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Abstract

For paths Pn, G. Chartrand, L. Nebeský and P. Zhang showed that
ac′(Pn) ≤ (

n−2
2

)
+2 for every positive integer n, where ac′(Pn) denotes

the nearly antipodal chromatic number of Pn. In this paper we show
that ac′(Pn) ≤ (

n−2
2

) − n
2 − b 10

n c + 7 if n is even positive integer and
n ≥ 10, and ac′(Pn) ≤ (

n−2
2

) − n−1
2 − b 13

n c + 8 if n is odd positive
integer and n ≥ 13. For all even positive integers n ≥ 10 and all odd
positive integers n ≥ 13, these results improve the upper bounds for
nearly antipodal chromatic number of Pn.
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1. Introduction

Radio k-colorings are generalizations of ordinary colorings of graphs, which
were inspired by (FM Radio) Channel Assignments Problem (see [5, 7])
and introduced by G. Chartrand, D. Erwan, F. Harary and P. Zhang [1].
For a connected graph G of order n and diameter d and a integer k with
1 ≤ k ≤ d, a radio k-coloring of G is a function c: V (G) → N, such that
d(u, v)+ |c(u)− c(v)| ≥ k +1 for every pair u and v of distinct vertices of G,
where d(u, v) denotes the distance between u and v (the length of a shortest
u − v path) in G. Clearly, radio 1-colorings and ordinary colorings are
synonymous. The value rck(c) of a radio k-coloring c of G is the maximum
color assigned to a vertex of G; while the radio k-chromatic number rck(G)
of G is min{rck(c)} taken over all k-coloring c of G. In particular, radio d-
colorings are referred to as radio labelings and the radio d-chromatic number
is called the radio number. Radio (d − 1)-colorings are referred to as radio
antipodal coloring or, more simply, as an antipodal coloring, and the radio
(d−1)-chromatic number is called the antipodal chromatic number, denoted
by ac(G). Radio k-coloring and radio labeling of graphs were studied in
[1, 2]. Radio antipodal coloring of paths were studied in [3, 4, 6].

Furthermore, G. Chartrand, L. Nebeský and P. Zhang gave the concepts
of nearly antipodal colorings in [4]. For a connected graph G of diameter
d, a nearly antipodal coloring of G is a function c: V (G) → N, such that
d(u, v) + |c(u) − c(v)| ≥ d − 1 for every two distinct vertices u and v of G.
The value ac′(c) of a nearly antipodal coloring c of G is the maximum color
assigned to a vertex of G. The nearly antipodal chromatic number ac′(G) of
G is min{ac′(c)} taken over all nearly antipodal colorings of G (In fact, for
d ≥ 3, a nearly antipodal coloring is a radio (d− 2)-coloring).

Clearly, if G is a connected graph of diameter 1 or 2, then ac′(G) = 1;
while if diam(G) = 3, then ac′(G) is the chromatic number of G. Thus nearly
antipodal colorings are most interesting for connected graphs of diameter 4
or more. For this reason, the nearly antipodal chromatic number of paths
Pn were investigated in [4] by G. Chartrand, L. Nebeský and P. Zhang. And
they showed that ac′(P5) = 5, ac′(P6) = 7, ac′(P7) = 11 and ac′(P8) = 16.
Moreover, they presented an upper bound for the nearly antipodal chromatic
number of paths Pn for every positive integer n as follows.

Theorem 1.1 ([4]). If n is a path of order n ≥ 1, ac′(Pn) ≤ (
n−2

2

)
+ 2.
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2. Our Rresults and the Idea of the Proof

In this paper we will provide an improved version for Theorem 1.1. We will
show that

Theorem 2.1.

1. If Pn is even and n ≥ 10, then ac′(Pn) ≤ (
n−2

2

)− n
2 − b10

n c+ 7;

2. If n is odd and n ≥ 13, then ac′(Pn) ≤ (
n−2

2

)− n−1
2 − b13

n c+ 8.

Clearly, it holds that −n
2 − b10

n c + 7 ≤ 1 for all even integers n ≥ 10, and
−n−1

2 − b13
n c+ 8 ≤ 1 for all odd integers n ≥ 13. Thus, for all even integers

n ≥ 10 and all odd integers n ≥ 13, Theorem 2.1 improves the upper bounds
of ac′(Pn).

