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Abstract

In this paper, we give some sufficient conditions for distance local
connectivity of a graph, and a degree condition for local connectivity of
a k-connected graph with large diameter. We study some relationships
between t-distance chromatic number and distance local connectivity
of a graph and give an upper bound on the ¢-distance chromatic number
of a k-connected graph with diameter d.
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1. INTRODUCTION

By a graph we mean a simple undirected graph. We use [2] for termi-
nology and notation not defined here. Let distg(z,y) denote the distance
between vertices x and y in G. An x,y-path is a path between vertices
x and y in G. Let d = maxdistg(zy) : z,y € V(G) denote the diame-
ter of G. An z,y-path P is called diameter-path, if distg(z,y) = d and
|E(P)| = d. Let dg(x) denote the degree of a vertex z in G, 6(G) the mini-
mum degree of G and A(G) the maximum degree of G. For a nonempty set
U C V(G), the induced subgraph on U is denoted by (U). For a nonempty
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set A C V(G), G — A denotes the subgraph of G that we obtain by deleting
all vertices of A and all edges adjacent to at least one vertex of A. Let
01(G) = min{ 3%, dg(z;)|{z1,..., 21} € V(G), independent}. The square
of a graph G, denoted by G?, is the graph in which V(G?) = V(G) and
E(G?) = E(G) U {{u, v}|distg(u,v) = 2}.

Let Ng(z) = {y € V(GQ),zy € E(G)}, let Ng[z] = Ng(z) U {z}. The
set Ng(z) is called the neighbourhood of the first type of x in G. We say
that x is a locally connected vertex of G, if (Ng(z)) is connected. We say
that G is a locally connected graph, if every vertex of GG is locally connected.
Chartrand and Pippert [3] proved the following Ore-type condition for local
connectivity of graphs:

Theorem A [3]|. Let G be a connected graph of order n. If

da(u) +da(v) > S(n—1)

for every pair of vertices u, v € V(G), then G is locally connected.
Let Ny(z) be a subgraph induced by the set of edges uv, such that
min{distg(z,u), distg(z,v)} = 1.

The subgraph Na(z) is called the neighbourhood of the second type of z in G.
We say that z is an Na-locally connected vertex of G, if Nao(z) is connected.
We say that G is Na-locally connected, if every vertex of G is Na-locally
connected.

Now define the distance neighbourhood of the first type of a vertex of
G as in [5]. Let m be a positive integer and let « be an arbitrary vertex
of a graph G. The Ni"-neighbourhood of = in G, denoted by N{"(x), is
the set of all vertices y € V(G), y # z, such that distg(z,y) < m. Let
N'z] = N{"(x)U{z}. A vertex z is called N{"-locally connected if (N]"(x))
is connected. A graph G is said to be N{"-locally connected if every vertex
of G is N{*-locally connected.

The distance local connectivity of the second type is analogously defined
as the neighbourhood of the second type. Let m be a positive integer and
let x be an arbitrary vertex of a graph G. The N3*-neighbourhood of x,
denoted by NJ*(z), is the subgraph induced by all edges {u,v} of G, u # =z,
v # x, with min{distg(z, u), distg(z,v)} < m. We say that x is N3"-locally
connected in G if N3*(z) is connected. A graph G is said to be N3"-locally
connected if every vertex of G is Nj'-locally connected in G.
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Let ¢ be a positive integer. The t-distance chromatic number of a graph G,
denoted x(G), is the minimum number of colours required to colour all
vertices of G in such a way that any two vertices x,y with distg(z,y) < ¢
have distinct colours. Let x(x) denote the colour of a vertex x in G. Recall
that the vertex distance colouring was introduced by Kramer and Kramer
in [7] and [8]. In the 90’s, several results on vertex distance colourings were
presented, cf. Baldi in [1], Skupieni in [11], Chen et al. in [4].
The following result was proved by Jendrol’ and Skupien in [6].

Theorem B [6]. Given a planar graph G, let D = max{8, A(G)}. Then
the t-distance chromatic number of G s

3D+ 3
() <
X (G)_6+D_2

(D -1~ 1),

Madaras and Marcinova strengthened this condition in [9].

