i}-2\right)<2 b$, then τ is not realizable in ${ }^{r} K_{2, b}$, because $t_{i} \in \operatorname{Lct}\left(K_{2, b}\right)$ if $t_{i} \equiv 0(\bmod 4)$.

If $a \geqslant 4$ and τ is such that $\sum_{t_{i}>2} t_{i}<a b$, then τ is not realizable in ${ }^{r} K_{a, b}$, because $2 \notin \operatorname{Lct}\left(K_{a, b}\right)$.
Sufficiency. If $r=1$, then $\sum_{i=1}^{p} t_{i}=a b$, this implies that Theorem 7 is true by Theorem 1. If $r \geqslant 3$, then the basic idea of the proof is to consider ${ }^{r} K_{a, b}$ as an edge-disjoint union of $K_{a, b}\left(G_{1}\right)$ and ${ }^{r-1} K_{a, b}\left(G_{2}\right)$, each of which has sizes $a b$ and $(r-1) a b$, respectively.

Case 1. $a=2$.
Let ${ }^{r} K_{2, b}$ be a complete bipartite multigraph with vertices sets $\{x, y\}$ and B.
Let M_{1}, M_{2} and M_{3} be the sets such that $M_{1}=\left\{i: t_{j_{i}} \equiv 0(\bmod 4)\right\}=$ $\{1, \ldots, m\}, M_{2}=\left\{i: t_{j_{i}} \equiv 2(\bmod 4), t_{j_{i}} \geqslant 6\right\}=\{m+1, \ldots, n\}$ and $M_{3}=\left\{i: t_{j_{i}}=2\right\}=\{n+1, \ldots, p\}$. Notice that if $\sum_{i=1}^{m} t_{j_{i}} \geqslant 2 b$, then τ is realizable in ${ }^{r} K_{2, b}$ from Observation 8.

Let $k \leqslant n$ be the smallest integer such that $\sum_{i=1}^{m} t_{j_{i}}+\sum_{i=m+1}^{k}\left(t_{j_{i}}-2\right) \geqslant$ $2 b$. Observe that $t_{j_{k}}=t_{j_{k}}^{\prime}+t_{j_{k}}^{\prime \prime}$ such that $\sum_{i=1}^{m} t_{j_{i}}+\sum_{i=m+1}^{k-1}\left(t_{j_{i}}-2\right)+t_{j_{k}}^{\prime}=2 b$, and $t_{j_{k}}^{\prime} \equiv 0(\bmod 4), t_{j_{k}}^{\prime \prime} \geqslant 2$.

Let $t_{j_{i}}^{\prime}=t_{j_{i}}-2, t_{j_{i}}^{\prime \prime}=2$ for $i=m+1, \ldots, k-1$.
Observe that sequence $\tau^{\prime}=\left(t_{j_{1}}, \ldots, t_{j_{m}}, t_{j_{m+1}}^{\prime}, \ldots, t_{j_{k-1}}^{\prime}, t_{j_{k}}^{\prime}\right)$ from Theorem 1 is realizable in $K_{2, b}$ and the sequence $T_{j_{1}}, \ldots, T_{j_{m}}, T_{j_{m+1}}^{\prime}, \ldots, T_{j_{k-1}}^{\prime}, T_{j_{k}}^{\prime}$ is the $K_{2, b}$-realization of τ^{\prime}.

There is a realization $T_{j_{m+1}}^{\prime \prime}, \ldots, T_{j_{k-1}}^{\prime \prime}, T_{j_{k}}^{\prime \prime}, T_{j_{k+1}}, \ldots, T_{j_{p}}$ of sequence $\tau^{\prime \prime}=\left(t_{j_{m+1}}^{\prime \prime}, \ldots, t_{j_{k-1}}^{\prime \prime}, t_{j_{k}}^{\prime \prime}, t_{j_{k+1}}, t_{j_{p}}\right)$ in ${ }^{r-1} K_{2, b}$ from Theorem 6.

