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Abstract

Given a 2-connected graph G on n vertices, let G∗ be its partially
square graph, obtained by adding edges uv whenever the vertices u, v
have a common neighbor x satisfying the condition NG(x) ⊆ NG[u] ∪
NG[v], where NG[x] = NG(x) ∪ {x}. In particular, this condition
is satisfied if x does not center a claw (an induced K1,3). Clearly
G ⊆ G∗ ⊆ G2, where G2 is the square of G. For any independent
triple X = {x, y, z} we define

σ3(X) = d(x) + d(y) + d(z)− |N(x) ∩N(y) ∩N(z)| .

Flandrin et al. proved that a 2-connected graph G is hamiltonian if
σ3(X) ≥ n holds for any independent triple X in G. Replacing X in G
by X in the larger graph G∗, Wu et al. improved recently this result. In
this paper we characterize the nonhamiltonian 2-connected graphs G
satisfying the condition σ3(X) ≥ n− 1 where X is independent in G∗.
Using the concept of dual closure we (i) give a short proof of the above
results and (ii) we show that each graph G satisfying this condition
is hamiltonian if and only if its dual closure does not belong to two
well defined exceptional classes of graphs. This implies that it takes a
polynomial time to check the nonhamiltonicity or the hamiltonicity of
such G.
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1. Introduction

We use the book of Bondy and Murty [7] for terminology and notation
not defined here and consider simple graphs only G = (V,E). If A,B are
disjoint sets of V , we denote by E(A,B) the set of edges with an end in A
and the other in B. Also G[A] is the subgraph induced by A. A vertex x is
dominating if d(x) = |V | − 1 and we note Ω := {d|d is dominating}.

For any vertex u of G, N(u) denotes its neighborhood set and N [u] =
{u}∪N(u). If X ⊂ V , we denote by NX(u) the set of vertices of X adjacent
to u. For 1 ≤ k ≤ α, we put Ik(G) = {Y | Y is a k-independent set in G},
where α stands for the independence number of G. With each pair (a, b) of
vertices such that d(a, b) = 2 (vertices at distance 2), we associate the set
J(a, b) := {x ∈ N(a) ∩N(b) | NG[x] ⊆ NG[u] ∪NG[v]}.

The partially square graph G∗ (see [4]) of a given graph G = (V,E) is
the graph (V, E ∪ {uv | d(u, v) = 2, J(u, v) 6= ∅}). Clearly G ⊆ G∗ ⊆ G2,
where G2 is the square of G and every partially square graph is claw-free. For
G1 = (V1, E1) and G2 = (V2, E2) on disjoint vertex sets we let G1∪G2 denote
the union of G1 and G2 with G1∪G2 = (V1∪V2, E1∪E2) and we let G1∨G2

denote the join of G1 and G2 with G1 ∨G2 = (V1 ∪ V2, E1 ∪E2 ∪ (V1× V2)).
Moreover Kp denotes the empty graph on p vertices.

For each set S ∈ Ik(G), k ≥ 1 we adopt a partition of V by defining
Si := {u ∈ V | |NS(u)| = i} and si := |Si|, i = 0, ..., k. We also put σS :=∑

x∈S d(x). Obviously, we have |N(S)| =
∑k

i=1 si and σS =
∑k

i=1 isi. We
point out that any 2-connected graph G for which α(G∗) ≤ 2 is hamiltonian
(see [4]). For any set S := {x, y, z} ∈ I3(G∗) in a graph G, such that
α(G∗) ≥ 3 we define

σ3(S) = dG(x) + dG(y) + dG(z)− |NG(x) ∩NG(y) ∩NG(z)| .

Alternatively we may write σ3(S) = s1 + 2s2 + 2s3 if S is fixed. As in [1],
for each pair (a, b) of nonadjacent vertices we associate:

Tab(G) := V \(NG[a] ∪NG[b]), αab(G) := 2 + |Tab| = |V \N(a) ∪N(b)| ,
δab(G) = min{d(x)|x ∈ Tab} if Tab 6= ∅ and δab(G) = δ(G) otherwise.

