VARIATIONS ON A SUFFICIENT CONDITION FOR HAMILTONIAN GRAPHS

Ahmed Ainouche and Serge Lapiquonne
UAG - CEREGMIA - GRIMAAG
B.P. 7209, 97275 Schoelcher Cedex, Martinique FRANCE
e-mail: a.ainouche@martinique.univ-ag.fr
e-mail: s.lapiquonne@martinique.univ-ag.fr

Abstract

Given a 2-connected graph G on n vertices, let G^{*} be its partially square graph, obtained by adding edges $u v$ whenever the vertices u, v have a common neighbor x satisfying the condition $N_{G}(x) \subseteq N_{G}[u] \cup$ $N_{G}[v]$, where $N_{G}[x]=N_{G}(x) \cup\{x\}$. In particular, this condition is satisfied if x does not center a claw (an induced $K_{1,3}$). Clearly $G \subseteq G^{*} \subseteq G^{2}$, where G^{2} is the square of G. For any independent triple $X=\{x, y, z\}$ we define $$
\bar{\sigma}_{3}(X)=d(x)+d(y)+d(z)-|N(x) \cap N(y) \cap N(z)| .
$$

Flandrin et al. proved that a 2-connected graph G is hamiltonian if $\bar{\sigma}_{3}(X) \geq n$ holds for any independent triple X in G. Replacing X in G by X in the larger graph G^{*}, Wu et al. improved recently this result. In this paper we characterize the nonhamiltonian 2-connected graphs G satisfying the condition $\bar{\sigma}_{3}(X) \geq n-1$ where X is independent in G^{*}. Using the concept of dual closure we (i) give a short proof of the above results and (ii) we show that each graph G satisfying this condition is hamiltonian if and only if its dual closure does not belong to two well defined exceptional classes of graphs. This implies that it takes a polynomial time to check the nonhamiltonicity or the hamiltonicity of such G. Keywords: cycles, partially square graph, degree sum, independent sets, neighborhood unions and intersections, dual closure.

2000 Mathematics Subject Classification: 05C38, 05C45.

1. Introduction

We use the book of Bondy and Murty [7] for terminology and notation not defined here and consider simple graphs only $G=(V, E)$. If A, B are disjoint sets of V, we denote by $E(A, B)$ the set of edges with an end in A and the other in B. Also $G[A]$ is the subgraph induced by A. A vertex x is dominating if $d(x)=|V|-1$ and we note $\Omega:=\{d \mid d$ is dominating $\}$.

For any vertex u of $G, N(u)$ denotes its neighborhood set and $N[u]=$ $\{u\} \cup N(u)$. If $X \subset V$, we denote by $N_{X}(u)$ the set of vertices of X adjacent to u. For $1 \leq k \leq \alpha$, we put $I_{k}(G)=\{Y \mid Y$ is a k-independent set in $G\}$, where α stands for the independence number of G. With each pair (a, b) of vertices such that $d(a, b)=2$ (vertices at distance 2), we associate the set $J(a, b):=\left\{x \in N(a) \cap N(b) \mid N_{G}[x] \subseteq N_{G}[u] \cup N_{G}[v]\right\}$.

The partially square graph G^{*} (see [4]) of a given graph $G=(V, E)$ is the graph $(V, E \cup\{u v \mid d(u, v)=2, J(u, v) \neq \emptyset\})$. Clearly $G \subseteq G^{*} \subseteq G^{2}$, where G^{2} is the square of G and every partially square graph is claw-free. For $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ on disjoint vertex sets we let $G_{1} \cup G_{2}$ denote the union of G_{1} and G_{2} with $G_{1} \cup G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$ and we let $G_{1} \vee G_{2}$ denote the join of G_{1} and G_{2} with $G_{1} \vee G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup\left(V_{1} \times V_{2}\right)\right)$. Moreover \bar{K}_{p} denotes the empty graph on p vertices.

For each set $S \in I_{k}(G), k \geq 1$ we adopt a partition of V by defining $S_{i}:=\left\{u \in V| | N_{S}(u) \mid=i\right\}$ and $s_{i}:=\left|S_{i}\right|, i=0, \ldots, k$. We also put $\sigma_{S}:=$ $\sum_{x \in S} d(x)$. Obviously, we have $|N(S)|=\sum_{i=1}^{k} s_{i}$ and $\sigma_{S}=\sum_{i=1}^{k} i s_{i}$. We point out that any 2 -connected graph G for which $\alpha\left(G^{*}\right) \leq 2$ is hamiltonian (see [4]). For any set $S:=\{x, y, z\} \in I_{3}\left(G^{*}\right)$ in a graph G, such that $\alpha\left(G^{*}\right) \geq 3$ we define

$$
\bar{\sigma}_{3}(S)=d_{G}(x)+d_{G}(y)+d_{G}(z)-\left|N_{G}(x) \cap N_{G}(y) \cap N_{G}(z)\right| .
$$

Alternatively we may write $\bar{\sigma}_{3}(S)=s_{1}+2 s_{2}+2 s_{3}$ if S is fixed. As in [1], for each pair (a, b) of nonadjacent vertices we associate:

$$
\begin{aligned}
& T_{a b}(G):=V \backslash\left(N_{G}[a] \cup N_{G}[b]\right), \bar{\alpha}_{a b}(G):=2+\left|T_{a b}\right|=|V \backslash N(a) \cup N(b)|, \\
& \delta_{a b}(G)=\min \left\{d(x) \mid x \in T_{a b}\right\} \text { if } T_{a b} \neq \varnothing \text { and } \delta_{a b}(G)=\delta(G) \text { otherwise. }
\end{aligned}
$$

If there is no confusion, we may omit G and/or the subscript $a b$. In [8], Bondy and Chvátal introduced the concept of the k-closure for graph. Ainouche and Christofides [1] proposed the 0-dual closure $c_{0}^{*}(G)$ as an extension
of the n-closure. To define the 0 -dual closure, we use the following weaker condition than that obtained in ([1]).

