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Abstract

Let G be a triangle-free graph with §(G) > 2 and 04(G) > |V (G)|+
2. Let S C V(G) consist of less than 04/4 + 1 vertices. We prove the
following. If all vertices of S have degree at least three, then there
exists a cycle C' containing S. Both the upper bound on |S| and the
lower bound on o4 are best possible.
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1. Introduction

Let G = (V(G), E(G)) be a graph, where V(G) is a finite set of vertices
and E(G) is a set of unordered pairs of two different vertices, called edges.

*Supported by JSPS. KAKENHI (14740087).
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All notation and terminology not explained is given in [6]. For simplicity,
the order of a graph is denoted by n and G — V(H) by G — H. Let

k
or(G) = min{ ng(xi) | 21,29, ...,z are independent},

=1

where dg(x;) is the degree of a vertex z;. If the independence number of G
is less than k, then we define o (G) = co.

Ore [11] showed that a graph G with oo > n is hamiltonian and Bondy [3]
proved that if G is a 2-connected graph with o3 > n+ 2, then for any longest
cycle C, E(G — C) = (. Enomoto et al. [9] generalized this theorem as fol-
lows: if G is a 2-connected graph with o3 > n + 2, then p(G) — ¢(G) < 1,
where p(G) and ¢(G) are the order of longest paths and the circumference,
respectively.

In this paper we study triangle-free graphs. For triangle-free graphs
with o3 > (n + 1)/2, all longest cycles are dominating [16]. This lower
bound is almost best possible by the examples due to Ash and Jackson [1].
Corresponding to the theorem by Enomoto et al., the following result has
been proven.

Theorem 1 ([13]). Let G be a triangle-free graph with 6 > 2. If o4 > n+2,
then for any path P, there exists a cycle C' such that [V(P —C)| <1 or G
1s isomorphic to the graph in Figure 1.

Figure 1

In the literature the question has been studied whether for a given graph
G any subset S of vertices of restricted size has some cycle passing through
it. Many results on general graphs and graph classes are known (see, e.g.,
[2,4,5,7,8,10, 12, 14, 15, 17]). For triangle-free graphs the following result
has been proven.
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Theorem 2 ([13]). Let G be a triangle-free graph with 6 > 2. If o4 > n+2,
then for any set S of at most § vertices, there exists a cycle C containing S.

In this paper, we show the following related theorem.

Theorem 3. Let G be a triangle-free graph with § > 2 and o4 > n+ 2. Let
S C V(G) consist of less than o4/4 + 1 vertices. If all vertices of S have
degree at least three, then there exists a cycle C' containing S.

The several bounds in these theorems are all tight. We show this by a
number of counter examples. For these counter examples we use the fol-
lowing notations. We denote the complement of graph G = (V,E) by
G = (V,(V x V)\E). For two graphs G1 = (V1, E1) and Go = (Va, E»),
we denote their union by G1 U Ge = (V1 U Vo, By U E3) and their join by
G1xGy= (V1 UVy, By UEsU (V) x V3)). A complete graph is a graph with
an edge between every pair of vertices. The complete graph on n vertices is
denoted by K,,. The complete bipartite graph Ky, * K, is denoted by Ky .

e Consider the graph K 1 * Kj, * K1 * Ki * Kx_1 with 6 = (n+1)/4 and
o4 = n+ 1. If we choose two vertices from each Kj,, obviously there is
no cycle containing the vertices. See Figure 2(i). Hence, in Theorem 2
and Theorem 3, the lower bound on o4 is best possible.
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Figure 2