We will prove Theorem 2.1 in Section 3, and the proof will virtually
provide a nearly antipodal coloring c for paths Pn with ac′(c) that is equal
to the bound presented in Theorem 2.1. The idea of performing the coloring
c is based on pseudo greedy algorithm: Let V (Pn) = {p1, p2, . . . , pn}. At
first, we use the color c1 = 1 to color some vertex pn1 ∈ {p1, p2, . . . , pn},
where pn1 is the (a) central vertex of Pn. Suppose that for 1 ≤ i ≤ n − 1
the vertices in {pn1 , pn2 , . . . , pni} ⊂ {p1, p2, . . . , pn} have been colored with
c(pnj ) = cj for all 1 ≤ j ≤ i, then we choose a color ci+1 ∈ N as small
as possible to color one vertex pni+1 ∈ V (Pn)\{pn1 , pn2 , . . . , pni}, such that
d(pni+1 , pnj )+|c(pni+1) − c(pnj )| ≥ d − 1 for all 1 ≤ j ≤ i. And if there
are two vertices can be chosen for pni+1 , then we take pni+1 close to central
vertices of Pn as near as possible. Finally, we obtain that ac′(c) = c(pnn)
and hence ac′(Pn) ≤ac′(c). In Section 4 we will give some examples which
present the nearly antipodal coloring c for some paths Pn with ac′(c) showed
in Theorem 2.1 by our methods.

3. Proof of Theorem 2.1

Proof. 1. n is even and n ≥ 10. Firstly, we let n ≥ 12, note that
−b10

n c = 0, it suffices to show that ac′(Pn) ≤ (
n−2

2

)− n
2 +7. Write n = 2k =

10 + 2(4p + q), where p ∈ {0, 1, 2, . . .} and q ∈ {1, 2, 3, 4}. Then we have
that k = 5 + (4p + q) and d− 1 =diam(Pn)− 1 = 2k − 2.

We denote the vertices of Pn by x′1, x
′
2, x

′
3; v′1, v

′
2, . . . , v

′
2p−1, v

′
2p;

w1, w2 . . . , wq; v2p, v2p−1, . . . , v2, v1; x2, x1; y1, y2; u1, u2, . . . , u2p−1, u2p;
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zq, . . . , z2, z1; u′2p, u
′
2p−1, . . . , u

′
2, u

′
1; y′3, y

′
2, y

′
1 (see Figure 1). And we write

V1 ={x1, x2; y1, y2; x′1, x
′
2, x

′
3; y

′
1, y

′
2, y

′
3},

V2 ={v1, u2, v3, u4, . . . , v2p−1, u2p; v′1, v
′
2, . . . , v

′
2p−1, v

′
2p; u

′
1, u

′
2, . . . , u

′
2p−1, u

′
2p},

V3 ={w1, w2, . . . , wq; z1, z2, . . . , zq; v2p, u2p−1, . . . , v4, u3, v2, u1}.

In the following we will present a coloring c for Pn by three steps, such that

(1) d(u, v) + |c(u)− c(v)| ≥ d− 1 = 2k − 2

holds for all distinct vertices u, v ∈ V1 ∪ V2 ∪ V3 = V (Pn), and ac′(c) =(
n−2

2

) − n
2 + 7(note that V2 = ∅ if p = 0, and it is easy to see that the

following proof is also suitable for V2 = ∅).

Step 1. Color the vertices in V1 (see Figure 1).

Let

c(x1) = 1 (x1 is an central vertex of Pn);
c(y′1) = c(x1) + (k − 2) = k − 1, c(x′1) = c(x1) + (k − 1) = k;
c(y1) = c(x′1) + (k − 2) = 2k − 2;
c(x′2) = c(y1) + k − 1 = 3k − 3, c(y′2) = c(x′2) + 1 = 3k − 2;
c(x2) = c(x′2) + (k + 1) = 4k − 2;
c(y′3) = c(x2) + (k − 1) = 5k − 3, c(x′3) = c(y′3) + 3 = 5k;
c(y2) = c(x′3) + (k − 1) = 6k − 1.

Then by the definition of c and the value of d(u, v) for u, v ∈ V1, it is easy
to verify that the following claim holds.

Claim 3.1. For all distinct vertices u, v ∈ V1, the inequality (1) holds. At
the same time, maxv∈V1 c(v) = c(y2) = 6k − 1 and maxv∈V1\{y2} c(v) =
c(x′3) = 5k.

Step 2. Color the vertices in V2 (see Figure 1).