If there is no confusion, we may omit G and/or the subscript ab. In [8],
Bondy and Chvátal introduced the concept of the k-closure for graph. Ain-
ouche and Christofides [1] proposed the 0-dual closure c∗0(G) as an extension
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of the n-closure. To define the 0-dual closure, we use the following weaker
condition than that obtained in ([1]).

Theorem 1.1 ([1]). Let G be a 2-connected graph and let a, b be two non-
adjacent vertices. If

(1) |N(a) ∪N(b)|+ δab ≥ n (or equivalently αab(G) ≤ δab),

then G is hamiltonian if and only if (G + ab) is hamiltonian.

The 0-dual closure c∗0(G) is the graph obtained from G by successively joining
nonadjacent vertices satisfying (1). Clearly c∗0(G) is polynomially obtained
from G. As a consequence of Theorem 1.1, G is hamiltonian if and only if
c∗0(G) is hamiltonian. Flandrin et al. [9] proved the following result:

Theorem 1.2. A 2-connected graph G of order n is hamiltonian if

(2) σ3(S) ≥ n holds for all S ∈ I3(G).

This result is strong enough to dominate a large spectra of sufficient con-
ditions involving degrees and/or neighborhood of pairs or triple of vertices
(see for instance [5]).

Recently Wu et al. [10], improved Theorem 1.2 by using a weaker con-
dition.

Theorem 1.3. A 2-connected graph G of order n is hamiltonian if

(3) σ3(S) ≥ n holds for all S ∈ I3(G∗).

In this paper we go further by allowing exceptional classes of nonhamiltonian
graphs. More precisely, we prove:

Theorem 1.4. Let G be a 2-connected graph of order n. If σ3(S) ≥ n − 1
holds for all S ∈ I3(G∗), then G is nonhamiltonian if and only if either
(1) c∗0(G) = (Kr ∪ Ks ∪ Kt) ∨ K2 where r, s, t are positive integers or (2)
c∗0(G) = Kn−1

2
∨K n+1

2
.

Note that the two classes of graphs are not 1-tough since ω(G − Ω) > |Ω|,
where ω(H) stands for the number of components of the graph H. They are
of course nonhamiltonian. Theorem 1.4 is sharp even for the class of 1-tough
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graphs. For instance for the Petersen graph we have σ3(S) = 8 = n− 2 for
any independent triple {x, y, z} such that |N(x) ∩ N(y) ∩ N(z)| = 1. The
graph (Kr ∪Ks∪Kt∪T )∨K1, where 2 ≤ r, s, t and T is a triangle having a
vertex from each complete graph of (Kr∪Ks∪Kt) is 1-tough, nonhamiltonian
and σ3(S) = n − 2. In both cases, S ∈ I3(G∗). Moreover it is possible to
answer in a polynomial time if a graph satisfying the condition of Theorem
1.4 is hamiltonian or not. Indeed (i) the closure is obtained in a polynomial
time, (ii) the set Ω of dominating vertices is easily identified, in which case
(iii) it suffices to check whether ω(c∗0(G)− Ω) > |Ω| or not.

2. Preliminaries

Let C be a longest cycle for which an orientation is given. For x ∈ V (C), x+

(resp. x−) denotes its successor (resp. predecessor) on C. More generally, if
A ⊆ V then A+ := {x ∈ C | x− ∈ A} and A− := {x ∈ C | x+ ∈ A}. Given
the vertices a, b of C we let C[a, b] denote the subgraph of C from a to b
(and including both a and b) in the chosen direction. We shall write C(a, b],
C[a, b) or C(a, b) if a and b or both a and b are respectively excluded. The
same vertices, in the reverse order are denoted

←−
C (a, b],

←−
C [a, b) or

←−
C (a, b)

respectively. Let H be a component of G − C and let d1, . . . , dm be the
vertices of the set D = NC(H), occurring on C in a consecutive order. For
i ≥ 1, we set Pi := C(di, di+1), where the subscripts are taken modulo m and
ni = |Pi|. We define a relation ∼ on C by the condition u ∼ v if there exists
a path with endpoints u, v in C and no internal vertex in C. Such a path is
called a connecting path between u and v. We say that two connecting paths
are crossing at x, y ∈ C if there exist two consecutive vertices a, b of C such
that a ∼ x, b ∼ y and either a, b ∈ C(x, y), a = b+ or a, b ∈ C(y, x), a = b−.
We note that the two connecting paths from a to x and from b to y must
be internally disjoint since C is a longest cycle. In this paper, most of the
time the connecting paths are edges.