Theorem C [9]. Let G be a planar graph, let D = max{8, A(G)}. Then

2D + 12

(t) <
X(G) <6+ D2

(D -1)"t —1).

2. DISTANCE LocAL CONNECTIVITY OF A GRAPH IN k-CONNECTED
GRAPHS

The concept of the local connectivity of a graph was introduced in 1970’s.
Ryjacek used the concept of the local connectivity of a vertex in [10] for local
completing in his closure concept for claw-free graphs. This closure concept
gave a solution for several hamiltonian problems. A degree condition is one
of the easily verified conditions. Chartrand and Pippert in [3] proved a
degree condition for the local connectivity of connected graphs (see Theo-
rem A). The same degree condition can guarantee the local connectivity of
any vertex of a connected locally connected graph. In this chapter, degree
conditions for the local connectivity of a k-connected graph with a large
diameter will be presented as a strengthening of the result of Chartrand and
Pippert. Holub and Xiong in [5] proved degree conditions for distance local
connectivity of 2-connected graphs. As a strengthening of this condition, de-
gree conditions for distance local connectivity of a k-connected graph with
a large diameter will be shown, too.



212 P. HoLuB

Theorem 1. Let k > 2 be an integer, G be a k-connected graph of order n.
Let d be the diameter of G, let d > 5. If

dg(u) +dg(v) > g(n — kd+ 5k —3)

for every pair of vertices u,v € V(G), then G is locally connected.

Theorem 2. Let k > 2 be an integer, G be a k-connected graph of order n.
Let d be the diameter of G, m be an integer such that 2 < m < %(d 7). If

oy > n— kd +2mk + 6k— ¢, where t= sm + if m = 0(mo ,
1 kd +2mk + 6k h Zm+1 f m = 0(mod 3

o¢ > n—kd+2mk +6k—2—1t, wheret= 5(m—1) 4+ 3 if m = 1(mo ,
2 kd +2mk + 6k— 2 h 2(m—1)+3 if m = 1(mod 3
(3) or > n— kd +2mk + 4k— 1—t, where t= %2(m—2) + 3 if m = 2(mod 3).
then G is N{"-locally connected.

Before proofs of these two theorems, some auxiliary statements will be
shown.

Lemma 1. Let k > 2 be an integer, G be a k-connected graph and x be an
arbitrary vertex of G. Let d be the diameter of G, let d > 5. If x does not
belong to any diameter-path in G, then there are at least kd — 5k + 2 vertices
y such that distg(z,y) > 2.

Proof. Let P denote a diameter-path in G, let u,v be the end vertices
of P. Since G is k-connected, there are at least k vertex-disjoint u, v-paths
in G by Menger’s theorem. Choose Py, ..., P, with minimum sum of their
lengths. Note that |E(P;)| > d, i = 1,...,k. Now it will be shown that
there are at least d — 3 vertices at the required distance from x on each of
P, i=1,...,k. Let M; = {y € Pj|distg(z,y) <2}, j=1,...,k For each
path of P;, i =1,...,k, there are two following cases:

Case 1. If M; = (), then there are at least d + 1 vertices at the required
distance from x on P;.

Case 2. If M; # 0, then let a; € M; such that distg(aj, u) = ming,c;
distg(m,u) and let b; € Mj such that distg(bj,v) = mingep; diste(m, v).
Since = does not belong to any diameter path, we have

distg(u, aj) + distg(a;, ) + distg(z, by) + distg(bj,v) > d + 1.
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Since distg(aj,z) < 2 and distg(bj, ) < 2, we obtain
distg(u, aj) + distg(bj, v) > d — 3.

Hence there are at least d — 3 vertices at the required distance from x on P;.