For i = 1, 2, . . . , p, let
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c(v′2i−1) = c(y2) + (2i− 1)k + 3(2i− 2) + 2[1 + 2 + . . . + (2i− 2)]
+(2i− 2)(k − 1),

c(u′2i−1) = c(y2) + (2i− 1)k + 3(2i− 1) + 2[1 + 2 + . . . + (2i− 1)]
+(2i− 2)(k − 1);

c(v2i−1) = c(y2) + (2i− 1)k + 3(2i− 1) + 2[1 + 2 + . . . + (2i− 1)]
+(2i− 1)(k − 1);

c(u′2i) = c(y2) + (2i)k + 3(2i− 1) + 2[1 + 2 + . . . + (2i− 1)]
+(2i− 1)(k − 1),

c(v′2i) = c(y2) + (2i)k + 3(2i) + 2[1 + 2 + . . . + (2i)] + (2i− 1)(k − 1);
c(u2i) = c(y2) + (2i)k + 3(2i) + 2[1 + 2 + . . . + (2i)] + (2i)(k − 1).

Then we have the following claim.

Claim 3.2. For all distinct vertices u, v ∈ V1 ∪ V2, the inequality (1) holds.
At the same time, it holds that maxv∈V1∪V2 c(v) = c(u2p) = 6k − 1+
2p(2k + 2p + 3) and maxv∈(V1∪V2)\{u2p} c(v) = c(v′2p) = 5k + 2p(2k + 2p + 3).

In fact, note d − 1 = 2k − 2. Since that d(y2, v
′
1) = k − 2, d(y2, u

′
1) =

k − 5, d(v′1, u
′
1) = 2k − 7, c(v′1) = c(y2) + k and c(u′1) = c(y2) + k + 5,

then for all distinct vertices u, v ∈ {y2, v
′
1, u

′
1}, the inequality (1) holds. As

maxv∈V1\{y2} c(v) = c(x′3) by Claim 3.1, c(v′1) = c(y2)+k = c(x′3)+2k−1 and
c(u′1) > c(v′1), we have that c(v′1)− c(x′3) ≥ d− 1 and c(u′1)− c(x′3) ≥ d− 1.
Therefore for all distinct vertices u, v ∈ V1 ∪ {v′1, u′1}, the inequality (1)
holds.

Since that d(u′1, v1) = k−1, d(v1, v
′
1) = k−6, and c(v1) = c(u′1)+(k−1)

= c(v′1) + 5 + (k − 1), then for all distinct vertices u, v ∈ {v1, v
′
1, u

′
1}, the

inequality (1) holds. As maxv∈V1 c(v) = c(y2) by Claim 3.1, and c(v1) =
c(y2) + k + 5 + (k− 1), we have that c(v1)− c(y2) ≥ d− 1. Therefore for all
distinct vertices u, v ∈ V1 ∪ {v′1, u′1, v1}, the inequality (1) holds.

Note the fact that d(v1, u
′
2) = k − 2, d(v1, v

′
2) = k − 5 − 2, d(u′2, v

′
2) =

2k−7−2, c(u′2) = c(v1)+k, c(v′2) = c(v1)+k +5+2; and d(v′2, u2) = k−1,
d(u2, u

′
2) = k − 6 − 2, c(u2) = c(v′2) + (k − 1) = c(u′2) + 5 + 2 + (k − 1).

Similar to the above discussion we can obtain that for all distinct vertices
u, v ∈ V1 ∪ {v′1, u′1, v1} ∪ {u′2, v′2, u2}, the inequality (1) holds.

Continue the above discussion we can conclude that for all distinct
vertices u, v ∈ V1 ∪ {v′1, u′1, v1} ∪ {u′2, v′2, u2} ∪ . . . ∪ {v′2p−1, u

′
2p−1, v2p−1} ∪

{u′2p, v
′
2p, u2p} = V1 ∪ V2, the inequality (1) holds.
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By the definition of c, it is easy to verify that maxv∈V1∪V2 c(v) = c(u2p) =
6k − 1 + 2p(2k + 2p + 3) and maxv∈(V1∪V2)\{u2p} c(v) = c(v′2p) = 5k+
2p(2k + 2p + 3).

.............

.............
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Figure 1: A nearly antipodal coloring for Pn (n = 2k ≥ 10).

Step 3. Color the vertices in V3 (see Figure 1).

Step 3.1. Color the vertices in {w1, w2, . . . , wq; z1, z2, . . . , zq}.
According the value of q, there are four cases.

Case 1. q = 1. Let

c(w1) = c(u2p) + k = 7k − 1 + 2p(2k + 2p + 3),
c(z1) = c(w1) + 3 + 2(2p + 1) = 7k + 4 + 2p(2k + 2p + 5).