Theorem 1.1 ([1]). Let G be a 2-connected graph and let a, b be two nonadjacent vertices. If

$$
\begin{equation*}
|N(a) \cup N(b)|+\delta_{a b} \geq n\left(\text { or equivalently } \bar{\alpha}_{a b}(G) \leq \delta_{a b}\right), \tag{1}
\end{equation*}
$$

then G is hamiltonian if and only if $(G+a b)$ is hamiltonian.
The 0 -dual closure $c_{0}^{*}(G)$ is the graph obtained from G by successively joining nonadjacent vertices satisfying (1). Clearly $c_{0}^{*}(G)$ is polynomially obtained from G. As a consequence of Theorem 1.1, G is hamiltonian if and only if $c_{0}^{*}(G)$ is hamiltonian. Flandrin et al. [9] proved the following result:

Theorem 1.2. A 2-connected graph G of order n is hamiltonian if

$$
\begin{equation*}
\bar{\sigma}_{3}(S) \geq n \text { holds for all } S \in I_{3}(G) \tag{2}
\end{equation*}
$$

This result is strong enough to dominate a large spectra of sufficient conditions involving degrees and/or neighborhood of pairs or triple of vertices (see for instance [5]).

Recently Wu et al. [10], improved Theorem 1.2 by using a weaker condition.

Theorem 1.3. A 2-connected graph G of order n is hamiltonian if

$$
\begin{equation*}
\bar{\sigma}_{3}(S) \geq n \text { holds for all } S \in I_{3}\left(G^{*}\right) \tag{3}
\end{equation*}
$$

In this paper we go further by allowing exceptional classes of nonhamiltonian graphs. More precisely, we prove:

Theorem 1.4. Let G be a 2-connected graph of order n. If $\bar{\sigma}_{3}(S) \geq n-1$ holds for all $S \in I_{3}\left(G^{*}\right)$, then G is nonhamiltonian if and only if either (1) $c_{0}^{*}(G)=\left(K_{r} \cup K_{s} \cup K_{t}\right) \vee K_{2}$ where r, s, t are positive integers or (2) $c_{0}^{*}(G)=K_{\frac{n-1}{2}} \vee \bar{K}_{\frac{n+1}{2}}$.

Note that the two classes of graphs are not 1-tough since $\omega(G-\Omega)>|\Omega|$, where $\omega(H)$ stands for the number of components of the graph H. They are of course nonhamiltonian. Theorem 1.4 is sharp even for the class of 1-tough
graphs. For instance for the Petersen graph we have $\bar{\sigma}_{3}(S)=8=n-2$ for any independent triple $\{x, y, z\}$ such that $|N(x) \cap N(y) \cap N(z)|=1$. The graph $\left(K_{r} \cup K_{s} \cup K_{t} \cup T\right) \vee \bar{K}_{1}$, where $2 \leq r, s, t$ and T is a triangle having a vertex from each complete graph of ($\left.K_{r} \cup K_{s} \cup K_{t}\right)$ is 1-tough, nonhamiltonian and $\bar{\sigma}_{3}(S)=n-2$. In both cases, $S \in I_{3}\left(G^{*}\right)$. Moreover it is possible to answer in a polynomial time if a graph satisfying the condition of Theorem 1.4 is hamiltonian or not. Indeed (i) the closure is obtained in a polynomial time, (ii) the set Ω of dominating vertices is easily identified, in which case (iii) it suffices to check whether $\omega\left(c_{0}^{*}(G)-\Omega\right)>|\Omega|$ or not.

2. Preliminaries

Let C be a longest cycle for which an orientation is given. For $x \in V(C), x^{+}$ (resp. x^{-}) denotes its successor (resp. predecessor) on C. More generally, if $A \subseteq V$ then $A^{+}:=\left\{x \in C \mid x^{-} \in A\right\}$ and $A^{-}:=\left\{x \in C \mid x^{+} \in A\right\}$. Given the vertices a, b of C we let $C[a, b]$ denote the subgraph of C from a to b (and including both a and b) in the chosen direction. We shall write $C(a, b]$, $C[a, b)$ or $C(a, b)$ if a and b or both a and b are respectively excluded. The same vertices, in the reverse order are denoted $\overleftarrow{C}(a, b], \overleftarrow{C}[a, b)$ or $\overleftarrow{C}(a, b)$ respectively. Let H be a component of $G-C$ and let d_{1}, \ldots, d_{m} be the vertices of the set $D=N_{C}(H)$, occurring on C in a consecutive order. For $i \geq 1$, we set $P_{i}:=C\left(d_{i}, d_{i+1}\right)$, where the subscripts are taken modulo m and $n_{i}=\left|P_{i}\right|$. We define a relation \sim on C by the condition $u \sim v$ if there exists a path with endpoints u, v in C and no internal vertex in C. Such a path is called a connecting path between u and v. We say that two connecting paths are crossing at $x, y \in C$ if there exist two consecutive vertices a, b of C such that $a \sim x, b \sim y$ and either $a, b \in C(x, y), a=b^{+}$or $a, b \in C(y, x), a=b^{-}$. We note that the two connecting paths from a to x and from b to y must be internally disjoint since C is a longest cycle. In this paper, most of the time the connecting paths are edges.

For all $i \in\{1,2, \ldots, m\}$, a vertex u of P_{i} is insertible if there exist $w, w^{+} \in C-P_{i}$ such that $u \sim w$ and $u \sim w^{+}$. The edge $w w^{+}$is referred as an insertion edge of u. A vertex $x \notin C$ is C-insertible if there exist $w, w^{+} \in C$ such that $w \sim w^{+}$and the path connecting w and w^{+}passes through x. Paths and cycles in $G=(V, E)$ are considered as subgraphs, vertex sets or edge sets.

Throughout, H is a component of $G-C, x_{0}$ is any vertex of H and for all $i \in\{1, \ldots, m\}, x_{i}$ is the first noninsertible vertex (if it exists) on P_{i}.