On the paths P;, i = 1,..., k, there are at least k(d — 3) vertices at the
required distance from z in G. Since w and v can be counted only once,
there are at least k(d —5) + 2 different vertices at the required distance from
x in G. [

Proof of Theorem 1. Suppose G is not locally connected. Then there is
a vertex x such that x is not locally connected in G. There are at least two
components of (Ng(z)). Let G denote a smallest component of (Ng(z))
and let G2 be the union of all the other components of (Ng(z)). Let g1 =
[V(Gy)l, let go = [V(G2)|. Let Z = {y € V(G); distg(z,y) = 2}, let z = | Z].
Let p = [{y € V(G); distg(x,y) > 2}

Case 1. Suppose that x does not belong to any diameter-path in G. By
Lemma 1, the number p > kd — 5k + 2. Clearly n = g1 + go + 2z + p + 1.

Choose arbitrary vertices u and v such that v € V(G1) and v € V(G2). By
the assumptions of Theorem 1

do (@) + da(u) > %(n — kd+ 5k —3),

Since dg(z) = g1+ ge and dg(u) <g1+z=n—-1—-p—g<n—1—gy —
kd + bk — 2, we obtain

4
91+92+n—gg—1—kd+5k—2>g(n—kzd+5k‘—3).
Clearly g1 > %(n—kd+5kz—3) and go > %(n—kd+5k¢—3) since g > ¢g;.

Therefore .
z < g(n—kd+5k—3).

For vertices v and v
4
da(u) +da(v) <gr4+z+g+2< g(n—kd+5k—3),

a contradiction.
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Case 2. Suppose that = belongs to a diameter-path P. Let e, f be the
end vertices of P. Since G is k-connected, there are at least k vertex-disjoint
e, f-paths in G. Choose Pi,..., P, with a minimum sum of their lengths.
For each of P;, i = 1,...,k the following cases can happen.

Subcase 2.1. V(P;)NZ = (). Then there are at least d+ 1 vertices on P;
at distance at least 3 from z in G.

Subcase 2.2. V(P;) N (V(G1) UV (G2)) = 0, but V(P)NZ # 0. Let
d; = |V(P;) N Z|. If d; < 4, then there are at least d — 3 vertices on P; at
distance at least 3 from z in G.

Now suppose that d; > 5. If there is a vertex w € V(G1) UV (G2) such
that w is adjacent to every vertex of V(P;) N Z, then there are at least d — 2
vertices at distance at least 3 from x in G since distg(e, f) > d. If none of
the vertices of V(G1) UV (G2) is adjacent to every vertex of V(FP;) N Z, then

de(u) <g14+z—(d;i—=3)<g1+2z—-1, YueV(Gy),
de()<gao+z—(d; —3) < go+2z—1, YveV(Gy).

Subcase 2.3. V(P;) N (V(G1) UV (Ga)) # 0. Let d} = |V(P) NV (Gy)],
d? = |V(P)NV(Gy)| and d; = |V (P;) N Z|. Note that d; > 2. The following
two possibilities have to be considered.

(i) d} = 0 or d? = 0. Up to symmetry, suppose that d7=0. If d} =
and d; = 2, then there are at least d — 3 vertices on P, at distance at least
3 from z in G.

Now suppose that d} = 1 and d; > 2. If there is a vertex w € V(Gy)
such that w is adjacent to every vertex of V(P;) N Z, then there are at least
d — 2 vertices at distance at least 3 from x in G since distg(e, f) > d. If
there is no vertex w € V(G1) adjacent to every vertex of V(P;) N Z, then

do(u) <gi+z—(di—2)<gi+2z—1,VueV(G).

Now suppose that d} > 1. If there is a vertex w € V(G1) such that w is
adjacent to every vertex of V(P;) N Z, then there are at least d — 2 vertices
at distance at least 3 from x in G since distg(e, f) > d. If there is no vertex
w € V(G1) adjacent to every vertex of V(P;) N Z, then

do(u) <gr+z—(d} —=2)—(di—1) < g1 +2— 1, Yu € V(Gy).
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(ii) d} > 0 and d? > 0. If P, is a diameter-path containing x, then there
are at least d — 4 vertices on P; at distance at least 3 from z in G. If P; does
not contain x, then d; > 3. If there is a vertex w € V(G1) U V(G2) such
that w is adjacent to every vertex of V(P;) N Z, then there are at least d — 2
vertices at distance at least 3 from x in G since distg(e, f) > d. If there is
no vertex w € V(G1) UV (G2) adjacent to every vertex of V(P;) N Z, then

de(u)<g14+2z—(d; —=2)<g1+2—1, YueV(Gy),
deg(v) <ga+z—(di—2)<g2+2z—-1, VYveV(Ga).