Case 2. q = 2. Let

c(w1) = c(u2p) + k = 7k − 1 + 2p(2k + 2p + 3),
c(z1) = c(w1) + 3 + 2(2p + 1) = 7k + 4 + 2p(2k + 2p + 5),
c(w2) = c(z1) + (k − 1) = 8k + 3 + 2p(2k + 2p + 5),
c(z2) = c(w2) + 3 + 2(2p + 2) = 8k + 10 + 2p(2k + 2p + 7).

Case 3. q = 3. Let

c(w1) = c(u2p) + k = 7k − 1 + 2p(2k + 2p + 3),
c(z1) = c(w1) + 3 + 2(2p + 1) = 7k + 4 + 2p(2k + 2p + 5),
c(w3) = c(z1) + (k − 1) = 8k + 3 + 2p(2k + 2p + 5),
c(z2) = c(w3) + k = 9k + 3 + 2p(2k + 2p + 5),
c(w2) = c(z2) + 3 + 2(2p + 2) = 9k + 10 + 2p(2k + 2p + 7),
c(z3) = c(w2) + k = 10k + 10 + 2p(2k + 2p + 7).
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Case 4. q = 4. Let

c(w1) = c(u2p) + k = 7k − 1 + 2p(2k + 2p + 3),
c(z1) = c(w1) + 3 + 2(2p + 1) = 7k + 4 + 2p(2k + 2p + 5),
c(w4) = c(z1) + (k − 1) = 8k + 3 + 2p(2k + 2p + 5),
c(z2) = c(w4) + k = 9k + 3 + 2p(2k + 2p + 5),
c(w2) = c(z2) + 3 + 2(2p + 2) = 9k + 10 + 2p(2k + 2p + 7),
c(z3) = c(w2) + (k − 1) = 10k + 9 + 2p(2k + 2p + 7),
c(w3) = c(z3) + 3 + 2(2p + 3) = 10k + 18 + 2p(2k + 2p + 9),
c(z4) = c(w3) + (k + 1) = 11k + 19 + 2p(2k + 2p + 9).

Step 3.2. Color the vertices in {v2p, u2p−1, . . . , v4, u3, v2, u1}.
For any case above (q = 1, 2, 3, 4), we let

c(v2p) = c(zq) + [(k + q)− 1],
c(u2p−1) = c(v2p) + [(k + q − 1) + 2],
c(v2p−2) = c(u2p−1) + [(k + q − 1) + 2 · 2],
c(u2p−3) = c(v2p−2) + [(k + q − 1) + 2 · 3],
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
c(v2) = c(u3) + [(k + q − 1) + 2(2p− 2)],
c(u1) = c(v2) + [(k + q − 1) + 2(2p− 1)]

= c(zq) + 2p(k + q − 1) + 2 · 2p(2p−1)
2

= c(zq) + 2p(k + q + 2p− 2).

Then by a similar method to prove Claim 3.2, we can obtain the following
claim.

Claim 3.3. For all distinct vertices u, v ∈ V1∪V2∪V3 = V (Pn), the inequal-
ity (1) holds. And maxv∈V (Pn) c(v) = c(u1) = c(zq) + 2p(k + q + 2p− 2).

By Claim 3.3, we have shown that for all even integers n ≥ 12, c
is a nearly antipodal coloring for Pn. Therefore ac′(Pn) ≤ ac′(c) =
maxv∈V (Pn) c(v) = c(u1) = c(zq) + 2p(k + q + 2p− 2). To finish the proof of
Theorem 2.1 for all even integers n ≥ 12, it suffices to prove the following
claim.

Claim 3.4. For any p ∈ {0, 1, 2, . . .} and any q ∈ {1, 2, 3, 4}, it holds that
c(u1) = c(zq)+2p(k+q+2p−2) =

(
n−2

2

)− n
2 +7, where n = 2k = 2(5+4p+q).
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In fact, if q = 1, then k = 4p + 6, 2p = k−6
2 . Thus

c(u1) = c(z1) + 2p(k + q + 2p− 2) = 7k + 4 + 2p(2k + 2p + 5)

+ 2p(k + 2p− 1)

= 2k2 − 6k + 10 =
n2

2
− 3n + 10 =

(
n− 2

2

)
− n

2
+ 7.

If q = 2, then k = 4p + 7, 2p = k−7
2 . Thus

c(u1) = c(z2) + 2p(k + q + 2p− 2) = 8k + 10 + 2p(2k + 2p + 7)

+ 2p(k + 2p)

= 8k + 10 + 2p(3k + 4p + 7) =
n2

2
− 3n + 10 =

(
n− 2

2

)
− n

2
+ 7.