e Consider the graph Kj_o * Kj, * Ko * Ki * K_o with 6 = (n +2)/4 and
o4 = n + 2. There is no cycle containing all & = (n + 2)/4 vertices of
the left K and a vertex in the right Ky ;_o. See Figure 2(ii). Hence, in
Theorem 2 and Theorem 3, the upper bound on |S| is best possible.
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We cannot relax the degree condition of vertices in S in Theorem 3 into
“all vertices of S have degree at least two”. For example in the graph in
Figure 1, 04/4+ 1 = 10/4 4+ 1. So we can choose three vertices. However,
if we choose the three white vertices of degree two in the graph, obviously
there is no desired cycle. There is even a class of counter examples of large
order as follows. Consider the graph Ky for any k > 3. Let z,2’ be two
vertices in the same partite set of this graph. Add two extra vertices w, w’
and add all edges between {z,2'} and {w,w’}. This way we obtain a graph
Gy, with 04 = 2k+4 = n+2 > 10. Now let S C V(Gj) consist of the vertices
w,w’ and some vertex u not in {z,z'}. Then |S| =3 < 10/44+1 < o4/4+1.
However, the only cycle in G}, that contains both w and w’ is the cycle on
the four vertices x,z’,w,w’. This means that G} does not contain a cycle
passing through S. We note that S contains two vertices of degree two. The
following conjecture seems to hold.

Conjecture 4. Let G be a triangle-free graph with § > 2 and o4 > n + 2.
Let S C V(G) consist of less than o4/4 + 1 vertices. If S contains at most
one vertex of degree 2, then there exists a cycle C containing S.

Finally, we give some additional definitions and notations. The set of all
the neighbours of a vertex x € V(G) is denoted by Ng(x) or simply N(z),
and its cardinality by dg(x) or d(z). For a subgraph H of G, we denote
Ng(x) N V(H) by Ngy(z) and its cardinality by dg(z). For simplicity, we
denote |V(H)| by |H| and “u; € V(H)” by “u; € H”. The set of neighbours
Uper Na(v) \ V(H) is written by Ng(H) or N(H), and for a subgraph
F C G, Ng(H)NV(F) is denoted by Np(H). Especially, for an edge
e = zy, we denote N(e) = (N(z) UN(y))\{z,y} and d(e) = |N(e)|.

Let C = v1vz...v,v1 be a cycle with a fixed orientation. The segment
ViVit1 - . . v; is written by v; C'v; where the subscripts are to be taken modulo

«—
|C|. The converse segment v;v;_ ...v; is written by v; C'v;. The successor
of u; is denoted by u;” and the predecessor by u; . For a subset A C V(C),
we write {u;" | u; € A} and {u; |u; € A} by AT and A~ respectively.

2. The Proof of Theorem 3

In the proof we make use of the following lemma. A cycle C' in a graph G
is called a swaying cycle of a subset S C V(G) if |C'N S| is maximum in all
cycles of G.
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Lemma 5. Let G be a connected graph such that for any path P, there
exists a cycle C such that |P—C| < 1. Let S C V(G). Then for any longest
swaying cycle C of S, S C V(C) or N(x) C C for anyxz € S —C.

Proof.Let S C V(G) and C a longest swaying cycle of S. Suppose S—C' #
(). For any vertex x € S — C, there is a path @ joining x and C. Let P
be a longest path containing V(C' U Q). Then there exists a cycle D such
that |P — D| < 1. If 2 has neighbours in G — C, then |P| > |C| + 2 and so
|D| > |C| + 1. Because |DN S| > |C N S|, this contradicts the assumption
that C is a longest swaying cycle. Hence Ng_¢(z) = 0. |

Now let G be a graph with § > 2 and o4 > n+2. Let S C V(G) be a set of
less than o4/4 + 1 vertices that all have degree at least three. Let C be the
set of all longest swaying cycles of S. Suppose a cycle in C does not contain
all vertices in S.

Claim 1. If there exists a swaying cycle D of S and v € S — D such that
N(v) C V(D), then d(v) < |DN S|, and so d(v) < g4/4.

Proof. If d(v) > |D N S|, then there exist y,2 € N(v) such that y* = 2
— —
or yt* D27 NS = ) because N(v) C V(D). Then the cycle yvz Dy contains

|DNS|+1 vertices in S. This contradicts the assumption that D is a swaying
cycle. Hence d(v) < |DNS| < |S]|—1< 04/4. |

Note that our statement holds if GG is isomorphic to the graph in Figure 1.

Hence Claim 1 together with Theorem 1 and Lemma 5 implies that

(1) d(v) < o4/4 forany D € C and v € S — D.