Clearly $m \geq 2$ if G is 2 -connected. For all $i \in\{1, \ldots, m\}$ for which x_{i} exists, we define $W_{i}=V\left(C\left(d_{i}, x_{i}\right]\right)$. Set $X:=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$ and $X_{0}:=\left\{x_{1}, \ldots, x_{m}\right\}$. Similarly we define the sets $Y:=\left\{x_{0}, y_{1}, \ldots, y_{m}\right\}$, $Y_{0}:=\left\{y_{1}, \ldots, y_{m}\right\}$, where y_{i} is the last noninsertible vertex (if it exists) on P_{i}.

The following key-lemma is mainly an adaptation of Lemmas proved in [3] and [4].

Lemma 2.1. Let C be a longest cycle of a connected nonhamiltonian graph. Let i, j be two distinct integers in $\{1, \ldots, m\}$ and let $u_{i} \in W_{i}, u_{j} \in W_{j}$. Then

1. x_{i} and y_{i} exist.
2. $u_{i} \nsim u_{j}$ and there are no crossing paths at u_{i}, u_{j}.
3. Any set $W=\left\{x_{0}\right\} \cup\left\{w_{i} \in W_{i} \mid 1 \leq i \leq m\right\}$ and in particular X is independent in G.
4. $N\left(u_{i}\right) \cap N\left(u_{j}\right) \subset V(C) \backslash \cup_{i=1}^{m} W_{i}$.
5. X, Y are independent sets in G^{*}.
6. For each i, we may assume that $N\left(x_{i}\right) \cap C\left[d_{i}, x_{i}\right)=\left\{x_{i}^{-}\right\}$.

Proof. The proof of statements 1 to 4 is given in [2], while the proof of 5 is given in [4]. To prove (6), let $u_{i} \in C\left[d_{i}, x_{i}\right)$ be the first vertex along C, adjacent to x_{i} and assume that $C\left(u_{i}, x_{i}\right)$ is not empty. The vertices of $C\left(u_{i}, x_{i}\right)$ are insertible by definition. For $i=1, \ldots, m$, let F_{i} be the set of insertion edges of vertices of $C\left(d_{i}, x_{i}\right)$. We proved in [2] that $F_{i} \cap F_{j}=\varnothing$ whenever $j \neq i$. Moreover $E\left(W_{i}, W_{j}\right)=\varnothing$ by (2). Therefore the vertices of $C\left(u_{i}, x_{i}\right)$ can be easily inserted into $C-P_{i}$.

The next general Lemma is an extension of Lemma 2.1. Set $S:=\left\{x_{i}, x_{j}, x_{k}\right\}$, where i, j, k are pairwise distinct integers in $\{0, \ldots, m\}$.

Lemma 2.2. $\left|S_{0} \cap C\right| \geq s_{2}+s_{3}$.
Proof. To prove the Lemma, it suffices to show that an injection $\theta: S_{2} \cup$ $S_{3}->S_{0} \cap C$ exists. By Lemma 2.1(4), $S_{2} \cup S_{3} \subset V(C) \backslash \cup_{i=1}^{m} W_{i}$ and by definition, the sets $S_{0}, S_{1}, S_{2}, S_{3}$ are disjoint. Choose $S:=\left\{x_{i}, x_{j}, x_{k}\right\}$ and let $a \in S_{2} \cup S_{3}$. As a first case, we suppose that $a \notin D$ and without loss of generality assume $a \in\left(N\left(x_{j}\right) \cap N\left(x_{k}\right) \cap C\left(x_{k}, d_{j}\right)\right) \backslash D$. If $a^{+} \in S_{0} \cap C$ then we are done with $\theta(a)=a^{+}$, otherwise we must have $a^{+} \in S_{1}$. Clearly $a^{+} \notin N\left(x_{j}\right)$ since x_{j} is noinsertible and $a^{+} \notin N\left(x_{k}\right)$ by Lemma 2.1(2).

Thus $a^{+} \in N\left(x_{i}\right)$. If $i=0$ then $a^{+}=d_{h} \in D \cap C\left(d_{k}, d_{j}\right]$. But then $d_{h}^{+}=$ $a^{++} \in S_{0} \cap C$ and we set $\theta(a)=a^{++}$. If $i>0$, then by Lemma 2.1(2), $x_{i} \in$ $C\left(d_{(h+1) \bmod m}, d_{j}\right)$ in which case $a^{++} \in S_{0} \cap C$ since $a^{++} \notin N\left(x_{j}\right) \cup N\left(x_{k}\right)$ by Lemma 2.1(2) and x_{i} is noinsertible. We set again $\theta(a)=a^{++}$.

As a second case, we suppose that $a=d_{h}$. If $h=j$ then $x_{j} \in S_{0} \cap C$ and we are done. So, we assume $d_{h} \in C\left(d_{k}, d_{j}\right)$. If $x_{i}=x_{0}$ then clearly $a^{+}=d_{h}^{+} \in S_{0} \cap C$. If $i>0$ the arguments are the same as in the previous case. The proof is now complete.

Lemma 2.3. Let G be a nonhamiltonian graph satisfying the conditions of Theorem 1.4. Then

1. $S_{0} \cap(G-C)=\left\{x_{0}\right\},\left|S_{0} \cap C\right|=\left|S_{2} \cup S_{3}\right|$ and $\bar{\sigma}_{3}(S)=n-1$.
2. For each $v \in S_{0} \cap C$, either $v^{-} \in S_{2} \cup S_{3}$ or $v^{--} \in S_{2} \cup S_{3}$, in which case $v^{-} \in S_{1}$.
3. $X_{0}=D^{+}$and $Y_{0}=D^{-}$.