If q = 3, then k = 4p + 8, 2p = k−8
2 . Thus

c(u1) = c(z3) + 2p(k + q + 2p− 2) = 10k + 10 + 2p(2k + 2p + 7)

+ 2p(k + 2p + 1)

= 10k + 10 + 2p(3k + 4p + 8) =
n2

2
− 3n + 10 =

(
n− 2

2

)
− n

2
+ 7.

If q = 4, then k = 4p + 9, 2p = k−9
2 . Thus

c(u1) = c(z4) + 2p(k + q + 2p− 2) = 11k + 19 + 2p(2k + 2p + 9)

+ 2p(k + 2p + 2)

= 11k + 19 + 2p(3k + 4p + 11) =
n2

2
− 3n + 10 =

(
n− 2

2

)
− n

2
+ 7.

Thus Claim 3.4 holds and hence ac′(Pn) ≤ac′(c) =
(
n−2

2

)− n
2 +7 for all even

integers n ≥ 12.
Secondly, for n = 10, in the above proof we take p = 0 and q = 0.

Namely, V2 = V3 = ∅, V (P10) = V1 = {x′1, x′2, x′3; x2, x1; y1, y2; y′3, y
′
2, y

′
1}

(also see Figure 1 and let p = q = 0). Then coloring c|v∈V1(v) is a nearly
antipodal coloring for P10. Thus by Claim 3.1, ac′(P10) ≤ac′(c|v∈V1) =
maxv∈V1 c(v) = c(y2) = (6k − 1)|k=5 = 29 =

(
10−2

2

)
+ 1. Since −b10

n c = −1
for n = 10, it follows that ac′(P10) ≤ac′(c|v∈V1) =

(
10−2

2

)
+1 =

(
10−2

2

)− 10
2 −

b10
10c+ 7.
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Thus we complete the proof of assertion 1 in Theorem 2.1.

2. n is odd and n ≥ 13. Firstly, we let n ≥ 15, note that−b13
n c = 0, it suffices

to show that ac′(Pn) ≤ (
n−2

2

) − n
2 + 8. Write n = 2k + 1 = 13 + 2(4p + q),

where p ∈ {0, 1, 2, . . .} and q ∈ {1, 2, 3, 4}. Then we have that k = 6+(4p+q)
and d− 1 =diam(Pn)− 1 = 2k − 1.

We denote the vertices of Pn by x′1, x
′
2, x

′
3, x

′
4; v′1, v

′
2, . . . , v

′
2p−1, v

′
2p;

w1, w2, . . . , wq; v2p, v2p−1, . . . , v2, v1; x2, x1; x0; y1, y2; u1, u2, . . . , u2p−1, u2p;
zq, . . . , z2, z1; u′2p, u

′
2p−1, . . . , u

′
2, u

′
1; y′4, y

′
3, y

′
2, y

′
1 (see Figure 2). And we write

V1 = {x0; x1, x2; y1, y2; x′1, x
′
2, x

′
3, x

′
4; y

′
1, y

′
2, y

′
3, y

′
4},

V2 = {v1, u2, v3, u4, . . . , v2p−1, u2p; v′1, v
′
2, . . . , v

′
2p−1, v

′
2p; u

′
1, u

′
2, . . . , u

′
2p−1, u

′
2p},

V3 = {w1, w2, . . . , wq; z1, z2, . . . , zq; v2p, u2p−1, . . . , v4, u3, v2, u1}.
Similar to the method of proof assertion 1, we will present a coloring c for
Pn by three steps, such that

(2) d(u, v) + |c(u)− c(v)| ≥ d− 1 = 2k − 1

holds for all distinct vertices u, v ∈ V1 ∪ V2 ∪ V3 = V (Pn), and ac′(c) =(
n−2

2

) − n
2 + 8(note that V2 = ∅ if p = 0, and it is easy to see that the

following proof is also suitable for V2 = ∅).

Step 1. Color the vertices in V1 (see Figure 2).

Let

c(x0) = 1 (x0 is the central vertex of Pn);
c(x′1) = c(x0) + (k − 1) = k, c(y′1) = c(x0) + (k − 1) = k;
c(x1) = c(x′1) + k = 2k;
c(y′2) = c(x1) + (k − 1) = 3k − 1, c(x′2) = c(x1) + (k + 1) = 3k + 1;
c(y1) = c(y′2) + (k + 1) = 4k;
c(x′3) = c(y1) + k = 5k, c(y′3) = c(y′3) + 3 = 5k + 3;
c(x2) = c(x′3) + (k + 3) = 6k + 3;
c(y′4) = c(x2) + k = 7k + 3, c(x′4) = c(y′4) + 5 = 7k + 8;
c(y2) = c(x′4) + k = 8k + 8.