Let C = ujuz - - - u)¢| € C such that max{d(v) | v € §—C} is maximum in C,
and let x € S — C such that d(z) is maximum in S — C. Then d(z) < 04/4
by (1). Let N(x) = {ur(1), Ur(2), - - - » Ur(d(z))} Which occur on C in the order
of their indices. Then clearly

(2) N(z)T is an independent set;

otherwise there is a cycle containing |C' N S| + 1 vertices of S. As G is
triangle-free, a vertex uj(l) € N(z)* is not adjacent to z. If u:f(l) is adjacent

to a vertex y € G — (C' U z), then the order of the path yuj(l)g’)uT(l)x is
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|C| 4+ 2. By Theorem 1, there is a cycle D’ such that |[D'N S| > |C' N S| and
|D'| > |C| + 1. This is a contradiction. Therefore

(3) N(uj(l)) C V(C) for uj(l) € N(x)™".

Let I; = uj(l)C'uT(IH) and J; = u:.r(l_i_l)cur(l)’ and

L= {uj(i) | d(uj(i)) is maximum in N(z)*}.

Because 04/4 > d(z) > 3 and N(z)* Uz is an independent set, there is a
vertex in N (x)" whose degree is at least 04/4. Hence the degree of a vertex
in L is greater than 04/4._>If u:f(;r) € L:is adjacent to u:_r(j) € (N(z)\ur))",
then the cycle uj(guj(j)(}’ Ur () TUr(j) C u:_r(; _z)md u:f(i) € S contradict (1). If
uj(j)x € E(G), then the cycle uT(i)xui(;CuT(i) and u:_r(i) contradict (1).
Hence

(4) u:-r(er) € L™ is adjacent to none of (N () \ u,¢;))" Uz,

For each u:_r(l) € N(z)*, we denote the edge uj(l)uj(;r) by €.

Claim 2. For any u:_“(l.) € L, it holds that:

1. Ny, (e;)” NNy, (uj(m)) =0.
2. NJZ,(.T)—’— N NJZ.(GZ') = (.

3. Ny(ei) NNy, (uj_'(Hl))_ = 0.

Proof. Suppose there is a vertex w; € Np,(e;)” N Ny, (u:_“( and let

y € V(e;) N N(u;"). Then the cycle

i+l))’

— 4 — = 4
D= yCuluT(iH) Cury@ur(ip1) Cuj'y

contains all vertices of V(C) U x if y = u:f(i), ie, |D| = |CNS|+ 1.
See Figure 3(i). This contradicts the assumption that C € C. If y =
u:_r(j), then D € C and d(u:_r(i)) > o04/4. This contradicts (1). Hence

Ny, (ei)” N Ny, (u+(z+1)) = (). Similarly, we can show the other statements.

See Figure 3(ii)—(iii). |
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Let a; = [Ny, (z)" N NJi(uj(iH))*]. By this number, we will divide our
argument into three cases, and in each case, the following claim will be
used.

Claim 3. For any v Jiy € Lin > d(u T(Z))—Fd( +(+))+d( T(Z+1))+d(x)—2—ai.
Especially if the equality holds, then uT(i 1) € N(e;) and uT(z 41 € S, and

Ji = (sz (l’) \uT(Z))+ UNy, (61) U Ny, (uj(l_g_l)) :

Proof. By the previous claim, we have:
L] > [Ny (e)” UNG, (u:(m)) U {uf )
> [N (ea) ™|+ N5 (wf )]+ )
= dp(e5) +dp,(u) ;1) + 1,
(N, (@) \ i) U N (e0) U N (wf40) 7|
> (N () \ r) |+ [N (ed)| + N (1)) | —

(
dj(x) —1+dy(e) + dj,(u 7—(1+1)) Q.

| Ji| >

Vv
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Therefore
n > |Cl+dg-c(e) + {z}| = L] + | Ji| + da-c(ei) + 1
> (dr,(ei) + dr,(uwfy;y ) + (d(2) + dy,(eq) + du,(wfy ) — o)
+dg-c(e) +1
= (dr,(e1) + dy,(e:) + da-c(eq)) + (dr, (wfy ) + du (]l )
+ (dy(2) +1) — o
= d(e;) +d(uf, ) +d(z) —

= d(uj(i)) + d(uj(j)) + d(u:f(iﬂ)) +d(z) —2— q.