Let l; denote the number of such the paths Pi, ..., Py, for which one of the

following conditions is satisfied

- V(P)NV(Z)#0,V(P)N(V(G1) UV (Gs)) =0, d; > 5 and there is no
vertex w € V(G1) UV (G3) adjacent to every vertex of V(P;) N Z,

~V(P)N(V(G1)UV(Ge)) # 0, d} =1, d? = 0, d; > 2 and there is no
vertex w € V(G1) adjacent to every vertex of V(FP;) N Z,

- V(P) N (V(G1) UV(Ge)) # 0, df > 1, d? = 0 and there is no vertex
w € V(G1) adjacent to every vertex of V(P;) N Z,

~ V(P)N(V(G1) UV(Ge)) # 0, did? # 0, x ¢ V(P;) and there is no

)

vertex w € V(G1) UV(G3) adjacent to every vertex of V(FP;) N Z.

Let Il denote the number of such the paths Pi, ..., Py, for which one of the
following conditions is satisfied

- V(P)NV(Z)#£0,V(P)N(V(G1)UV(G2)) =0, d; > 5 and there is no
vertex w € V(G1) UV (G3) adjacent to every vertex of V(FP;) N Z,

- V(P)N(V(G1)UV(G)) # 0, d} =0, d? =1, d; > 2 and there is no
vertex w € V(G2) adjacent to every vertex of V(P;) N Z,

~ V(P)N(V(G1) UV(Gs)) # 0, d? > 1, d} = 0 and there is no vertex
w € V(G2) adjacent to every vertex of V(P;) N Z,

- V(P)N(V(G1) UV(Ge)) # 0, did? # 0, x ¢ V(P;) and there is no

)

vertex w € V(G1) UV(G3) adjacent to every vertex of V(P;) N Z.

Let [ = 11 +15. Then there are at least kd — 5k +2 — 1 —1 vertices at distance
at least 3 from x in G and

dg(u) < g1+2z—1l, YueV(Gy),
dg(U) < go + 2z — lz, Yov € V(GQ)
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Suppose that I > [;. By the assumptions, for every u € V(G1)
4
da(z) + dg(u) > g(n — kd + 5k — 3).

Since dg(x) = g1+g2 and dg(u) < g1+2—1l1 <n—1—go—l1 —kd+5k—2+1,
we have

4
91+92+n—92—l1—k‘d—|-5k—3+l>g(n—kd—|—5k—3).

Clearly
1
g1 > g(n—kd+5k—3)+ll—land

1
ga > g(n—kd+5k—3)+l1—l,

since go > ¢g1. Thus

1

z < g(n—kd+5k—3)—|—2l1—l.
For vertices u and v, it holds that
4
dg(u)+dc(v) <gi4+g+2z2—0L—-lh< g(n—/{d+5/€—3)+l1 — o,

a contradiction, since ls > ;. Hence suppose that I; > lo. Then we get

1
91> 5(n—hd+5k—3)+ 11— 1> 5(n—kd+5k—3) ~ .

W =

Thus
1
g2 >§(n—kzd+5k:—3)+l1—l,
1 1
z <g(n—kd+5k—3)+l—l1+ll—l:§(n—kd—|—5k—3).
Then

4
de(u) +da(v) < g1+ g2 +22 =l — Iy < 5 (n— kd + 5k —3) + 1.
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Hence

[SCARE

dg(u) + dg(v) < =(n — kd + 5k — 3),

a contradiction. [ ]

The following example shows that the conditions of Theorem 1 are sharp.