Proof. Among all possible components of $G-C$ we assume that H is chosen so that $\left|N_{C}(H)\right|=m$ is maximum.
(1) Set $\bar{\sigma}_{3}(S)=s_{1}+2 s_{2}+2 s_{3}=n-1+\delta$ with $\delta \geq 0$. By definition, $n=$ $s_{0}+s_{1}+s_{2}+s_{3}$. Thus $\bar{\sigma}_{3}(S)=s_{1}+2 s_{2}+2 s_{3}=n-1+\delta=s_{0}+s_{1}+s_{2}+s_{3}-1+\delta$. It follows that $s_{2}+s_{3}=s_{0}-1+\delta$. As $s_{0}=\left|S_{0} \cap C\right|+\left|S_{0} \cap(G-C)\right|$, $x_{0} \in S_{0} \cap(G-C)$ and $\left|S_{0} \cap C\right| \geq s_{2}+s_{3}$ by Lemma 2.2 we must have equality throughout. Thus (1) is proved, that is $S_{0} \cap(G-C)=\left\{x_{0}\right\}$, $\left|S_{0} \cap C\right|=\left|S_{2} \cup S_{3}\right|$ and $\bar{\sigma}_{3}(S)=n-1$.
(2) Follows from the proof of Lemma 2.2 and the fact that $\left|S_{0} \cap C\right|=$ $\left|S_{2} \cup S_{3}\right|$ by (1).
(3) Suppose first $m \geq 3$ and assume without loss of generality that $x_{1} \neq d_{1}^{+}$. If we set $S:=\left\{x_{0}, x_{2}, x_{3}\right\}$ then $W_{1} \subset S_{0} \cap C$. This contradicts (2) since $d_{1}^{++} \in S_{0} \cap C, d_{1} \in S_{2} \cup S_{3}$ but $d_{1}^{+} \notin S_{1}$. Suppose next $m=2$ and $x_{1} \neq d_{1}^{+}$. If $d_{1}^{+} \notin N\left(x_{1}\right)$ then $d_{1}^{+} \in S_{0} \cap C$ and we are done. Otherwise, by Lemma 2.1 (6), $x_{1}=d_{1}^{++}$and $x_{1} d_{1} \notin E$. Set $S:=\left\{x_{0}, x_{1}, x_{2}\right\}$. Since $x_{1} \in S_{0} \cap C$ and $d_{1}^{+} \in N\left(x_{1}\right)$ we have $d_{1} \in N\left(x_{0}\right) \cap N\left(x_{2}\right)$. Let $w w^{+}$be an insertion edge of d_{1}^{+}. It follows that $w^{+} \neq d_{1}^{-}$by Lemma 2.1 (2). Since x_{1} is not insertible then $N\left(x_{1}\right) \cap\left\{w, w^{+}, w^{++}\right\}=\varnothing$ (see [3]). Moreover $N\left(x_{2}\right) \cap\left\{w^{+}, w^{++}\right\}=\varnothing$ by Lemma 2.1(2). Thus $\left\{w^{+}, w^{++}\right\} \subset S_{0} \cap C$. This is a contradiction to (2). We have proved that $X_{0}=D^{+}$. By changing the orientation of C, we get by symmetry $Y_{0}=D^{-}$.

3. Proofs

3.1. A new proof of Theorems 1.2 and 1.3

Proof. This is a direct consequence of Lemma 2.3 (1). If G is nonhamiltonian then $\bar{\sigma}_{3}(S)=n-1,(S \subset X) \in I_{3}\left(G^{*}\right)$. By hypothesis, $\bar{\sigma}_{3}(S) \geq n$, a contradiction implying that G must be hamiltonian.

3.2. Proof of Theorem 1.4

By contradiction, we suppose that G satisfies the hypothesis of Theorem 1.4 but $c_{0}^{*}(G) \neq K_{n}$.

Proof. By Lemma 2.3, $X_{0}=D^{+}$and $Y_{0}=D^{-}$and we assume that H is chosen so that $m:=\left|N_{C}(H)\right|$ is maximum. Two distinct cases are needed. Each one leads to an exceptional class of nonhamiltonian graphs, whose dual-closure is well characterized.

Case 1. $m=2$.
(1) $N\left[x_{i}\right]=P_{i} \cup N_{D}\left(x_{i}\right), i=1,2$.

Without loss of generality and by contradiction suppose that there exists $v \in P_{2} \backslash N\left(x_{2}\right)$. Choose v as close to d_{2} as possible. If $v \in N\left(x_{1}\right)$ then $v \neq y_{2}$ since x_{1} is noninsertible. Moreover, by setting $S:=\left\{x_{0}, x_{1}, x_{2}\right\}$, we see that $v^{+} \in S_{0} \cap C$ by Lemma 2.1(2) and the fact that x_{1} is noninsertible. In that case $v \in N\left(x_{1}\right) \cap N\left(x_{2}\right)$ since clearly $v^{-} \notin N\left(x_{0}\right) \cap N\left(x_{2}\right)$. This is a contradiction to our assumption. Therefore $v \in S_{0} \cap C$ and by the above arguments, $v^{-} \in N\left(x_{1}\right) \cap N\left(x_{2}\right)$. At this point we need two subcases. Suppose first $v^{+} \in N\left(x_{2}\right)$. Clearly $G-v$ contains a cycle $C^{\prime}=$ $C \cup H$. Since C is a longest cycle, we must have $H=\left\{x_{0}\right\}$ and $d\left(x_{0}\right)=2$. Moreover we may assume $d(v)=2$ for otherwise, we choose C^{\prime} instead of C. In particular $N_{G-C}(v)=\varnothing$. As it is easy to check that $\left\{x_{0}, x_{1}, v\right\}$ is independent in G^{*}, we have $d\left(x_{1}\right)+4 \geq n-1+\left|N(v) \cap N\left(x_{0}\right) \cap N\left(x_{1}\right)\right|$. If $v=y_{2}$ then $\left|N(v) \cap N\left(x_{0}\right) \cap N\left(x_{1}\right)\right|=1$ and hence $d\left(x_{1}\right) \geq n-4$, that is $N\left(x_{1}\right)=V \backslash\left\{x_{0}, x_{1}, x_{2}, v\right\}$. If $v \neq y_{2}$ then $d\left(x_{1}\right) \geq n-5$ and more precisely $N\left(x_{1}\right)=V \backslash\left\{x_{0}, x_{1}, x_{2}, y_{2}, v\right\}$. So, in either case, $x_{1} x_{2}^{+} \in E$, implying the existence of a cycle $C^{\prime \prime}=C \cup H$ in $G-x_{2}$. As previously for the cycle C^{\prime}, we obtain $d\left(x_{2}\right)=2$. This is a contradiction since $N\left(x_{2}\right) \supseteq\left\{d_{2}, x_{2}^{+}, v^{+}\right\}$.