If equalities hold in the above inequalities, then

[Jil = (N, (%) \ i)™ U N (eq) U N, (wfi; )7
also holds and so

Ji = (N () \ ur)) " U Ny, (1) U Ny (ufi; )

Because G is triangle-free, uj(ltrl) ¢ N(uj(iﬂ))_ and uT(H—l ¢ N(z)*, and

T(l+1) S N(el)
Let y = V(e;) N N (ul

SO’LL

i +1)) and

— —
C, = yCUT(i—O—l)qu(i) Cuj(;r_’_l)y

Suppose u H—l) ¢ S. Because C’ does not contain |C'N S|+ 1 vertices of S,

we have y # u, )andu()ES Therefore N (u ())CV(C’)by()and()

This contradlcts Claim 1 as u? (i) € L. See Figure 3(iv). Hence uj(i +1) €5
|

is adjacent to ufr € (Ny,(z)\ UT(i))++

+ : +
For Uz € L, if the vertex u 5)

T(i+1)
then the cycle

C' =t el Cu
= Uy T(s) Ur(i+1)PUr(s) & Ur(iyr)
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is a longest swaying cycle of S. Hence uj(s) € S; otherwise |[C' N S| >
|C'N'S| + 1. Therefore from (1), it holds that

(5) u;f(s) € S and d(uj(s)) < 04/4 for all uj(s) € Ny (x)T NNy, (u:_r(iﬂ))_.

If there are three vertices in Ny, (z)T NN, (u:_r(i_i_l))_, then the three vertices

and z are independent by (2), however, the sum of these degrees are less
than o4. Therefore, o; < 2. Now we divide our argument.

Case 1. There is u, () € L such that o; = 1.

Let {UT(S)} - NJ( )+ mNJ( T(i+1)) . By (5)a d( T(S)) < 04/4 < d( T( ))
and by (2) and (4), {u
Claim 3, it holds that

Uz +1), + ,:n} is an independent set. Hence by

n > d(uj(i)) + d(uj(j)) + d(uj(i_H)) +d(z)—2-1
> d(uj(;r)) + d(uj(iﬂ)) + d(ui’(s)) +d(z) + (d(uj(i)) - d(uj(s))) -3

o4+ (d(uj(i)) - d(u:_r(s))) -3

v

> (n+2)+1-3=n.

Therefore all equalities have to hold in the above inequalities, and so we
have

(6) n=d(ul,) +dwfl) +dul, ) +d@) =3,
(7) d(uj(z.)) = d(ui(s)) + 1.

Because uj(iﬂ) T(s)CUT(Z+1)£I}UT(S)CUT(Z+1) € C, we have d(z) > d(u T(S))
by the maximality of d(x). Then d(x) + 1 > d(uj(s)) +1= d(uT(i)) > 04/4
by (7). On the other hand, d(z) +1 < |[CNS|+1 < |S] < 04/4+1 by

Claim 1. Thus
%Sd(m)—i—lg\S\ <%+1,

e., |S| = d(x) + 1. Therefore |u C'u s S| =1 for all I < d(z);
otherwise we can easily obtain a cycle containing |C'N S|+ 1 vertices of S
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as in the proof of Claim 1. However, by (6) and Claim 3, uj(iﬂ) € S, and
by (5), u:_r(s) € S, and hence

Cu- ﬁS—u()C’u( NS =0.

(H—l) 7(i+2) s+1)
Then, the cycle v (i+1) T(S)Cu (H_Q)qu(erl)Cu (i+1) contains |C'N S|+ 1
vertices in S. See Figure 4. This contradicts the assumption that C' is a
swaying cycle.

Uiy sl

.
Uzivny

Figure 4

Case 2. There exists u, +6) € L such that o; = 2.

Let {u +(—:5_)} = NJi( )+ NNy, (uq-(i+1)) y (2), {u ) T(t j(z+1)}
is an independent set. By (5), both of the degrees of uT(s) and u:_r(t) are less
than o4/4, and so d(u. ) > 04/4. Thus, it holds that

7(s)?