Example. Let Ki,..., Ky, be ki cliques of order k, let Lq,..., Ly, be ko
cliques of order k. Let Kgy, Ly be two cliques of order Iy > 2k — 1, let M
be a clique of order [ — k. All considered cliques K;, L; are vertex-disjoint.
Construct a graph G by joining a new vertex z with each vertex of KoU Ly,
a new vertex u with each vertex of K}, and a new vertex v with each vertex
of Ly,. Now join each vertex of K; with each vertex of K; 1 fori =1,...,ky,
each vertex of L; with each vertex of L, 1 for i =1,..., ks and each vertex
of KgU Ly with each vertex of M. Clearly the prescribed graph G is k-
connected and the vertex x is not locally connected. The diameter of G is
d = ki + ko + 4. It holds that

n=1+2l1 +1l1 —k+ (k1 +ka)k+2=3l1 + (d— 5k + 3.

Thus
3li =n—kd+ 5k — 3.

Furthermore
dG (l‘) = 2l1 5

dG(y) = 2l1a Vy € K07
dg(z) =21y, Vzé€ Ly.

Hence for every pair a, b of vertices of Ng[z]| holds that
4
do(a) + do(b) = 411 = 5(n — kd + 5k — 3)

and x is not locally connected.
The following lemma is a proposition analogous to Lemma 1 for the
Nji"-local connectivity of a vertex of a graph.

Lemma 2. Let k > 2 be an integer, G be a k-connected graph. Let d be
the diameter of G and m < %(d — 1) be an integer. Then, for each vertezr x
of G, there are at least kd — 2km + 2 vertices at distance at least m from x
mn G.



218 P. HoLuB

Proof. Let P denote a diameter-path in G, let u,v be the end vertices of
P. Since G is k-connected, there are at least k vertex-disjoint wu, v-paths
in G by Menger’s theorem. Choose P, ..., P, with minimum sum of their
lengths. Note that |E(FP;)| > d, i = 1,...,k. Now it will be shown that
there are at least d —2m + 2 vertices at the required distance from x on each
of Pj,i=1,...,k. Let M; = {y € Pj|distg(z,y) <m—1}, j=1,... k.
For each path of P;, i = 1,..., k there are two following cases:

Case 1. If M; = (), then there are at least d + 1 vertices at the required
distance from x on P;.

Case 2. If M; # (), then let a; € M; such that distg(a;, u) = ming,ep,
distg(m, u) and let b; € M; such that distg(b;, v) = ming,epny, distg(m,v).
Clearly

distg(u, a;) + distg(a;, z) + distg(z, b;) + distg (b, v) > d.
Since distg(a;, z) < m — 1 and distg(b;, ) < m — 1, we have
distg (u, a;) + distg(bi, v) > d — 2m + 2.

Hence there are at least d — 2m + 2 vertices at the required distance from z
on P;.

On the paths P;, i = 1,...,k there are at least k(d — 2m + 2) vertices at
the required distance from x in GG. Since u and v can be counted only once,
there are at least kd — 2km + 2 different vertices at the required distance
from x in G. [ |

Let C be a cycle, z € V(C) and C be an orientation of C. Let 2~@ denote
the i-th predecessor of  on C and 21 denote the i-th successor of 2 on C
in the orientation C.

Lemma 3 [5]. Let G be a 2-connected graph, x € V(G), and m be a positive
integer. If x is not N{"-locally connected, then there is an induced cycle C
of length at least 2m + 2 such that, in an orientation of C,

— distg(z=®,z) = i and distq(ztD,2) =i, i=1,...,m,
— distg(y, ) >m, for every y € V(C)\{z,z= W), .. z=m) g+ a0
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The following consequence proved by Holub and Xiong we use in the proof
of Theorem 2.

Corollary 1 [5]. Let m > 2 be an integer, G a 2-connected graph. If
z € V(G) is not N{"-locally connected, then there is a set M C V(G) such
that

1) M is independent in (G — )2, M c N™ Y (z) and | M| > 2m + 1, if
1 3
m = 0(mod 3),
(2) M is independent in (G — Ng[z])?, M C (N7""Y(x)\ N} (z)) and |M| >
2(m —1)+1, if m = 1(mod 3),
(3) M is independent in G2, M C N[z] and |M| > 2(m —2) + 2, if
m = 2(mod 3).