Next, suppose $v^{+} \notin N\left(x_{2}\right)$. If $v^{+} \in N\left(x_{1}\right) \backslash D$, we use the above arguments to get $v^{+} \in N\left(x_{1}\right) \cap N\left(x_{2}\right)$, a contradiction to the choice of v.

If $v^{+} \notin N\left(x_{1}\right) \cup N\left(x_{2}\right)$ then $v, v^{+} \in S_{0} \cap C$, a contradiction to Lemma 2.3 (1). So, it remains to consider the case where $v^{+}=d_{1} \notin N\left(x_{2}\right)$. Now $v x_{2}=y_{2} x_{2} \notin E$ by assumption and $y_{1} x_{2} \notin E$ as y_{1} is noninsertible. Therefore, setting $S:=\left\{x_{0}, y_{1}, y_{2}\right\}$ we obtain $x_{2} \in S_{0} \cap C$ and hence $x_{2}^{+} \in N\left(y_{1}\right) \cap N\left(y_{2}\right)$. It follows that $G-x_{2}$ contains the cycle

$$
H\left[d_{1}, d_{2}\right] \overleftarrow{C}\left[d_{2}, x_{1}\right] x_{1} v^{-} \overleftarrow{C}\left[v^{-}, x_{2}^{+}\right] x_{2}^{+} v d_{1}
$$

in $C \cup H$ and consequently $d\left(x_{2}\right)=2$. Similarly (recall that $x_{2}^{+} \in N\left(y_{1}\right) \cap$ $\left.N\left(y_{2}\right)\right) G-y_{2}$ contains a cycle in $C \cup H$ and hence $d\left(y_{2}\right)=d(v)=2$. This, in turn implies that $P_{2}=x_{2} x_{2}^{+} v$. Obviously $\left\{x_{0}, x_{2}, v\right\}$ is independent in G^{*}. Then $d\left(x_{0}\right)+d\left(x_{2}\right)+d(v)=6 \geq n-1+\left|N\left(x_{0}\right) \cap N\left(x_{2}\right) \cap N(v)\right|=n-1$. It follows that $n \leq 7$ and $P_{1}=x_{1}$. This is a contradiction since now $G-x_{1}$ contains a cycle $C \cup H$, implying $d\left(x_{1}\right)=2$. This is a contradiction since $N\left(x_{1}\right)=\left\{d_{1}, v, x_{1}^{+}\right\}$. The proof of (1) is now complete.

For $i=1,2$ we let u_{i} be any vertex of P_{i}.
(2) $E\left(P_{1}, P_{2}\right)=\varnothing$ and $\left\{x_{0}, u_{1}, u_{2}\right\}$ is independent in G^{*}.

By contradiction suppose $u_{1} u_{2} \in E$. Clearly $\left(u_{1}, u_{2}\right) \neq\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$. So, we may assume $u_{i} \in P_{i} \backslash\left\{x_{i}, y_{i}\right\}, i=1,2$. But then the cycle

$$
H\left[d_{1}, d_{2}\right] \overleftarrow{C}\left[d_{2}, u_{1}\right) u_{1}^{+} x_{1} C\left[x_{1}, u_{1}\right] u_{1} u_{2} \overleftarrow{C}\left[u_{2}, x_{2}\right] x_{2} u_{2}^{+} C\left(u_{2}, d_{1}\right]
$$

is hamiltonian. Now we show that the set $\left\{x_{0}, u_{1}, u_{2}\right\}$ is independent in G^{*}. Since $E\left(P_{1}, P_{2}\right)=\varnothing, N\left(u_{1}\right) \cap N\left(u_{2}\right) \subseteq D$. If there exists $v \in J\left(u_{1}, u_{2}\right)=\emptyset$, then $v \in D$ and a contradiction arises since there is a vertex of $H \cap N(D)$ which cannot be adjacent to neither u_{1} nor to u_{2}. Similarly $J\left(x_{0}, u_{1}\right)=\emptyset$ since $N\left(x_{0}\right) \cap N\left(u_{1}\right) \subseteq D$ and $y_{2}=d_{1}^{-} \notin N\left(x_{0}\right) \cup N\left(u_{1}\right)$. The same arguments apply to $J\left(x_{0}, u_{2}\right)$.
(3) $c_{0}^{*}(G)=\left(K_{r} \cup K_{s} \cup K_{s}\right)$ with r, s, t are positive integers.

First of all, we point out that we may have $G-C \neq H$. By Lemma 2.3 (1), $S_{0} \cap(G-C)=\left\{x_{0}\right\}$, implying that $(G-C \cup H)=N_{G-C}\left(x_{1}\right) \cup N_{G-C}\left(x_{2}\right)$. For simplicity, set $H_{i}:=N_{G-C}\left(x_{i}\right)$ for $i=1,2$. We observe that $H_{1} \cap H_{2}=\varnothing$ for otherwise $x_{1} \sim x_{2}$, a contradiction to Lemma 2.1 (2) and $H \cap H_{i}=\varnothing$ for $i=1,2$ by maximality of C.