For all i ∈ {1, 2, . . . , m}, a vertex u of Pi is insertible if there exist
w, w+ ∈ C−Pi such that u ∼ w and u ∼ w+. The edge ww+ is referred as an
insertion edge of u. A vertex x /∈ C is C-insertible if there exist w,w+ ∈ C
such that w ∼ w+ and the path connecting w and w+ passes through x.
Paths and cycles in G = (V, E) are considered as subgraphs, vertex sets or
edge sets.

Throughout, H is a component of G−C, x0 is any vertex of H and for
all i ∈ {1, . . . , m}, xi is the first noninsertible vertex (if it exists) on Pi.
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Clearly m ≥ 2 if G is 2-connected. For all i ∈ {1, . . . , m} for which
xi exists, we define Wi = V (C(di, xi]). Set X := {x0, x1, . . . , xm} and
X0 := {x1, . . . , xm}. Similarly we define the sets Y := {x0, y1, . . . , ym},
Y0 := {y1, . . . , ym}, where yi is the last noninsertible vertex (if it exists)
on Pi.

The following key-lemma is mainly an adaptation of Lemmas proved in
[3] and [4].

Lemma 2.1. Let C be a longest cycle of a connected nonhamiltonian graph.
Let i, j be two distinct integers in {1, . . . , m} and let ui ∈ Wi, uj ∈ Wj . Then

1. xi and yi exist.
2. ui � uj and there are no crossing paths at ui, uj .

3. Any set W = {x0} ∪ {wi ∈ Wi | 1 ≤ i ≤ m} and in particular X is
independent in G.

4. N(ui) ∩N(uj) ⊂ V (C) \ ∪m
i=1Wi.

5. X, Y are independent sets in G∗.
6. For each i, we may assume that N(xi) ∩ C[di, xi) = {x−i }.

Proof. The proof of statements 1 to 4 is given in [2], while the proof of
5 is given in [4]. To prove (6), let ui ∈ C[di, xi) be the first vertex along
C, adjacent to xi and assume that C(ui, xi) is not empty. The vertices of
C(ui, xi) are insertible by definition. For i = 1, . . . ,m, let Fi be the set of
insertion edges of vertices of C(di, xi). We proved in [2] that Fi ∩ Fj = ∅
whenever j 6= i. Moreover E(Wi,Wj) = ∅ by (2). Therefore the vertices of
C(ui, xi) can be easily inserted into C − Pi.

The next general Lemma is an extension of Lemma 2.1. Set S := {xi, xj , xk},
where i, j, k are pairwise distinct integers in {0, . . . , m}.

Lemma 2.2. |S0 ∩ C| ≥ s2 + s3.

Proof. To prove the Lemma, it suffices to show that an injection θ : S2 ∪
S3− > S0 ∩ C exists. By Lemma 2.1(4), S2 ∪ S3 ⊂ V (C) \ ∪m

i=1Wi and by
definition, the sets S0, S1, S2, S3 are disjoint. Choose S := {xi, xj , xk} and
let a ∈ S2 ∪ S3. As a first case, we suppose that a /∈ D and without loss
of generality assume a ∈ (N(xj) ∩ N(xk) ∩ C(xk, dj))\D. If a+ ∈ S0 ∩ C
then we are done with θ(a) = a+, otherwise we must have a+ ∈ S1. Clearly
a+ /∈ N(xj) since xj is noinsertible and a+ /∈ N(xk) by Lemma 2.1(2).