Then by the definition of c and the value of d(u, v) for u, v ∈ V1, it is easy
to verify that the following claim holds.
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Claim 3.5. For all distinct vertices u, v ∈ V1, the inequality (2) holds. At
the same time, maxv∈V1 c(v) = c(y2) = 8k + 8 and maxv∈V1\{y2} c(v) =
c(x′4) = 7k + 8.

Step 2. Color the vertices in V2 (see Figure 2).

For i = 1, 2, . . . , p, let

c(v′2i−1) = c(y2) + (2i− 1)(k + 1) + 5(2i− 2) + 2[1 + 2 + . . . + (2i− 2)]
+ (2i− 2)k,

c(u′2i−1) = c(y2) + (2i− 1)(k + 1) + 5(2i− 1) + 2[1 + 2 + . . . + (2i− 1)]
+ (2i− 2)k;

c(v2i−1) = c(y2) + (2i− 1)(k + 1) + 5(2i− 1) + 2[1 + 2 + . . . + (2i− 1)]
+ (2i− 1)k;

c(u′2i) = c(y2) + (2i)(k + 1) + 5(2i− 1) + 2[1 + 2 + . . . + (2i− 1)]
+ (2i− 1)k,

c(v′2i) = c(y2) + (2i)(k + 1) + 5(2i) + 2[1 + 2 + . . . + (2i)] + (2i− 1)k;
c(u2i) = c(y2) + (2i)(k + 1) + 5(2i) + 2[1 + 2 + . . . + (2i)] + (2i)k.

Then we have the following claim.

Claim 3.6. For all distinct vertices u, v ∈ V1 ∪ V2, the inequality (2) holds.
At the same time, it holds that maxv∈V1∪V2 c(v) = c(u2p) = 8k+8+2p(2k+
2p + 7) and maxv∈(V1∪V2)\{u2p} c(v) = c(v′2p) = 7k + 8 + 2p(2k + 2p + 7).

In fact, note d− 1 = 2k − 1. Since that d(y2, v
′
1) = k − 2, d(y2, u

′
1) = k − 6,

d(v′1, u
′
1) = 2k − 8, c(v′1) = c(y2) + (k + 1) and c(u′1) = c(y2) + (k + 1) + 7,

then for all distinct vertices u, v ∈ {y2, v
′
1, u

′
1}, the inequality (2) holds. As

maxv∈V1\{y2} c(v) = c(x′4) by Claim 3.5, c(v′1) = c(y2)+(k+1) = c(x′4)+2k+1
and c(u′1) > c(v′1), we have that c(v′1)−c(x′4) ≥ d−1 and c(u′1)−c(x′4) ≥ d−1.
Therefore for all distinct vertices u, v ∈ V1∪{v′1, u′1}, the inequality (2) holds.

Since that d(u′1, v1) = k − 1, d(v1, v
′
1) = k − 7, and c(v1) = c(u′1) + k =

c(v′1) + 7 + k, then for all distinct vertices u, v ∈ {v1, v
′
1, u

′
1}, the inequal-

ity (2) holds. As maxv∈V1 c(v) = c(y2) by Claim 3.5, and c(v1) = c(y2)+
(k + 1) + 7 + k, we have that c(v1)− c(y2) ≥ d− 1. Therefore for all distinct
vertices u, v ∈ V1 ∪ {v′1, u′1, v1}, the inequality (2) holds.

Note the fact that d(v1, u
′
2) = k − 2, d(v1, v

′
2) = k − 6 − 2, d(u′2, v

′
2) =

2k − 8 − 2, c(u′2) = c(v1) + (k + 1), c(v′2) = c(v1) + (k + 1) + 7 + 2; and
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d(v′2, u2) = k−1, d(u2, u
′
2) = k−7−2, c(u2) = c(v′2)+k = c(u′2)+7+2+k.

Similar to the above discussion we can obtain that for all distinct vertices
u, v ∈ V1 ∪ {v′1, u′1, v1} ∪ {u′2, v′2, u2}, the inequality (2) holds.

Continue the above discussion we can conclude that for all distinct
vertices u, v ∈ V1 ∪ {v′1, u′1, v1} ∪ {u′2, v′2, u2} ∪ . . . ∪ {v′2p−1, u

′
2p−1, v2p−1} ∪

{u′2p, v
′
2p, u2p} = V1 ∪ V2, the inequality (2) holds.