Proof of Theorem 2. Suppose that G is not N{"-locally connected. Then
there is a vertex x € V(G) such that z is not N{"-locally connected in G.
Hence (N{"(z)) consists of at least two components. Let G denote arbitrary
component of (N]"(x)), let G2 denote the union of all the other components
of (N]"(x)).

Case 1. m = 0(mod 3). By Corollary 1 case (1), there is a set M C
N"*1(z) such that |M| = %m + 1 and M is independent in (G — z)2. Let
t = |M|. Using Lemma 3, the set M can be chosen in the following way:
M = {x1,29,...,2¢}, where x9;_1 = z—(37-2), Toj = etGi=2) =1 ..., 7,
zy = aT"HD Let A = {y € V(G)|distg(x,y) > m + 2}, let a = |A|. By
Lemma 2, the number a > kd — 2(m + 3)k + 2. Since M is independent in
(G — )%, we have, for every pair u,v € M \ {z},

Ng—z(u) N Ng—u(v) = 0.
Since x is adjacent to at most two vertices of M, we obtain

Y da(xi)<(n—1)—t—a+2=n—t—a+1.
z, €M

Since a > kd — 2(m + 3)k + 2, we have

Z da(zi) <n—t—kd+2mk+ 6k — 1,
z, €M

a contradiction.
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Case 2. m = 1(mod3). By Corollary 1 case (2), there is a set M C
N{"*(z) such that |M| = 2(m—1)+1and M is independent in (G—Ng[z])?.
Let ¢t = |M|. Using Lemma 3, the set M can be chosen in the following
way: M = {z1,22,...,2:}, where z9;_; = = (Bi=1), x9j = G- 5 =
1,...,"‘7_1, zy = T Let A = {y € V(Q)|distg(z,y) > m + 2}, let
a = |A|l. By Lemma 2, the number a > kd — 2(m + 3)k + 2. Since M is
independent in (G — Ng[z])?, we have, for every pair u,v € M,

Ng(u) N Ng(v) = 0.
Since each vertex of Ng(x) is adjacent to at most one vertex of M, we obtain

Z dg(xz;)) < (n—1)—t—a.

z, €M
Since a > kd — 2(m + 3)k + 2, we have

> da(x) <n—t—kd+ 2mk + 6k — 3,
x, €M

a contradiction.

Case 3. m = 2(mod3). By Corollary 1 case (3), there is a set M C
N{"[z] such that [M| = 2(m — 2) + 2 and M is independent in G?. Let
A ={y € V(G)|distg(z,y) > m+1}, let a = |A|. By Lemma 2, the number
a > kd — 2(m + 2)k + 2. Since M is independent in G2 we have, for every
pair u,v € M,

Ng(u) N Ng(v> = 0.

Let t = |M|. Hence

Z dg(zi)) <n—t—a.
zr, €M

Since a > kd — 2(m + 2)k + 2, we obtain

> da(xi) <n—t—kd+2mk + 4k — 2,
x, €M

a contradiction. m
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3. VERTEX DISTANCE COLOURING

There are several results on t-distance chromatic number for planar graphs.
In this paragraph, results on t-distance chromatic number in k-connected,
not necessary planar, graphs are presented. Moreover, the relations between
distance local connectivity and ¢-distance chromatic number in 2-connected
graphs are given. Main results of this section are the following theorems.

Theorem 3. Let G be a k-connected graph of order n, d be the diameter of
G. Lett < d be a positive integer. Then the distance-chromatic number

n—1 ift=d—1,
(@) < .
n—(d—t—2)k—2 ift<d-—1.

Theorem 4. Let G be a 2-connected graph of order n, let t,k be positive
integers. If
NG) >n—(2k-1)(t+1),

then G is N{"-locally connected, where m = k(t+ 1) — 1.

Theorem 5. Let G be a 2-connected graph of order n, k be a positive integer
and t be an even positive integer. If

XD(G) > n —2k(t +1),
then G is N3"-locally connected, where m = k(t + 1) + £ — 1.

The distance local connectivity number of a 2-connected graph G, denoted
dlc(G), is the smallest positive integer m for which G is N{"-locally con-
nected. Since G is 2-connected, the number dlc¢(G) is well-defined. Note
that local connectivity of a graph is the Ni-local connectivity. The follow-
ing statement is a straightforward consequence of Theorem 4.