234 A. Ainouche and S. Lapiquonne

Thus a+ ∈ N(xi). If i = 0 then a+ = dh ∈ D ∩ C(dk, dj ]. But then d+
h =

a++ ∈ S0 ∩ C and we set θ(a) = a++. If i > 0, then by Lemma 2.1(2), xi ∈
C(d(h+1)mod m, dj) in which case a++ ∈ S0 ∩ C since a++ /∈ N(xj) ∪N(xk)
by Lemma 2.1(2) and xi is noinsertible. We set again θ(a) = a++.

As a second case, we suppose that a = dh. If h = j then xj ∈ S0 ∩ C
and we are done. So, we assume dh ∈ C(dk, dj). If xi = x0 then clearly
a+ = d+

h ∈ S0 ∩ C. If i > 0 the arguments are the same as in the previous
case. The proof is now complete.

Lemma 2.3. Let G be a nonhamiltonian graph satisfying the conditions of
Theorem 1.4. Then

1. S0 ∩ (G− C) = {x0}, |S0 ∩ C| = |S2 ∪ S3| and σ3(S) = n− 1.

2. For each v ∈ S0 ∩ C, either v− ∈ S2 ∪ S3 or v−− ∈ S2 ∪ S3, in which
case v− ∈ S1.

3. X0 = D+ and Y0 = D−.

Proof. Among all possible components of G − C we assume that H is
chosen so that |NC(H)| = m is maximum.

(1) Set σ3(S) = s1 +2s2 +2s3 = n−1+δ with δ ≥ 0. By definition, n =
s0+s1+s2+s3. Thus σ3(S) = s1+2s2+2s3 = n−1+δ = s0+s1+s2+s3−1+δ.
It follows that s2 + s3 = s0 − 1 + δ. As s0 = |S0 ∩ C| + |S0 ∩ (G − C)|,
x0 ∈ S0 ∩ (G − C) and |S0 ∩ C| ≥ s2 + s3 by Lemma 2.2 we must have
equality throughout. Thus (1) is proved, that is S0 ∩ (G − C) = {x0},
|S0 ∩ C| = |S2 ∪ S3| and σ3(S) = n− 1.

(2) Follows from the proof of Lemma 2.2 and the fact that |S0 ∩ C| =
|S2 ∪ S3| by (1).

(3) Suppose first m ≥ 3 and assume without loss of generality that
x1 6= d+

1 . If we set S := {x0, x2, x3} then W1 ⊂ S0 ∩ C. This contradicts (2)
since d++

1 ∈ S0 ∩ C, d1 ∈ S2 ∪ S3 but d+
1 /∈ S1. Suppose next m = 2 and

x1 6= d+
1 . If d+

1 /∈ N(x1) then d+
1 ∈ S0 ∩ C and we are done. Otherwise,

by Lemma 2.1 (6), x1 = d++
1 and x1d1 /∈ E. Set S := {x0, x1, x2}. Since

x1 ∈ S0 ∩ C and d+
1 ∈ N(x1) we have d1 ∈ N(x0) ∩ N(x2). Let ww+ be

an insertion edge of d+
1 . It follows that w+ 6= d−1 by Lemma 2.1 (2). Since

x1 is not insertible then N(x1) ∩ {w,w+, w++} = ∅ (see [3]). Moreover
N(x2)∩{w+, w++} = ∅ by Lemma 2.1(2). Thus {w+, w++} ⊂ S0∩C. This
is a contradiction to (2). We have proved that X0 = D+. By changing the
orientation of C, we get by symmetry Y0 = D−.
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3. Proofs

3.1. A new proof of Theorems 1.2 and 1.3

Proof. This is a direct consequence of Lemma 2.3 (1). If G is nonhamil-
tonian then σ3(S) = n− 1, (S ⊂ X) ∈ I3(G∗). By hypothesis, σ3(S) ≥ n, a
contradiction implying that G must be hamiltonian.

3.2. Proof of Theorem 1.4

By contradiction, we suppose that G satisfies the hypothesis of Theorem 1.4
but c∗0(G) 6= Kn.