Since G is nonhamiltonian by assumption, its 0 -dual closure $c_{0}^{*}(G)$ is not complete. Choose $S:=\left\{x_{0}, u_{1}, u_{2}\right\}$ and set $d\left(u_{i}\right)=n_{i}+\left|H_{i}\right|+\left|N_{D}\left(u_{i}\right)\right|-$ $1-\varepsilon_{i}$ where $\varepsilon_{i} \geq 0$ for $i=1,2, d\left(x_{0}\right)=|H|+\left|N_{D}\left(x_{0}\right)\right|-1-\varepsilon_{0}$ where
$\varepsilon_{0} \geq 0$. By (2), $S \in I_{3}\left(G^{*}\right)$ and hence $\sigma_{S}=d\left(x_{0}\right)+d\left(u_{1}\right)+d\left(u_{2}\right) \geq n-1+s_{3}$. Since $n=2+n_{1}+n_{2}+|H|+\left|H_{1}\right|+\left|H_{2}\right|$ and $\sum_{i=0}^{2}\left|N_{D}\left(u_{i}\right)\right| \leq 6$ we get $4+s_{3}+\sum_{i=0}^{2} \varepsilon_{i} \leq \sum_{i=0}^{2}\left|N_{D}\left(u_{i}\right)\right| \leq 6$. We remark that $\sum_{i=0}^{2}\left|N_{D}\left(u_{i}\right)\right|=$ $5 \Rightarrow s_{3}=1$ and $\sum_{i=0}^{2}\left|N_{D}\left(u_{i}\right)\right|=6 \Rightarrow s_{3}=2$. Therefore

$$
\begin{equation*}
\sum_{i=0}^{2} \varepsilon_{i}=0 \text { and } 4+s_{3} \leq \sum_{i=0}^{2}\left|N_{D}\left(u_{i}\right)\right| \leq 6 \tag{4}
\end{equation*}
$$

As an immediate consequence of (4) we have (i) $G[H]$ is complete, (ii) $N\left[u_{i}\right]=N_{D}\left(u_{i}\right) \cup P_{i} \cup H_{i}$ for $i=1,2$ since $\varepsilon_{0}=\varepsilon_{1}=\varepsilon_{2}=0$. In particular $N\left(x_{1}\right) \cap N\left(x_{1}^{+}\right) \supseteq H_{1}$ if $x_{1}^{+} \neq d_{2}$, in which case $H_{1}=\varnothing$ by maximality of C. If $x_{1}^{+}=d_{2}$ then clearly $C \cup H-x_{1}$ contains a cycle C^{\prime} for which $\left|N_{C^{\prime \prime}}\left(x_{1}\right)\right| \geq 3>m$, a contradiction to the choice of H. Similarly we have $H_{2}=\varnothing$, that is $G-C=H$.

It remains now to show that each vertex of D is dominating in $c_{0}^{*}(G)$, that is $D=\Omega$. Without loss of generality, suppose $d_{1} u_{2} \notin E\left(c_{0}^{*}(G)\right)$ and $\left|N\left(d_{1}\right) \cap S\right|<3$ is minimum. If $\left|N\left(d_{1}\right) \cap S\right|=0$ then $\sum_{i=0}^{2}\left|N_{D}\left(u_{i}\right)\right| \leq$ 3, a contradiction to (4). If $\left|N\left(d_{1}\right) \cap S\right|=1$ then $\left|N\left(d_{2}\right) \cap S\right| \geq 3$ and $s_{3} \geq 1$, leading to again a contradiction. So we may assume $\mid N\left(d_{1}\right) \cap$ $S \mid=2$ and hence $N\left(d_{1}\right) \supset H \cup P_{1}$ since x_{0}, u_{1} are arbitrarily chosen. But then $\bar{\alpha}_{d_{1} u_{2}} \leq\left|\left\{d_{1}, d_{2}, u_{2}\right\}\right|=3$ (recall that $N\left[u_{2}\right] \supseteq P_{2}$). Because $d\left(d_{2}\right) \geq$ $3 \geq \bar{\alpha}_{d_{1} u_{2}}$, we contradict the assumption $d_{1} u_{2} \notin E\left(c_{0}^{*}(G)\right)$ by Theorem 1.1. Therefore $N\left(d_{i}\right) \supseteq V \backslash D$ is true for $i=1,2$. It is also easy to see that $d_{2} d_{1} \in E\left(c_{0}^{*}(G)\right)$ since $\bar{\alpha}_{d_{1} d_{2}}\left(c_{0}^{*}(G)\right) \leq 2$. As claimed $d_{c_{0}^{*}(G)}\left(d_{i}\right)=n-1$, $i=1,2$. Since H, P_{1}, P_{2} are distinct complete components of $G-C$ we obviously have, as claimed, $c_{0}^{*}(G)=\left(K_{r} \cup K_{s} \cup K_{s}\right) \vee K_{2}$ where, $r=|H|$, $s=n_{1}, t=n_{2}$ and K_{2} is induced by D.

Case 2. $m>2$.
We have already proved in Case $1(3)$ that $(G-C)=H$ if $m>2$. We next prove
(1) $G-x_{i}\left(G-y_{i}\right.$ resp. $)$ is hamiltonian for all $i=0, \ldots, m$ and hence $d\left(x_{i}\right) \leq m\left(d\left(y_{i}\right) \leq m\right.$ resp. $)$.

By setting $S:=\left\{x_{1}, x_{2}, x_{3}\right\}$, we get $H \subset S_{0} \cap(G-C)$ and hence $G-C=\left\{x_{0}\right\}$ by Lemma 2.3. Thus (1) is true for $i=0$. Obviously (1) is true whenever $n_{i}=1$. Otherwise, suppose for instance $n_{1}>1$ and set $S:=\left\{x_{0}, x_{2}, x_{3}\right\}$. Clearly $x_{1}^{+} \notin S_{0} \cap C$ by Lemma 2.2 since $x_{1} \notin S_{1} \cup S_{2} \cup S_{3}$. Therefore
$x_{1}^{+} \in N\left(x_{2}\right) \cup N\left(x_{3}\right)$. Whether $x_{2} x_{1}^{+} \in E$ or $x_{3} x_{1}^{+} \in E, G-x_{1}$ is obviously hamiltonian and (1) is true. From now on and by the choice of C, we may assume $d\left(x_{i}\right) \leq m\left(d\left(y_{i}\right) \leq m\right.$ by symmetry. As a next step we prove.
(2) $\left|N_{X_{0}}\left(d_{i}\right)\right| \geq m-1$ and $\left|N_{Y_{0}}\left(d_{i}\right)\right| \geq m-1$ holds for any $d_{i} \in D$.

