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Abstract

In this note we give a characterization of the complete bipartite
graphs which have an even (odd) [a, b]-factor. For general graphs we
prove that an a-edge connected graph G with n vertices and with
δ(G) ≥ max{a + 1, an

a+b + a − 2} has an even [a, b]-factor, where a
and b are even and 2 ≤ a ≤ b. With regard to the edge-connectivity
this result is slightly better than one of the similar results obtained by
Kouider and Vestergaard in 2004 and unlike their results, this result
has no restriction on the order of graphs.
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1. Introduction

We follow the notations and terminology of [6] except otherwise stated. All
graphs in this paper are simple. Let G be a graph with vertex set V (G)
and edge set E(G). Denote by degG(v) the degree of a vertex v in G and
δ(G) the minimum degree of G. Let (X,Y ) be an ordered pair of distinct
subsets of V (G). In this note, e(X,Y ) denotes the number of edges with one
endvertex in X and the other in Y . Let a, b be two integers with 1 ≤ a ≤ b.
A spanning subgraph F of G is called an [a, b]-factor of G if a ≤ degF (v) ≤ b
for all v ∈ V (G). An [a, b]-factor F is even (odd) if both a and b are even
(odd) and degF (v) is even (odd), respectively, for each v ∈ V (F ). When
a = b = k, an [a, b]-factor is called a k-factor.

The definition of [a, b]-factor can be generalized as follows ([5]). Let g, f
be two functions from V (G) into non-negative integers and let g(v) ≤ f(v)
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for all v ∈ V (G). Then F is called a [g, f ]-factor of G if F is a factor of G
with g(v) ≤ degF (v) ≤ f(v) for all v ∈ V (G). Lovász’ parity [g, f ]-factor
theorem (Theorem 5, or see [1, 5]) gives a characterization of the graphs
which have a [g, f ]-factor. Applying this theorem, Kouider and Vestergaard
obtained various sufficient conditions for a graph to have an even [a, b]-factor.

Theorem 1 ([2, 3]). Let a and b be even integers such that 2 ≤ a ≤ b and
let G be a connected graph of order n.

1. If a = 2, n ≥ 3 and G is 2-edge connected with δ(G) ≥ max{3, 2n
b+2},

then G has an even [2, b]-factor.

2. If a ≥ 4, n ≥ (a+b)2

b and G is 2-edge connected with δ(G) ≥ an
a+b + a

2 ,
then G has an even [a, b]-factor.

3. If a ≥ 4, n ≥ (a+b)2

b , G is k-edge connected with k ≥ a + min{√a, b
a}

and δ(G) ≥ an
b+2 , then G has an even [a, b]-factor.

In addition, Kouider and Vestergaard [2] obtained a characterization of the
complete bipartite graphs which have an even [2, b]-factor. The reader
may consult [4] for a recent survey on connected factors in graphs. In
this paper, we first generalize this result to even [a, b]-factor. Then we
give a characterization of the complete bipartite graphs which have an odd
[a, b]-factor. For general graphs, we modify the proof of Theorem 2 of
[2] to prove that an a-edge connected graph G with n vertices and with
δ(G) ≥ max{a + 1, an

a+b + a− 2} has an even [a, b]-factor, where a and b are
even and 2 ≤ a ≤ b. The edge-connectivity condition required in our result
is slightly weaker than the one given in Part (3) of Theorem 1. Moreover,
unlike Part (2) and Part (3) of Theorem 1, in our result there is no condition
on the order of the graph. But we require a slightly larger minimum degree
for G.

2. [a, b]-Factors for Complete Bipartite Graphs

In this section we first prove that the complete bipartite graph Kp,q has an
even [a, b]-factor if and only if aq ≤ bp, where a, b are even, 2 ≤ a ≤ b and
a + 1 ≤ p ≤ q. This generalizes Theorem 1 of [2]. Then we prove that Kp,q

has an odd [a, b]-factor if and only if aq ≤ bp and p ≡ q (mod 2), where
a, b are odd, 1 ≤ a ≤ b and a + 1 ≤ p ≤ q. We make use of the following
well-known result in this section [6].
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Lemma 2. The complete bipartite graph Kn,n has an m-factor for 1 ≤
m ≤ n.