Proof. By Lemma 2.3, X0 = D+ and Y0 = D− and we assume that H is
chosen so that m := |NC(H)| is maximum. Two distinct cases are needed.
Each one leads to an exceptional class of nonhamiltonian graphs, whose
dual-closure is well characterized.

Case 1. m = 2.

(1) N [xi] = Pi ∪ND(xi), i = 1, 2.

Without loss of generality and by contradiction suppose that there exists
v ∈ P2\N(x2). Choose v as close to d2 as possible. If v ∈ N(x1) then v 6= y2

since x1 is noninsertible. Moreover, by setting S := {x0, x1, x2}, we see
that v+ ∈ S0 ∩ C by Lemma 2.1(2) and the fact that x1 is noninsertible.
In that case v ∈ N(x1) ∩ N(x2) since clearly v− /∈ N(x0) ∩ N(x2). This
is a contradiction to our assumption. Therefore v ∈ S0 ∩ C and by the
above arguments, v− ∈ N(x1) ∩ N(x2). At this point we need two sub-
cases. Suppose first v+ ∈ N(x2). Clearly G − v contains a cycle C ′ =
C ∪H. Since C is a longest cycle, we must have H = {x0} and d(x0) = 2.
Moreover we may assume d(v) = 2 for otherwise, we choose C ′ instead of
C. In particular NG−C(v) = ∅. As it is easy to check that {x0, x1, v} is
independent in G∗, we have d(x1) + 4 ≥ n− 1 + |N(v) ∩N(x0) ∩N(x1)|. If
v = y2 then |N(v) ∩ N(x0) ∩ N(x1)| = 1 and hence d(x1) ≥ n − 4, that is
N(x1) = V \{x0, x1, x2, v}. If v 6= y2 then d(x1) ≥ n− 5 and more precisely
N(x1) = V \{x0, x1, x2, y2, v}. So, in either case, x1x

+
2 ∈ E, implying the

existence of a cycle C ′′ = C ∪H in G − x2. As previously for the cycle C ′,
we obtain d(x2) = 2. This is a contradiction since N(x2) ⊇ {d2, x

+
2 , v+}.

Next, suppose v+ /∈ N(x2). If v+ ∈ N(x1)\D, we use the above ar-
guments to get v+ ∈ N(x1) ∩ N(x2), a contradiction to the choice of v.
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If v+ /∈ N(x1) ∪ N(x2) then v, v+ ∈ S0 ∩ C, a contradiction to Lemma
2.3 (1). So, it remains to consider the case where v+ = d1 /∈ N(x2).
Now vx2 = y2x2 /∈ E by assumption and y1x2 /∈ E as y1 is noninsert-
ible. Therefore, setting S := {x0, y1, y2} we obtain x2 ∈ S0 ∩ C and hence
x+

2 ∈ N(y1) ∩N(y2). It follows that G− x2 contains the cycle

H[d1, d2]
←−
C [d2, x1]x1v

−←−C [v−, x+
2 ]x+

2 vd1

in C ∪H and consequently d(x2) = 2. Similarly (recall that x+
2 ∈ N(y1) ∩

N(y2)) G− y2 contains a cycle in C ∪H and hence d(y2) = d(v) = 2. This,
in turn implies that P2 = x2x

+
2 v. Obviously {x0, x2, v} is independent in

G∗. Then d(x0)+d(x2)+d(v) = 6 ≥ n−1+ |N(x0)∩N(x2)∩N(v)| = n−1.
It follows that n ≤ 7 and P1 = x1. This is a contradiction since now G− x1

contains a cycle C ∪ H, implying d(x1) = 2. This is a contradiction since
N(x1) = {d1, v, x+

1 }. The proof of (1) is now complete.
For i = 1, 2 we let ui be any vertex of Pi.

(2) E(P1, P2) = ∅ and {x0, u1, u2} is independent in G∗.