By the definition of c, it is easy to see that maxv∈V1∪V2 c(v) = c(u2p) =
8k + 8 + 2p(2k + 2p + 7), and maxv∈(V1∪V2)\{u2p} c(v) = c(v′2p) = 7k + 8 +
2p(2k + 2p + 7).

.............
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Figure 2. A nearly antipodal coloring for Pn (n = 2k + 1 ≥ 13).

Step 3. Color the vertices in V3 (see Figure 2).

Step 3.1. Color the vertices in {w1, w2, . . . , wq; z1, z2, . . . , zq}.

According the value of q, there are four cases.

Case 1. q = 1. Let

c(w1) = c(u2p) + (k + 1) = 9k + 9 + 2p(2k + 2p + 7),
c(z1) = c(w1) + 5 + 2(2p + 1) = 9k + 16 + 2p(2k + 2p + 9).

Case 2. q = 2. Let

c(w1) = c(u2p) + (k + 1) = 9k + 9 + 2p(2k + 2p + 7),
c(z1) = c(w1) + 5 + 2(2p + 1) = 9k + 16 + 2p(2k + 2p + 9),
c(w2) = c(z1) + k = 10k + 16 + 2p(2k + 2p + 9),
c(z2) = c(w2) + 5 + 2(2p + 2) = 10k + 25 + 2p(2k + 2p + 11).
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Case 3. q = 3. Let

c(w1) = c(u2p) + (k + 1) = 9k + 9 + 2p(2k + 2p + 7),
c(z1) = c(w1) + 5 + 2(2p + 1) = 9k + 16 + 2p(2k + 2p + 9),
c(w3) = c(z1) + k = 10k + 16 + 2p(2k + 2p + 9),
c(z2) = c(w3) + (k + 1) = 11k + 17 + 2p(2k + 2p + 9),
c(w2) = c(z2) + 5 + 2(2p + 2) = 11k + 26 + 2p(2k + 2p + 11),
c(z3) = c(w2) + (k + 1) = 12k + 27 + 2p(2k + 2p + 11).

Case 4. q = 4. Let

c(w1) = c(u2p) + (k + 1) = 9k + 9 + 2p(2k + 2p + 7),
c(z1) = c(w1) + 5 + 2(2p + 1) = 9k + 16 + 2p(2k + 2p + 9),
c(w4) = c(z1) + k = 10k + 16 + 2p(2k + 2p + 9),
c(z2) = c(w4) + (k + 1) = 11k + 17 + 2p(2k + 2p + 9),
c(w2) = c(z2) + 5 + 2(2p + 2) = 11k + 26 + 2p(2k + 2p + 11),
c(z3) = c(w2) + k = 12k + 26 + 2p(2k + 2p + 11),
c(w3) = c(z3) + 5 + 2(2p + 3) = 12k + 37 + 2p(2k + 2p + 13),
c(z4) = c(w3) + (k + 2) = 13k + 39 + 2p(2k + 2p + 13).

Step 3.2. Color the vertices in {v2p, u2p−1, . . . , v4, u3, v2, u1}.
For each case above (q = 1, 2, 3, 4), we let

c(v2p) = c(zq) + (k + q),
c(u2p−1) = c(v2p) + [(k + q) + 2],
c(v2p−2) = c(u2p−1) + [(k + q) + 2 · 2],
c(u2p−3) = c(v2p−2) + [(k + q) + 2 · 3],
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

c(v2) = c(u3) + [(k + q) + 2(2p− 2)],
c(u1) = c(v2) + [(k + q) + 2(2p− 1)]

= c(zq) + 2p(k + q) + 2 · 2p(2p−1)
2

= c(zq) + 2p(k + q + 2p− 1).

Then by a similar method to prove Claim 3.6, we can obtain the following
claim.
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Claim 3.7. For all distinct vertices u, v ∈ V1∪V2∪V3 = V (Pn), the inequal-
ity (2) holds. And maxv∈V (Pn) c(v) = c(u1) = c(zq) + 2p(k + q + 2p− 1).

By Claim 3.7, we have shown that for all odd integers n ≥ 15, c is a nearly
antipodal coloring for Pn. Therefore ac′(Pn) ≤ac′(c) = maxv∈V (Pn) c(v) =
c(u1) = c(zq) + 2p(k + q + 2p − 1). To finish the proof of Theorem 2.1 for
all odd integers n ≥ 15, it suffices to prove the following claim.

Claim 3.8. For any p ∈ {0, 1, 2, . . .} and any q ∈ {1, 2, 3, 4}, it holds that
c(u1) = c(zq) + 2p(k + q + 2p − 1) =

(
n−2

2

) − n−1
2 + 8, where n = 2k + 1 =

13 + 2(4p + q).