Theorem 3. Let a, b be even, 2 ≤ a ≤ b and a + 1 ≤ p ≤ q. Then Kp,q has
an even [a, b]-factor if and only if aq ≤ bp.

Proof. Let F be an even [a, b]-factor of Kp,q. Then obviously aq ≤
|E(F)| ≤ bp.

Conversely, assume aq ≤ bp. If b > q, it suffices to prove that Kp,q has
an even [a, q] or [a, q − 1]-factor, depending on the parity of q. Because

aq ≤ (p− 1)q = pq − q ≤ pq − p = (q − 1)p ≤ qp,

this case can be reduced to the case b = q or b = q − 1, depending on the
parity of q. So we may assume b ≤ q. Define X = {xi | 0 ≤ i ≤ p− 1} and
Y = {yj | 0 ≤ j ≤ q − 1}.

Case 1. q is even.
Let Mi be the complete bipartite graph with partite sets {xai+j | 0 ≤ j ≤
a − 1} and {y2i, y2i+1} for 0 ≤ i ≤ (q − 2)/2. Notice that the addition in
the subscript of x is modulo p. Since a(q/2) ≤ (b/2)p it follows that each
x ∈ X is a vertex of at most b/2 complete bipartite graphs Mi. Define

F =
(q−2)/2⋃

i=0

Mi.

Obviously, degF (y) = a for all y ∈ Y . By the construction of F we have
| degF (xi)− degF (xj) |≤ 2 for i, j ∈ {0, 1, 2, . . . , p− 1}. On the other hand,∑

x∈X degF (x) =
∑

y∈Y degF (y) = aq. Hence, a ≤ degF (x) ≤ b for all
x ∈ X.

Case 2. q is odd.
If p = q we apply Lemma 2. For p ≤ q − 1 we proceed as follows. Let F be
an even [a, b]-factor of Kp,q−1 as in Case 1.

Claim 1. degF (xi) ≤ b− 2 for p− (a/2) ≤ i ≤ p− 1.
If degF (x) ≤ b− 2 for every x ∈ X, then the result follows since p ≥ a+1 ≥
a/2. Now assume that there exists an x ∈ X with degF (x) = b. The
construction of F enforces that degF (x) ∈ {b, b − 2}, for every x ∈ X. Let
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α and β be the number of degree b and of degree b − 2 vertices of X in F ,
respectively. Then we have

α + β = p and αb + β(b− 2) = (q − 1)a.

Solving for β, we obtain β = bp−aq+a
2 ≥ a

2 . Now the result follows by the
construction of F .

For convenience, we may relabel the vertices of X such that degF (x1) ≤
degF (x2) ≤ · · · ≤ degF (xp). Now, let X1 = {x1, x2, . . . xa/2} and X2 =
{x(a/2)+1, x(a/2)+2, . . . , xp}. By Claim 1, every vertex of X1 has degree≤ b−2
in F .

Claim 2. There are {yi1 , yi2 , . . . yia/2
} ⊂ Y ′ = Y \ {yq−1} and {xi1 , xi2 ,

. . . xia/2
} ⊂ X2 such that |{xi1 , xi2 , . . . xia/2

}| = a/2, xjyij /∈ E(F) and
xijyij ∈ E(F) for 1 ≤ j ≤ a/2. Notice that the elements of {yi1 , yi2 , . . . yia/2

}
are not necessarily distinct.

Since degF (x1) ≤ b − 2 there exists yi1 ∈ Y ′ such that x1yi1 /∈ E(F).
Now the fact that degF (yi1) = a implies that there exists xi1 ∈ X2 with
xi1yi1 ∈ E(F). Assume there exists yit and xit with the required properties
for 1 ≤ t ≤ (a/2)− 1. We have degF (xt+1) ≤ b− 2 and, hence, there exists
yit+1 ∈ Y ′ such that xt+1yit+1 /∈ E(F). Again, the fact that degF (yit+1) = a
together with |{xij | 1 ≤ j ≤ t} ∪ {xk | 1 ≤ k ≤ (a/2)}| < a show that there
exists xit+1 ∈ (X2 \ {xij | 1 ≤ j ≤ t}) with xit+1yit+1 ∈ E(F). Now the
result follows.