Corollary 2. Let G be a 2-connected graph, let t be a positive integer. If

die(G) = m, then X(G) < n— (k= 1)(t + 1), where k = | 2%].

Proof of Theorem 3. Let u,v denote the end vertices of a diameter
path in GG. Since G is k-connected, there are at least k vertex-disjoint u, v-
paths Pi,..., Py in G by Menger’s theorem. Since distg(u,v) = d, each of
P;,i=1,...,k, has length at least d. Let u;; denote a vertex on P; such
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that distg(u,u; ;) = j, i = 1,...,k, j = 1,...,d. Since d > t, there is at
least one vertex u; j on P;, i = 1,..., k, including the end-vertex v, such that
j>t j=t+1,....d. Ifd—t=1, then u; 441 = v for every i € {1,... k}.
We define colouring x of vertices of G in such a way that x(v) = x(u) and
x(x) # x(y) for all pairs z,y € V(G) \ {u,v}. Clearly x is a t-distance
colouring of G and

xP(G) <n-—1.

Suppose that d—t > 1. We define a colouring x of vertices of G in such a way
that the vertices of N{™ (u) have distinct colours in G, x(u) = x(u;¢+1) and
x(v) = x(uj,g—t—1) for some i € {1,...,k}. Moreover, if d —t > 2, then, for
every i € {1,...,k}, x(uijtt+1) = x(ui;), since diste(w; j, wijyer1) =t+1,
j=1,...,d—1t—2. Clearly x is a t-distance colouring of G. Hence there
are at least k(d —t — 2) + 2 vertices with previously used colours, implying
that

XY@ <n—kd—t—2)—2. -

For the proofs of Theorem 4 and Theorem 5 we need some auxiliary state-
ments. The following lemma is the analogue of Lemma 3.

Lemma 4. Let G be a 2-connected graph, x € V(G) and m be a positive
integer. If x is not N3y*-locally connected, then there is an induced cycle C
containing x of length at least 2m + 3 such that, in an orientation of C,

distg(x*(i),x) =1 and distg(a:+(i),x) =i, i=1,...,m+1,

Proof. The vertex x is not N3"-locally connected. The N3*-neighbourhood
of a vertex x consists of at least two components G1, Go. Since G is 2-
connected, there is a cycle C' containing x, such that =) € G4 and 2zt €
G2 in an orientation of C'. Choose C shortest possible with this property.
Since z is not N4™*-locally connected, |V (C')| > 2m+ 3. It is easy to see that
C has the required property since otherwise there is a shorter cycle. [

From the definition of a t-distance colouring we obtain the following clear
observation.

Proposition 1. Let G be a 2-connected graph of order n, let t be a positive
integer, let d denote the diameter of G. Then x(G) = n if and only if
d<t.
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Corollary 3. Let G be a 2-connected graph of order n, let t be a positive
integer. If x{)(G) = n, then G is Nt-locally connected.

Proof. Suppose that G is not Nf-locally connected, i.e., there is a vertex
r € V(G) such that z is not N{-locally connected in G. By Proposition 1,
d < t. By Lemma 3, there is an induced cycle C' in G of length at least
2t 4+ 2, which contradicts the fact that d < t. [

Proof of Theorem 4. Suppose that G is not N{"*-locally connected, i.e.,
there is a vertex x which is not N{"-locally connected. By Lemma 3 there
is an induced cycle C containing z, such that |V(C)| > 2m + 2. More-
over distg(z,z~®) = distg(x,27®) =4 for i = 1,...,m. Since z is not
Ni"—locally connected, the cycle C can be chosen such that 2~ and T
belong to different components of (N7*(x)). Clearly distg(z~®,z=0)) =

li — 7], for i,5 =0,...,m where 20 = g,
We define a colouring x of vertices of G in such a way that all the vertices
=@ . 2=® have distinct colours, y(z~@) = x(z=(++D)) i =0,... ¢,

since |[V(C)| > 2(t + 1). If k > 1, then y(z~(HED)) = (= @E+G-1{E+H)
fori=0,...,tand j = 1,...,2k — 1. All the remaining vertices of G will
be coloured with distinct unused colours. Clearly x is a t-vertex distance
colouring in G.