7(i+1)

d(u

T(S)) <oyg/4 < d(uj(i)) and d(u T(t)) < o4/4 <d(u

T(Z+1))
Therefore by Claim 3,
n > d(uj(i)) + d(ul i )) +d(u (z+1)) +d(z)—2-2
> d(u;"(j)) + d(ui(s)) + d(uj(t)) + d(z)

—i—(d(uj(i)) - d(uj(s))) + (d(u:-r(i_:,_n) - d(“j(t))) -4
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v

04+ (d(uj(i)) - d(uj_'(s))) + (d(uj(i+1)) - d(uj(t))) —4

> n+2)+1+1—-4=n

because {uj;,uj(s),uj(t),x} is an independent set by (2) and (4). Thus all
equalities hold in the above inequalities, and we can use the same arguments
as in Case 1.

Case 3. a; = 0 for any u,(;+ € L.
For any uj(s) € (N(IE) \ {UT(i)7uT(i+1)})+7

n > d(uj(i)) + d(uj(f)) + d(ui(iﬂ)) +d(x) —
> d(uj(j)) + d(uj(iﬂ)) + d(uj(s)) +d(x) + (d(uj(i)) — d(uj(s))) -2

oy + (d(u Uz )) d(“j(s))) —2

>n+2)—2=n

v

by Claim 3 because {u:_r(;;,u U (s),x} is an independent set from (2)

+
T(i+1)’
and (4). Therefore all equalities hold in the above inequalities, and so we

have:

(8) n=d(u ())—i-d( (l))—i-d( it 1))+d(m)—2:04—2,

9) d(uj(i)) = d(u:f(s)).
From (9), we obtain uj(s) € L, and so, by symmetry, N(z)* C L.
Claim 4. ui’(i) is adjacent to all of {u | s#i}.

Proof. By (8) and Claim 3, u (z+1) € N(e;). Because u+( ) €L ul
is not adjacent to u -y PY (4). Hence u:f(j) :f(;rl) € E(G)

Suppose the vertex u+(+) is not adjacent to ul ( (s # 4,0+ 1). If
“jz+1 j(?r ¢ E(G),ie., u;f(Jsr) ¢ N(u T(i-i—l)) , then u+(+) € N(e;) by (8) and
e L.

Claim 3, and so uj(l) j(;r) € E(G). This contradicts (4) because u

T('L+1)

7(s)
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Assume u+( ) j(+)+ € E(GQ). By (4), (8) and (9) we have

d( Ur(s )) + d(u 7—(1)) + d(u T(Z_H)) + d(x)

04
= d(uj(l.)) + d(uj(j)) + d(uj(iﬂ)) +d(x)

= d(ul, s )) + d(u (l)) +d(u’ Tt )) + d(z).

v

Hence d(u},
Let

)>d( . 20'4/4.

®) )

+

D = T(i4+1)°

“«—
T(z+1) Cu 7(s) TUr(i41) C“j(l_;r“

By (3), N(u? )) Cc V(C). As ui(s) € L, the vertex u " is not adjacent

T(s 7(s)

to z. If ul ™ is adjacent to the vertex y € G — C, then the order of the

7(s)
path yu (S)CuT(H_l) ( ) CuT(ZH x is |C| 4+ 2. As in the proof of (3), this

contradicts the assumption that C' € C by Theorem 1. Hence, we obtain

N(uj('g)) C V(C). Thus N(es) C V(D). Because |[DNS| < |CNS| < o4/4,

d(es) > 04/2 —2>04/4>|SND|.

Therefore, there exist vertices y, 2 € DN N (es) such that y* = z or y*l_jz*ﬁ
S = and y+5z_ NN (es) = 0. If y and z are adjacent to distinct ends of eg,
say yu:f(s)7 zujf(fg) € E(G), then yu (5) T(S)sz contains |C' N S|+ 1 vertices
of S. Hence, by symmetry, we may assume uj(s) is adjacent to both y and z.
Then the cycle D' = yuj(s)zﬁ)y is a swaying cycle and N(u:_r(i')) C N(D").
This contradicts Claim 1 because d(uj(i)) > o4/4. |

+

By symmetry, the vertex u:_r(Jr is adjacent to u:_r(s), and so there is the

i+1)
AT a s

triangle Ur iy U (1) U (s This is a contradiction.
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