Observe that vertex x or y is in $V\left(T_{j_{i}}^{\prime \prime}\right)$ for $i \in\{m+1, \ldots, k\}$ and the set of vertices $\{x, y\} \subset V\left(T_{j_{i}}^{\prime}\right)$ for $i \in\{m+1, \ldots, k\}$. In such a way $T_{j_{i}}^{\prime}$ and $T_{j_{i}}^{\prime \prime}$ (for $i \in\{m+1, \ldots, k\}$) have always a common vertex x or y. In such a case, if we denote $T_{j_{i}}$ to be $T_{j_{i}}^{\prime} \cdot T_{j_{i}}^{\prime \prime}($ for $i \in\{m+1, \ldots, k\})$, then $T_{j_{1}}, \ldots, T_{j_{m}}, T_{j_{m+1}}, \ldots, T_{j_{p}}$ is a ${ }^{r} K_{2, b}$-realization of τ.

Case 2. $a \geqslant 4$.
We may assume that τ is such that $t_{1} \geqslant \cdots \geqslant t_{p}$. Let k be the smallest integer such that $t_{k} \geqslant 4$ and $\sum_{i=1}^{k} t_{i} \geqslant a b$.

Notice that if $\sum_{i=1}^{k-1} t_{i} \neq a b-2$, then the existence of ${ }^{r} K_{a, b}$-realization of τ follows from Observation 9. Assume now that

$$
\sum_{i=1}^{k-1} t_{i}=a b-2
$$

Denote

$$
\begin{aligned}
t_{k-1}^{\prime} & =t_{k-1}+2 \\
t_{k}^{\prime} & =t_{k}-2
\end{aligned}
$$

Then, since $t_{k-1}^{\prime} \geqslant 4, t_{k}^{\prime} \geqslant 2$ we may find a G_{1}-realization of $\tau_{1}=\left(t_{1}, \ldots\right.$, $\left.t_{k-2}, t_{k-1}^{\prime}\right)$ from Theorem 1 and a G_{2}-realization of $\tau_{2}=\left(t_{k}^{\prime}, t_{k+1}, \ldots, t_{p}\right)$ from Theorem 6. Let $\left(T_{1}, T_{2}, \ldots, T_{k-2}, T_{k-1}^{\prime}\right)$ and $\left(T_{k}^{\prime}, T_{k+1}, \ldots, T_{p}\right)$ are G_{1} and G_{2}-realizations of τ_{1} and τ_{2}, respectively, such that $e\left(T_{k-1}^{\prime}\right)=t_{k-1}^{\prime}$ and $e\left(T_{k}^{\prime}\right)=t_{k}^{\prime}$.

Observe that $e\left(T_{k-1}^{\prime}\right) \geqslant 6$ and $\left|V\left(T_{k-1}^{\prime}\right)\right| \geqslant 6$, it is easy to verify that we may write T_{k-1}^{\prime} as $\left(c_{1}, \ldots, c_{t_{k-1}^{\prime}+1}\right)$ with $c_{1} \in A$ and $c_{4} \in B$. We may also write T_{k}^{\prime} as $\left(d_{1}, \ldots, d_{t_{k}^{\prime}+1}\right)$ with $d_{1} \in A$ and $d_{2} \in B$. Notice that without losing generality, we may have chosen the realization of τ_{2} in such a way that $c_{1}=d_{1}$ and $c_{4}=d_{2}$. In such a case, if we denote $T_{k-1}=$ $\left(d_{1}, d_{2}, c_{5}, \ldots, c_{t_{k-1}^{\prime}+1}\right)$ and $T_{k}=\left(d_{1}, c_{2}, c_{3}, d_{2}, d_{3}, \ldots, d_{t_{k}^{\prime}+1}\right)$, then T_{k-1} and T_{k} are closed trails of lengths t_{k-1} and t_{k} respectively, and the sequence $\left(T_{1}, \ldots, T_{p}\right)$ is a ${ }^{r} K_{a, b}$-realization of τ.

Acknowledgements

My sincere thanks are due to M. Woźniak and K. Suchan for help in the preparation of this paper.

References

[1] P.N. Balister, Packing Circuits into K_{n}, Combin. Probab. Comput. 10 (2001) 463-499.
[2] P.N. Balister, Packing digraphs with directed closed trails, Combin. Probab. Comput. 12 (2003) 1-15.
[3] M. Horňák and M. Woźniak, Decomposition of complete bipartite even graphs into closed trails, Czechoslovak Math. J. 128 (2003) 127-134.

Received 13 December 2005
Revised 25 January 2007
Accepted 10 April 2007