By contradiction suppose u1u2 ∈ E. Clearly (u1, u2) 6= (x1, x2), (y1, y2). So,
we may assume ui ∈ Pi\{xi, yi}, i = 1, 2. But then the cycle

H[d1, d2]
←−
C [d2, u1)u+

1 x1C[x1, u1]u1u2
←−
C [u2, x2]x2u

+
2 C(u2, d1]

is hamiltonian. Now we show that the set {x0, u1, u2} is independent in G∗.
Since E(P1, P2) = ∅, N(u1) ∩N(u2) ⊆ D. If there exists v ∈ J(u1, u2) = ∅,
then v ∈ D and a contradiction arises since there is a vertex of H ∩ N(D)
which cannot be adjacent to neither u1 nor to u2. Similarly J(x0, u1) = ∅
since N(x0)∩N(u1) ⊆ D and y2 = d−1 /∈ N(x0)∪N(u1). The same arguments
apply to J(x0, u2).

(3) c∗0(G) = (Kr ∪Ks ∪Ks) with r, s, t are positive integers.

First of all, we point out that we may have G−C 6= H. By Lemma 2.3 (1),
S0 ∩ (G−C) = {x0}, implying that (G−C ∪H) = NG−C(x1)∪NG−C(x2).
For simplicity, set Hi := NG−C(xi) for i = 1, 2. We observe that H1∩H2 = ∅
for otherwise x1 ∼ x2, a contradiction to Lemma 2.1 (2) and H ∩ Hi = ∅
for i = 1, 2 by maximality of C.

Since G is nonhamiltonian by assumption, its 0-dual closure c∗0(G) is not
complete. Choose S := {x0, u1, u2} and set d(ui) = ni + |Hi| + |ND(ui)| −
1 − εi where εi ≥ 0 for i = 1, 2, d(x0) = |H| + |ND(x0)| − 1 − ε0 where
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ε0 ≥ 0. By (2), S ∈ I3(G∗) and hence σS = d(x0)+d(u1)+d(u2) ≥ n−1+s3.
Since n = 2 + n1 + n2+ |H| + |H1| + |H2| and

∑2
i=0 |ND(ui)| ≤ 6 we get

4 + s3 +
∑2

i=0 εi ≤
∑2

i=0 |ND(ui)| ≤ 6. We remark that
∑2

i=0 |ND(ui)| =
5 ⇒ s3 = 1 and

∑2
i=0 |ND(ui)| = 6 ⇒ s3 = 2. Therefore

(4)
2∑

i=0

εi = 0 and 4 + s3 ≤
2∑

i=0

|ND(ui)| ≤ 6.

As an immediate consequence of (4) we have (i) G[H] is complete, (ii)
N [ui] = ND(ui) ∪ Pi ∪Hi for i = 1, 2 since ε0 = ε1 = ε2 = 0. In particular
N(x1) ∩ N(x+

1 ) ⊇ H1 if x+
1 6= d2, in which case H1 = ∅ by maximality

of C. If x+
1 = d2 then clearly C ∪ H − x1 contains a cycle C ′ for which

|NC′′(x1)| ≥ 3 > m, a contradiction to the choice of H. Similarly we have
H2 = ∅, that is G− C = H.

It remains now to show that each vertex of D is dominating in c∗0(G),
that is D = Ω. Without loss of generality, suppose d1u2 /∈ E(c∗0(G)) and
|N(d1) ∩ S| < 3 is minimum. If |N(d1) ∩ S| = 0 then

∑2
i=0 |ND(ui)| ≤

3, a contradiction to (4). If |N(d1) ∩ S| = 1 then |N(d2) ∩ S| ≥ 3 and
s3 ≥ 1, leading to again a contradiction. So we may assume |N(d1) ∩
S| = 2 and hence N(d1) ⊃ H ∪ P1 since x0, u1 are arbitrarily chosen. But
then αd1u2 ≤ |{d1, d2, u2}| = 3 (recall that N [u2] ⊇ P2). Because d(d2) ≥
3 ≥ αd1u2 , we contradict the assumption d1u2 /∈ E(c∗0(G)) by Theorem 1.1.
Therefore N(di) ⊇ V \D is true for i = 1, 2. It is also easy to see that
d2d1 ∈ E(c∗0(G)) since αd1d2(c

∗
0(G)) ≤ 2. As claimed dc∗0(G)(di) = n − 1,

i = 1, 2. Since H, P1, P2 are distinct complete components of G − C we
obviously have, as claimed, c∗0(G) = (Kr ∪Ks ∪Ks) ∨K2 where, r = |H|,
s = n1, t = n2 and K2 is induced by D.