Otherwise choose x_{i}, x_{j} with $1<i<j \leq m$ such that $N\left(d_{1}\right) \cap\left\{x_{i}, x_{j}\right\}=\emptyset$. Set $S:=\left\{x_{1}, x_{i}, x_{j}\right\}$. Clearly $x_{1} \in S_{0} \cap C$ and hence, $d_{1}=x_{1}^{-} \in S_{1}$ and $d_{1}^{-}=y_{m} \in N\left(x_{i}\right) \cap N\left(x_{j}\right)$. Suppose first $m \geq 4$, set $S:=\left\{x_{h}, x_{i}, x_{j}\right\} \subset X_{0}$ and assume $i<j$. Choose, if possible, i minimum. If $h>i$ then $x_{h} d_{1} \notin E$ by Lemma 2.1 (2). By the choice of i, we must have $j=m, i=m-1$ and $1<h<i$. Moreover $x_{h} d_{1} \in E$ for otherwise x_{1}, d_{1} are consecutive elements of $S_{0} \cap C$. Consider now $S:=\left\{x_{0}, x_{1}, x_{h}\right\}$. Clearly $y_{m} \in S_{0} \cap C$ since x_{1}, x_{h} are noninsertible. But then $y_{m}^{-} \in N\left(x_{1}\right) \cup N\left(x_{h}\right)$, a contradiction to Lemma 2.1 (2). It remains to consider the case $m=3$, in which case $d_{1}^{-}=y_{3} \in N\left(x_{1}\right) \cap N\left(x_{2}\right)$. This implies in turn that $n_{2} \geq 2$ and $n_{3} \geq 2$. Since $d\left(y_{3}\right) \leq m=3$, we get $N\left(y_{3}\right)=\left\{d_{1}, x_{2}, x_{3}, y_{3}^{-}\right\}$, implying $x_{3}=y_{3}^{-}$ and hence $n_{3}=2$. In G^{*}, we clearly have $x_{0} x_{1} \notin E\left(G^{*}\right)$ and $x_{0} y_{3} \notin E\left(G^{*}\right)$. It is now easy to check that $x_{1} y_{3} \notin E\left(G^{*}\right)$ since $N\left(x_{1}\right) \cap N\left(y_{3}\right) \subset\left\{d_{1}\right\}$ and $x_{0} \in N\left(d_{1}\right) \backslash\left\{x_{1}, y_{3}\right\}$. Therefore $\left\{x_{0}, x_{1}, y_{3}\right\} \in I_{3}\left(G^{*}\right)$. Thus $d\left(y_{3}\right)+d\left(x_{0}\right)+$ $d\left(x_{1}\right) \geq n-1+s_{3}=n$. As $n_{2} \geq 2, n_{3} \geq 2$ we must have $n_{1}=1, n_{2}=2$, $n_{3}=2$ and $d\left(x_{1}\right)=d\left(x_{2}\right)=d\left(x_{3}\right)=3$. We note that $x_{3} d_{1} \notin E$ for otherwise we have edges crossing at x_{2} and $x_{3}, x_{3} d_{2} \notin E$ for otherwise replacing $d_{2} x_{2}$ by $d_{2} x_{3} y_{3} x_{2}$ and $d_{3} x_{3} y_{3} d_{1}$ by $d_{3} x_{0} d_{1}$ in C we get a hamiltonian cycle. Moreover $x_{3} y_{2} \notin E$ since x_{3} is noinsertible and $x_{3} x_{2} \notin E$. Thus $N\left(x_{3}\right)=\left\{d_{2}, y_{3}\right\}$, a contradiction to the fact that $d\left(x_{3}\right)=3$. The proof of (2) is now complete.
(3) $X=Y$.

By contradiction, suppose $X \neq Y$. As a first step, we show that (3) is true if there exists $x_{i} \in X_{0}$ such that $N_{D}\left(x_{i}\right)=D$. Without loss of generality, assume $N_{D}\left(x_{1}\right)=D$. Since $d\left(x_{1}\right) \leq m$, we deduce that $N\left(x_{1}\right)=D$ and hence $x_{1}=y_{1}$, that is $n_{1}=1$. Suppose next $n_{i}>1$ for some $i, 2 \leq i<m$ and set $S:=\left\{x_{0}, x_{1}, x_{i+1}\right\}$. Clearly $y_{i} \in S_{0} \cap C$ and hence $y_{i}^{-} \in N(S)$. Obviously $y_{i}^{-} \notin N\left(x_{0}\right) \cup N\left(x_{1}\right)$ and consequently $y_{i}^{-} \in N\left(x_{i+1}\right), y_{i}^{--} \in N\left(x_{0}\right) \cap N\left(x_{1}\right)$. This means that $y_{i}^{--}=d_{i}$, a contradiction since then $y_{i}^{-}=x_{i}$. Therefore $n_{i}=1$ for any $i, 1 \leq i<m$. To prove that $n_{m}=1$ it suffices to consider $S:=\left\{x_{0}, x_{1}=y_{1}, y_{m-1}\right\}$ and to use the same arguments.