In fact, if q = 1, then k = 4p + 7, 4p = k − 7, 2p = k−7
2 . Thus

c(u1) = c(z1) + 2p(k +q+ 2p− 1) = 9k + 16 + 2p(2k + 2p + 9) + 2p(k + 2p)

= 2k2 − 4k + 9 =
n2

2
− 3n +

23
2

=
(

n− 2
2

)
− n− 1

2
+ 8.

If q = 2, then k = 4p + 8, 4p = k − 8, p = k−8
2 . Thus

c(u1) = c(z2) + 2p(k + q + 2p− 1)

= 10k + 25 + 2p(2k + 2p + 11) + 2p(k + 2p + 1)

= 2k2 − 4k + 9 =
n2

2
− 3n +

23
2

=
(

n− 2
2

)
− n− 1

2
+ 8.

If q = 3, then k = 4p + 9, 4p = k − 9, p = k−9
2 . Thus

c(u1) = c(z3) + 2p(k + q + 2p− 1)

= 12k + 27 + 2p(2k + 2p + 11) + 2p(k + 2p + 2)

= 2k2 − 4k + 9 =
n2

2
− 3n +

23
2

=
(

n− 2
2

)
− n− 1

2
+ 8.

If q = 4, then k = 4p + 10, 4p = k − 10, 2p = k−10
2 . Thus

c(u1) = c(z4) + 2p(k + q + 2p− 1)

= 13k + 39 + 2p(2k + 2p + 13) + 2p(k + 2p + 3)

= 2k2 − 4k + 9 =
n2

2
− 3n +

23
2

=
(

n− 2
2

)
− n− 1

2
+ 8.
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Thus Claim 3.8 holds and hence ac′(Pn) ≤ac′(c) =
(
n−2

2

) − n−1
2 + 8 for all

odd integers n ≥ 15.
Secondly, for n = 13, in the above proof we take p = 0 and q = 0.

Namely, V2 = V3 = ∅, V (P13) = V1 = {x′1, x′2, x′3, x′4; x2, x1; x0; y1, y2; y′4, y
′
3,

y′2, y
′
1} (also see Figure 2 and let p = q = 0). Then coloring c|v∈V1(v) is a

nearly antipodal coloring for P13. Thus by Claim 3.5, ac′(P13) ≤ac′(c|v∈V1) =
maxv∈V1 c(v) = c(y2) = (8k + 8)|k=6 = 56 =

(
13−2

2

)
+ 1. Since −b13

n c = −1
for n = 13, it follows that ac′(P13) ≤ac′(c|v∈V1) =

(
13−2

2

)
+ 1 =

(
13−2

2

) −
13−1

2 − b13
13c+ 8.

Thus the assertion 2 in Theorem 2.1 holds.

4. Examples

In this section we give some examples which present the nearly antipodal
coloring c for some Pn with ac′(c) presented in Theorem 2.1 by our methods.

Example 4.1. A nearly antipodal coloring c for P10 with ac′(c) =
(
10−2

2

)−
10
2 − b10

10c+ 7 =
(
10−2

2

)
+ 1 = 29 (see Figure 3).

x1 y1x2 y2x
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1
y
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1
x
′

2
x
′

3
y
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2
y
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3

1 45 812 1318 2225
29

Figure 3. A nearly antipodal coloring for P10.

Example 4.2. A nearly antipodal coloring c for P13 with ac′(c) =
(
13−2

2

)−
13−1

2 − b13
13c+ 8 =

(
13−2

2

)
+ 1 = 56 (see Figure 4).
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3
x
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4
y
′

2
y
′

1
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′

3
y
′

4

16 61230 1719 24 3339 4550
56

Figure 4. A nearly antipodal coloring c for P13.

Example 4.3 A nearly antipodal coloring c for P32 with ac′(c) =
(
32−2

2

)−
32
2 + 7 =

(
32−2

2

)− 9 = 426 (see Figure 5).
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Here n = 2k = 10 + 2(4p + q) = 32, then k = 16, p = 2 and q = 3.
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Figure 5. A nearly antipodal coloring for P32.

Example 4.4. A nearly antipodal coloring c for P33 with ac′(c) =
(
33−2

2

)−
33−1

2 + 8 =
(
33−2

2

)− 8 = 457 (see Figure 6).

Here n = 2k + 1 = 13 + 2(4p + q) = 33, then k = 16, p = 2 and q = 2.
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Figure 6. A nearly antipodal coloring c for P33.
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