Case 2. m > 2.
We have already proved in Case 1 (3) that (G−C) = H if m > 2. We next
prove

(1) G − xi (G − yi resp.) is hamiltonian for all i = 0, . . . , m and hence
d(xi) ≤ m (d(yi) ≤ m resp.).

By setting S := {x1, x2, x3}, we get H ⊂ S0∩(G−C) and hence G−C = {x0}
by Lemma 2.3. Thus (1) is true for i = 0. Obviously (1) is true whenever
ni = 1. Otherwise, suppose for instance n1 > 1 and set S := {x0, x2, x3}.
Clearly x+

1 /∈ S0 ∩ C by Lemma 2.2 since x1 /∈ S1 ∪ S2 ∪ S3. Therefore



238 A. Ainouche and S. Lapiquonne

x+
1 ∈ N(x2) ∪N(x3). Whether x2x

+
1 ∈ E or x3x

+
1 ∈ E, G− x1 is obviously

hamiltonian and (1) is true. From now on and by the choice of C, we may
assume d(xi) ≤ m (d(yi) ≤ m by symmetry. As a next step we prove.

(2) |NX0(di)| ≥ m− 1 and |NY0(di)| ≥ m− 1 holds for any di ∈ D.

Otherwise choose xi, xj with 1 < i < j ≤ m such that N(d1) ∩ {xi, xj} = ∅.
Set S := {x1, xi, xj}. Clearly x1 ∈ S0 ∩ C and hence, d1 = x−1 ∈ S1 and
d−1 = ym ∈ N(xi) ∩N(xj). Suppose first m ≥ 4, set S := {xh, xi, xj} ⊂ X0

and assume i < j. Choose, if possible, i minimum. If h > i then xhd1 /∈ E
by Lemma 2.1 (2). By the choice of i, we must have j = m, i = m− 1 and
1 < h < i. Moreover xhd1 ∈ E for otherwise x1, d1 are consecutive elements
of S0 ∩ C. Consider now S := {x0, x1, xh}. Clearly ym ∈ S0 ∩ C since
x1, xh are noninsertible. But then y−m ∈ N(x1) ∪ N(xh), a contradiction
to Lemma 2.1 (2). It remains to consider the case m = 3, in which case
d−1 = y3 ∈ N(x1) ∩ N(x2). This implies in turn that n2 ≥ 2 and n3 ≥ 2.
Since d(y3) ≤ m = 3, we get N(y3) = {d1, x2, x3, y

−
3 }, implying x3 = y−3

and hence n3 = 2. In G∗, we clearly have x0x1 /∈ E(G∗) and x0y3 /∈ E(G∗).
It is now easy to check that x1y3 /∈ E(G∗) since N(x1) ∩N(y3) ⊂ {d1} and
x0 ∈ N(d1)\ {x1, y3}. Therefore {x0, x1, y3} ∈ I3(G∗). Thus d(y3) + d(x0) +
d(x1) ≥ n − 1 + s3 = n. As n2 ≥ 2, n3 ≥ 2 we must have n1 = 1, n2 = 2,
n3 = 2 and d(x1) = d(x2) = d(x3) = 3. We note that x3d1 /∈ E for otherwise
we have edges crossing at x2 and x3, x3d2 /∈ E for otherwise replacing d2x2 by
d2x3y3x2 and d3x3y3d1 by d3x0d1 in C we get a hamiltonian cycle. Moreover
x3y2 /∈ E since x3 is noinsertible and x3x2 /∈ E. Thus N(x3) = {d2, y3}, a
contradiction to the fact that d(x3) = 3. The proof of (2) is now complete.