Define

F ′ = (F \ {xijyij | 1 ≤ j ≤ a/2}) ∪ {xjyij , xjyq−1, xijyq−1 | 1 ≤ j ≤ a/2}.

Obviously, F ′ is an even [a, b]-factor of Kp,q.

Theorem 4. Let a, b be odd, 1 ≤ a ≤ b and a + 1 ≤ p ≤ q. Then Kp,q has
an odd [a, b]-factor if and only if aq ≤ bp and p ≡ q (mod 2).

Proof. Suppose that F is an odd [a, b]-factor of Kp,q, then aq ≤ |E(F)| ≤
bp. Since the number of odd vertices is even for any graph and F has odd
degree vertices only, then |V (F)| = p + q is even. Therefore p ≡ q (mod 2).

Conversely, assume aq ≤ bp and p ≡ q (mod 2). For fixed a, b and
p, by induction on q, we will prove that Kp,q, for q ∈ {k | p ≤ k, p ≡
k (mod 2) and ak ≤ bp}, has an odd [a, b]-factor F such that degF (yi) = a
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for 0 ≤ i ≤ q − 1 and the degree difference of any two vertices of X in F is
at most 2.

Let X = {xi | 0 ≤ i ≤ p−1} and Y = {yj | 0 ≤ j ≤ q−1} be the partite
sets of Kp,q. By Lemma 2 the statement is true for q = p. Suppose that the
statement is true for q ≤ k− 2, where k ≥ p+2 and k ≡ p (mod 2). We will
prove that it is true for q = k if ak ≤ bp. Since ak ≤ bp and k ≡ p (mod 2)
it follows that a(k − 2) ≤ bp and k − 2 ≡ p (mod 2). Now by the induction
hypotheses, Kp,k−2 has an odd [a, b]-factor F ′ such that degF ′(yi) = a for
0 ≤ i ≤ k − 3 and the degree difference of any two vertices of X in F ′
is at most 2. For convenience, let us relabel the vertices of X in F ′ such
that degF ′(x0) ≤ degF ′(x1) ≤ · · · ≤ degF ′(xp−1). If degF ′(xa−1) = b then
degF ′(x`) = b for a− 1 ≤ ` ≤ p− 1. Now we have

a(k − 2) = |E(F ′)| > (b− 2)a + b(p− a)

which implies that ak > bp, a contradiction. Therefore degF ′(xa−1) ≤ b− 2.
Now define

F = F ′ ∪
a−1⋃

i=0

{yk−2xi, yk−1xi}.

Obviously, F is the required odd [a, b]-factor of Kp,q.

3. Even [a, b]-Factors for General Graphs

Kouider and Vestergaard [3] apply Lovász’ parity [g, f ]-factor theorem (The-
orem 5 below) to find simple sufficient conditions for graphs to contain even
[a, b]-factors. In this section we also apply Theorem 5 to obtain different
sufficient conditions for graphs to have even [a, b]-factors. With regard to
the edge-connectivity our result is slightly better than Part (3) of Theorem
1 and with regard to the minimum degree our result is slightly worse. But
our result has no restriction on the order of the graph.

Let g, f be be two functions from V (G) into the non-negative integers
such that g(v) ≤ f(v) for each v ∈ V (G), and let (X, Y ) be an ordered pair
of disjoint subsets of V (G). We use h(X, Y ) for the number of components
C of G \ (X ∪ Y ) with e(V (C), Y ) +

∑
v∈V (C) f(v) odd. Now let us state

Lovász’ parity [g, f ]-factor theorem.
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Theorem 5 ([5]). Let G be a graph. Let g and f map V (G) into the
non-negative integers such that g(v) ≤ f(v) and g(v) ≡ f(v) (mod 2) for
every v ∈ V (G). Then G contains a [g, f ]-factor F such that degF (v) ≡
f(v) (mod 2) for every v ∈ V (G), if and only if, for every ordered pair
(X, Y ) of disjoint subsets of V (G)

∑

y∈Y

degG(y)−
∑

y∈Y

g(y) +
∑

x∈X

f(x)− h(X, Y )− e(X, Y ) ≥ 0.