We have coloured 2k(t + 1) vertices of C' with only ¢ + 1 colours. Since
m = k(t + 1) — 1, we have coloured 2m + 2 vertices of C' with only ¢ + 1
colours, implying that

(G <n—@m+2)+(t+1)=n— (2k—1)(t+1),
a contradiction. m

Proof of Theorem 5. We will use similar arguments as is the proof of
Theorem 4. Suppose that G is not Nj’-locally connected, i.e., there is a
vertex x which is not N3*-locally connected. By Lemma 4 there is an induced
cycle C containing x, such that |V (C)| > 2m+3. Moreover distg(z, 2~ ) =
distg(z, x+(i)) =ifori=1,...,m+1. Since z is not N3"*—locally connected,
the cycle C' can be chosen such that =) and z+() belong to different
components of (N§*(x)). Clearly distg(z=®,z=0)) = |i — j|, for i,j =
0,...,m~+1 where 2= = z.

We define a colouring x of vertices of G in such a way that all the vertices
2= . z=® have distinct colours, x(z~®) = x(z= 0+ i =0,...,¢,
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since |[V(C)| > 2(t + 1). If k > 1, then y(a~(HED)) = (= E+G-1{E+1)
fori=0,...,tand j =1,...,2k, since |V(C)| >2m +3 = (2k + 1)(t + 1).
All the remaining vertices of G will be coloured with distinct unused colours.
Clearly x is a t-vertex distance colouring in G.

Thus we can colour (2k+ 1)(¢ + 1) vertices of C' with only ¢+ 1 colours.
Hence we have

YD(G) <n—2k(t+1),

a contradiction. [ ]

Now we give an example which show that conditions of Theorem 3 are sharp.
Let d and k > 2 be two positive integers. Consider two vertices v and v and
d — 1 cliques Ki,...,K4_1 of order k. We construct a graph G by joining
each vertex of K7 with u, each vertex of K;_1 with v and each vertex of K;
with each vertex of Ky for each i € {1,...,d — 2}. The diameter of G is
d, the graph G is k-connected and the t-distance chromatic number is equal
to
n—1 ift=d-1,
{ n—(d—-t—2)k—-2 ift<d-1

For the following two examples the conditions of Theorem 3 give better
upper bound on the t¢-distance chromatic number than the conditions of
Theorem B and C. Let d be a positive integer. Consider two vertices u, v
and d — 1 cliques K1,..., Ky 1 of order 3. Construct a graph G by joining
each vertex of Ky with u, each vertex of K ;_1 with v. Now pair vertices of
K; with vertices of K1, for each i € {1,...,d — 2}. The structure of G is
shown in Figure 1.

Figure 1

The graph G is 3-connected, the diameter of G is d and G is planar, because
the graph on the following picture (Figure 2) is isomorphic with G.
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Figure 2

From Theorem 3 we obtain x¥(@) < 3(t + 1) and from Theorem B we get
xD(G) < 3((7)"' — 1) + 6. For t > 2 the upper bound of Theorem 3 is
better.

For any positive integer d, consider two vertices u, v, and d — 1 cliques
Ki,..., K41, such that K; and K, | are triangles and Ki,..., K4 o are
alternatively cliques of orders 3 and 4. Construct a graph G in such a way
that we join each vertex of K; with u, each vertex of K;_ 1 with v and we
pair vertices of K; with vertices of K; 1, for all i € {1,...,d — 2}, in such a
way that is shown in Figure 3.

V¢l Ky K3  Kg2 Ki

Figure 3

This graph G is 3-connected, the diameter of G is d and G is planar, because
the graph on the following picture (Figure 4) is isomorphic with G.
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Figure 4

From Theorem 3 we get xV(G) < 3(t + 1) + 2 + 42, and, from Theorem
B we obtain x(V)(G) < 2((7)!"* — 1) + 6. Comparing these two values, the
upper bound of Theorem 3 is asymptotically better for t > 2 and d < 7°.
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