(3) X = Y.

By contradiction, suppose X 6= Y. As a first step, we show that (3) is true
if there exists xi ∈ X0 such that ND(xi) = D. Without loss of generality,
assume ND(x1) = D. Since d(x1) ≤ m, we deduce that N(x1) = D and hence
x1 = y1, that is n1 = 1. Suppose next ni > 1 for some i, 2 ≤ i < m and set
S := {x0, x1, xi+1}. Clearly yi ∈ S0 ∩ C and hence y−i ∈ N(S). Obviously
y−i /∈ N(x0)∪N(x1) and consequently y−i ∈ N(xi+1), y−−i ∈ N(x0)∩N(x1).
This means that y−−i = di, a contradiction since then y−i = xi. Therefore
ni = 1 for any i, 1 ≤ i < m. To prove that nm = 1 it suffices to consider
S := {x0, x1 = y1, ym−1} and to use the same arguments.

For the remainder we assume that |ND(xi)| < m is true for all xi ∈ X0.
Consider the graph G[D ∪X0]. By (2) we have |E(D, X0)| ≥ m(m− 1). On
the other hand we have |E(X0, D)| ≤ m(m − 1) since |ND(xi)| < m for all
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xi ∈ X0. Therefore the equality holds and |ND(xi)| = m− 1 for all xi ∈ X0

and |NX0(di)| = m − 1 for all di ∈ D. By symmetry |ND(yi)| = m − 1 for
all yi ∈ Y0 and |NY0(di)| = m− 1 for all di ∈ D. Suppose now that d1xi /∈ E
in c∗0(G) for some i > 1. By (3), NX(d1) = X\{xi} and NY (d1) = X\{yj}
for some j > 0. Therefore Td1xi

⊆ {yj} and αd1xi
≤ 3. As d(yj) ≥ 3 we have

d1xi ∈ E(c∗0(G)) by Theorem 1.1. With this contradiction, (3) is proved.

(4) c∗0(G) = Kn−1
2
∨K n+1

2
.

Consider again the dual closure c∗0(G) and suppose x1dh /∈ E for some h > 0.
By (3) and the fact that |ND(xh)| = m− 1, N(x1) ∪N(dh) ∪ {x1, dh} = V,
implying x1dh ∈ E(c∗0(G)). Therefore ND(xi) = D holds for any xi ∈ X0.
It remains to show that D is a clique in c∗0(G). Indeed, if d1dj /∈ E then
αd1dj ≤ |D| = m and δd1dj ≥ m since Td1dj ⊂ D and d(di) ≥ m for any
di ∈ D. By Theorem 1.1, d1dj ∈ E(c∗0(G)). It remains to note that |D| =
m = n−1

2 by (3) and hence c∗0(G) = Kn−1
2
∨K n+1

2
.

4. Concluding Remarks

For any independent triple S = {a, b, c}, we set λmin(S) := min{λab, λbc, λca},
where λxy, xy /∈ E stands for the number of vertices adjacent to both x and
y. In [6], we obtained the following result, related to Theorem 1.4.

Theorem 4.1. Let G be a 2-connected graph. If

(5) S ∈ I3(G) ⇒ σS ≥ n− 1 + λmin(S)

then c∗0(G) ∈ {C7,Kn, (Kr ∪Ks ∪Kt) ∨K2,K(n−1
2

) ∨K(n+1
2

)}.

The graph C7 is the cycle on 7 vertices. In fact this result is still valid if
we change the condition S ∈ I3(G) by S ∈ I3(G∗). From this result one can
derive nearly twenty corollaries which are improvements of known sufficient
conditions (see [6]).

Since λmin(S) ≥ s3, a natural open question is the following:

Problem 4.2. A 2-connected graph G satisfying the condition S ∈ I3(G∗) ⇒
σS ≥ n− 1 is hamiltonian if and only if c∗0(G) ∈ {C7, Kn}.
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