Let a, b ≥ 2 be even and let g(v) = a and f(v) = b for every x ∈ V (G) in
Theorem 5. Then we obtain

Corollary 6. G contains an even [a, b]-factor if

∑

y∈Y

degG(y)− a|Y |+ b|X| − h(X, Y )− e(X, Y ) ≥ 0(1)

for all ordered pairs (X,Y ) of disjoint subsets of V (G).

Now we prove the main result of this section.

Theorem 7. Let a, b ≥ 2 be even and let G be an a-edge connected graph
with n vertices and with minimum degree δ(G) ≥ max{a + 1, an

a+b + a− 2}.
Then G contains an even [a, b]-factor.

Proof. Let (X, Y ) be any ordered pair of disjoint subsets of V (G). Then
∑

y∈Y

degG(y) ≥ e(Y, V (G) \ Y ) ≥ e(X, Y ) + h(X, Y )

and, hence,
∑

y∈Y

degG(y)− a|Y |+ b|X| − h(X, Y )− e(X, Y ) ≥ −a|Y |+ b|X|.(2)

Thus, if −a|Y |+ b|X| ≥ 0, then inequality (1) holds and the result follows.
Now assume there is an ordered pair (X, Y ) of disjoint subsets of V (G) for
which

−a|Y |+ b|X| < 0.(3)



More on Even [a, b]-Factors in Graphs 199

If |X| ≥ δ(G)−a+2 = δ−a+2, then (3) together with |X|+ |Y | ≤ n imply

δ − a + 2 ≤ |X| < a

b
|Y | ≤ a

b
(n− |X|) ≤ a

b
(n− δ + a− 2)

and, hence, δ < an
a+b + a − 2, a contradiction. Therefore, |X| ≤ δ − a + 1.

Now we consider three cases.

Case 1. |Y | ≥ b + 1.
Obviously, e(X, Y ) ≤ |X||Y |. The fact that each odd component of G\
(X ∪ Y ) has at least one vertex leads to h(X,Y ) ≤ n− |X| − |Y |. Define

τ =
∑

y∈Y

degG(y)− a|Y |+ b|X| − h(X,Y )− e(X,Y ).

Then
τ ≥ δ|Y | − a|Y |+ b|X| − n + |X|+ |Y | − |X||Y |

= (δ − a + 1)|Y |+ ((b + 1)− |Y |)|X| − n

≥ (δ − a + 1)|Y |+ (b + 1− |Y |)(δ − a + 1)− n

= (b + 1)(δ − a + 1)− n

≥ (b + 1)
( an

a + b
− 1

)
− n =

(a− 1)bn
a + b

− b− 1.

If n ≥ a+b+2
a−1 , then τ ≥ −a+b

a+b ≥ 0 since b ≥ a. Now let n ≤ a+b+2
a−1 . Then,

since δ ≥ a + 1, we have

τ ≥ (b + 1)(δ − a + 1)− n ≥ 2(b + 1)− a + b + 2
a− 1

≥ 0.

Therefore, (1) holds and, hence, the theorem is true.

Case 2. |Y | ≤ b and |X| is even.
Notice that we still have −a|Y | + b|X| < 0 and |X| ≤ δ − a + 1. From
|X| < a

b |Y | ≤ a we have |X| ∈ {0, 1, 2, . . . , θ}, where θ ≤ min{δ−a+1, a−2}.
Let h1 = h1(X,Y ) be the number of odd components C of G \ (X ∪ Y )
with e(C, Y ) ≤ a − |X| − 1, and let h2 = h2(X, Y ) be the number of odd
components C of G \ (X ∪ Y ) with e(C, Y ) ≥ a− |X|+ 1. We consider two
subcases.
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Subcase 2.1. |Y | ≤ b and |X| = 0.
Since G is a-edge connected and |X| = 0 it follows that e(X,Y ) = 0, h1 = 0
and, hence, h(X,Y ) = h2. Furthermore, since e(C, Y ) ≥ a+1−|X| = a+1
for every odd component C of G\(X∪Y ) = G\Y, we have