For the remainder we assume that $\left|N_{D}\left(x_{i}\right)\right|<m$ is true for all $x_{i} \in X_{0}$. Consider the graph $G\left[D \cup X_{0}\right]$. By (2) we have $\left|E\left(D, X_{0}\right)\right| \geq m(m-1)$. On the other hand we have $\left|E\left(X_{0}, D\right)\right| \leq m(m-1)$ since $\left|N_{D}\left(x_{i}\right)\right|<m$ for all
$x_{i} \in X_{0}$. Therefore the equality holds and $\left|N_{D}\left(x_{i}\right)\right|=m-1$ for all $x_{i} \in X_{0}$ and $\left|N_{X_{0}}\left(d_{i}\right)\right|=m-1$ for all $d_{i} \in D$. By symmetry $\left|N_{D}\left(y_{i}\right)\right|=m-1$ for all $y_{i} \in Y_{0}$ and $\left|N_{Y_{0}}\left(d_{i}\right)\right|=m-1$ for all $d_{i} \in D$. Suppose now that $d_{1} x_{i} \notin E$ in $c_{0}^{*}(G)$ for some $i>1$. By (3), $N_{X}\left(d_{1}\right)=X \backslash\left\{x_{i}\right\}$ and $N_{Y}\left(d_{1}\right)=X \backslash\left\{y_{j}\right\}$ for some $j>0$. Therefore $T_{d_{1} x_{i}} \subseteq\left\{y_{j}\right\}$ and $\bar{\alpha}_{d_{1} x_{i}} \leq 3$. As $d\left(y_{j}\right) \geq 3$ we have $d_{1} x_{i} \in E\left(c_{0}^{*}(G)\right)$ by Theorem 1.1. With this contradiction, (3) is proved.
(4) $c_{0}^{*}(G)=K_{\frac{n-1}{2}} \vee \bar{K}_{\frac{n+1}{2}}$.

Consider again the dual closure $c_{0}^{*}(G)$ and suppose $x_{1} d_{h} \notin E$ for some $h>0$. By (3) and the fact that $\left|N_{D}\left(x_{h}\right)\right|=m-1, N\left(x_{1}\right) \cup N\left(d_{h}\right) \cup\left\{x_{1}, d_{h}\right\}=V$, implying $x_{1} d_{h} \in E\left(c_{0}^{*}(G)\right)$. Therefore $N_{D}\left(x_{i}\right)=D$ holds for any $x_{i} \in X_{0}$. It remains to show that D is a clique in $c_{0}^{*}(G)$. Indeed, if $d_{1} d_{j} \notin E$ then $\bar{\alpha}_{d_{1} d j} \leq|D|=m$ and $\delta_{d_{1} d j} \geq m$ since $T_{d_{1} d j} \subset D$ and $d\left(d_{i}\right) \geq m$ for any $d_{i} \in D$. By Theorem 1.1, $d_{1} d_{j} \in E\left(c_{0}^{*}(G)\right)$. It remains to note that $|D|=$ $m=\frac{n-1}{2}$ by (3) and hence $c_{0}^{*}(G)=K_{\frac{n-1}{2}} \vee \bar{K}_{\frac{n+1}{2}}$.

4. Concluding Remarks

For any independent triple $S=\{a, b, c\}$, we set $\lambda_{\min }(S):=\min \left\{\lambda_{a b}, \lambda_{b c}, \lambda_{c a}\right\}$, where $\lambda_{x y}, x y \notin E$ stands for the number of vertices adjacent to both x and y. In [6], we obtained the following result, related to Theorem 1.4.

Theorem 4.1. Let G be a 2-connected graph. If

$$
\begin{equation*}
S \in I_{3}(G) \Rightarrow \sigma_{S} \geq n-1+\lambda_{\min }(S) \tag{5}
\end{equation*}
$$

then $c_{0}^{*}(G) \in\left\{C_{7}, K_{n},\left(K_{r} \cup K_{s} \cup K_{t}\right) \vee K_{2}, K_{\left(\frac{n-1}{2}\right)} \vee \bar{K}_{\left(\frac{n+1}{2}\right)}\right\}$.
The graph C_{7} is the cycle on 7 vertices. In fact this result is still valid if we change the condition $S \in I_{3}(G)$ by $S \in I_{3}\left(G^{*}\right)$. From this result one can derive nearly twenty corollaries which are improvements of known sufficient conditions (see [6]).

Since $\lambda_{\min }(S) \geq s_{3}$, a natural open question is the following:
Problem 4.2. A 2-connected graph G satisfying the condition $S \in I_{3}\left(G^{*}\right) \Rightarrow$ $\bar{\sigma}_{S} \geq n-1$ is hamiltonian if and only if $c_{0}^{*}(G) \in\left\{C_{7}, K_{n}\right\}$.

Acknowledgement

The authors are very indebted to the referees for their helpful remarks.

References

[1] A. Ainouche and N. Christofides, Semi-independence number of a graph and the existence of hamiltonian circuits, Discrete Applied Math. 17 (1987) 213-221.
[2] A. Ainouche, An improvement of Fraisse's sufficient condition for hamiltonian graphs, J. Graph Theory 16 (1992) 529-543.
[3] A. Ainouche, O. Favaron and H. Li, Global insertion and hamiltonicity in DCT-graphs, Discrete Math. 184 (1998) 1-13.
[4] A. Ainouche and M. Kouider, Hamiltonism and Partially Square Graphs, Graphs and Combinatorics 15 (1999) 257-265.
[5] A. Ainouche and I. Schiermeyer, 0-dual closures for several classes of graphs, Graphs and Combinatorics 19 (2003) 297-307.
[6] A. Ainouche, Extension of several sufficient conditions for hamiltonian graphs, Discuss. Math. Graph Theory 26 (2006) 23-39.
[7] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London, 1976.)
[8] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
[9] E. Flandrin, H.A. Jung and H. Li, Hamiltonism, degrees sums and neighborhood intersections, Discrete Math. 90 (1991) 41-52.
[10] Z. Wu, X. Zhang and X. Zhou, Hamiltonicity, neighborhood intersections and the partially square graphs, Discrete Math. 242 (2002) 245-254.

Received 23 September 2005
Revised 12 March 2007
Accepted 12 March 2007