∑
y∈Y degG(y) ≥

(a + 1)h2. So we have

τ =
∑

y∈Y

degG(y)− a|Y |+ b|X| − h(X,Y )− e(X, Y )

≥ (a + 1)h2 − a|Y | − h2

= ah2 − a|Y |.

If |Y | ≤ h2 then (1) holds. Now let |Y | > h2. Since δ ≥ a + 1, we have

τ ≥ δ|Y | − a|Y | − h2 ≥ (a + 1)|Y | − a|Y | − h2 > 0.

Therefore, (1) holds in this case.

Subcase 2.2. |Y | ≤ b and 2 ≤ |X| ≤ θ, where θ = min{δ − a + 1, a− 1}.
Notice that |X| ≤ a− 2 since |X| is even. We have

τ =
∑

y∈Y

degG(y)− a|Y |+ b|X| − h(X, Y )− e(X, Y )

≥ [h1 + (a− |X|+ 1)h2 + e(X, Y )]− a|Y |+ b|X| − h1 − h2 − e(X,Y )

= (a− |X|)h2 − a|Y |+ b|X|.

If |Y | ≤ (a−|X|)h2+b|X|
a then (1) holds. Now let |Y | > (a−|X|)h2+b|X|

a . Then

h2 <
a|Y | − b|X|

a− |X| ≤ ab− b|X|
a− |X| = b.

Since b|X| − e(X,Y ) ≥ b|X| − |X||Y | = (b− |Y |)|X| ≥ 0 we obtain

τ ≥
∑

y∈Y

degG(y)− a|Y | − h(X,Y ) ≥ (δ − a)|Y | − h1 − h2.(4)

By assumption we see that δ−|X| ≥ a− 1. We show that an h1-component
C of G has at least δ − |X| + 1 vertices. Let |C| = k and c1 ∈ C. Then
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a + 1 ≤ δ ≤ degG(c1) ≤ (a− |X| − 1) + |X|+ (k − 1), which implies k ≥ 3.
Moreover,

k|X|+ (a− |X| − 1) + k(k − 1) ≥
∑

c∈C

degG(c) ≥ kδ.

This leads to k(k − 1) ≥ (k − 1)(δ − |X|) + δ − a + 1. Since k is an integer,
we have

k ≥ δ − |X|+ δ − a + 1
k − 1

≥ δ − |X|+ 2
k − 1

,

which implies k ≥ δ − |X|+ 1. Therefore

h1 ≤ n− |Y | − |X| − h2

δ − |X|+ 1
.(5)

By assumption δ − |X|+ 1 > δ − a + 2 ≥ an
a+b . This leads to

a + b

a
>

n

δ − |X|+ 1
.(6)

Now by (4) we have

τ ≥ (δ − a)|Y | − h1 − h2

≥ (δ − a− 1)|Y |+ (|Y | − h2)− n
δ−|X|+1 +

|Y |+ |X|+ h2

δ − |X|+ 1

≥ (δ − a− 1)|Y |+
(

(b− h2)|X|
a

)
− n

δ − |X|+ 1

≥ (δ − a− 1)|Y | − a + b

a
.

If δ ≥ a + 2 then τ ≥ |Y | − a+b
a ≥ 0 since |Y | > (a−|X|)h2+b|X|

a ≥ 2b
a . Now let

δ = a+1. Then by assumption |X| = min{δ−a+1, a−1} = 2, δ−|X|+1 = a,
a + b > n and a ≥ 4. Since h1 + h2 ≤ n − |Y | − |X| ≤ a + b − |Y | − 2, we
have

τ =
∑

y∈Y

degG(y)− a|Y |+ b|X| − h(X,Y )− e(X, Y )

≥ δ|Y | − a|Y |+ 2b− (a + b− |Y | − 2)− 2|Y |
= (δ − a− 1)|Y |+ b− a + 2 ≥ 0.
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Case 3. |Y | ≤ b and |X| is odd.
Notice that 1 ≤ |X| ≤ θ, where θ = min{δ−a+1, a−1}. Let h1 = h1(X,Y )
be the number of odd components C of G \ (X ∪Y ) with e(C, Y ) ≤ a−|X|,
and let h2 = h2(X,Y ) be the number of odd components C of G \ (X ∪ Y )
with e(C, Y ) ≥ a− |X|+ 2. We have

τ =
∑

y∈Y

degG(y)− a|Y |+ b|X| − h(X, Y )− e(X, Y )

≥ [h1 + (a− |X|+ 2)h2 + e(X, Y )]− a|Y |+ b|X| − h1 − h2 − e(X,Y )

= (a− |X|+ 1)h2 − a|Y |+ b|X|.

If |Y | ≤ (a−|X|+1)h2+b|X|
a then (1) holds. Now let

|Y | > (a− |X|+ 1)h2 + b|X|
a

.(7)

Then

h2 <
a|Y | − b|X|
a− |X|+ 1

≤ ab− b|X|
a− |X|+ 1

< b.

Since b|X| − e(X,Y ) ≥ b|X| − |X||Y | = (b− |Y |)|X| ≥ 0 we obtain

τ ≥
∑

y∈Y

degG(y)− a|Y | − h(X,Y ) ≥ (δ − a)|Y | − h1 − h2.(8)

By assumption we see that δ−|X| ≥ a− 1. We show that an h1-component
C of G has at least δ − |X| + 1 vertices. Let |C| = k and c1 ∈ C. Then
a + 1 ≤ δ ≤ degG(c1) ≤ (a − |X|) + |X| + (k − 1), which implies k ≥ 2.
Moreover,

k|X|+ (a− |X|) + k(k − 1) ≥
∑

c∈C

degG(c) ≥ kδ.

This leads to k(k− 1) ≥ (k− 1)(δ−|X|)+ δ−a and, hence, k ≥ δ−|X|+1.
Therefore h1 ≤ n−|Y |−|X|−h2

δ−|X|+1 . By assumption

δ − |X|+ 1 ≥ δ − a + 2 ≥ an

a + b
.
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This leads to a+b
a ≥ n

δ−|X|+1 . Now by (8) we have

τ ≥ (δ − a)|Y | − h1 − h2

≥ (δ − a− 1)|Y |+ (|Y | − h2)− n

δ − |X|+ 1
+
|Y |+ |X|+ h2

δ − |X|+ 1

≥ (δ − a− 1)|Y |+
(

(b− h2)|X|+ h2

a

)
− n

δ − |X|+ 1

≥ (δ − a− 1)|Y | − a + b

a
.

Let δ ≥ a+2. If |X| 6= 1 or h2 6= 0 then τ ≥ |Y |− a+b
a ≥ 0 by (7). If |X| = 1

and h2 = 0 then |Y | > b
a and

τ ≥ (δ − a)|Y | − h1 − h2 ≥ 2|Y | − a + b

a
≥ 2b

a
− a + b

a
≥ 0.

Now let δ = a+1. Then by assumption |X| = 1 and |Y | > h2 + b
a . If h1 = 0

then τ ≥ (δ − a)|Y | − h1 − h2 = |Y | − h2 ≥ 0. Now assume h1 6= 0. Since
δh1 + h2 ≤ n− |Y | − |X| we obtain

h1+h2≤ n−|Y |−|X|−ah1≤ (a + 1)(a + b)
a

−|Y |−1−ah1 = a+b+
b

a
−|Y |−ah1.

Now we have

τ =
∑

y∈Y

degG(y)− a|Y |+ b|X| − h(X,Y )− e(X, Y )

≥ δ|Y | − a|Y |+ b− a− b− b

a
+ |Y |+ ah1 − |Y |

= |Y | − b/a + ah1 − a > 0.
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