A NEW UPPER BOUND FOR THE CHROMATIC NUMBER OF A GRAPH*

Ingo Schiermeyer
Institut für Diskrete Mathematik und Algebra
Technische Universität Bergakademie Freiberg
09596 Freiberg, Germany
e-mail: schierme@tu-freiberg.de

Abstract

Let G be a graph of order n with clique number $\omega(G)$, chromatic number $\chi(G)$ and independence number $\alpha(G)$. We show that $\chi(G) \leq$ $\frac{n+\omega+1-\alpha}{2}$. Moreover, $\chi(G) \leq \frac{n+\omega-\alpha}{2}$, if either $\omega+\alpha=n+1$ and G is not a split graph or $\alpha+\omega=n-1$ and G contains no induced $K_{\omega+3}-C_{5}$.

Keywords: Vertex colouring, chromatic number, upper bound.
2000 Mathematics Subject Classification: 05C15, 05C69.

1. Introduction

We consider [10] for terminology and notation not defined here and consider finite, simple and undirected graphs only. A k-colouring of a graph G is an assignment of k different colours to the vertices of G such that adjacent vertices receive different colours. The minimum cardinality k for which G has a k-colouring is called the chromatic number of G and is denoted by $\chi(G)$ or briefly χ if no ambiguity can arise.

An obvious lower bound for χ is the size of a largest clique in a graph G. This number is called the clique number of G and denoted by $\omega(G)$ or briefly ω. Unfortunately, the computations of χ and ω are both NP-hard.

[^0]By a classical result of Erdős [9] we know that the difference $\chi(G)-\omega(G)$ can be arbitrarily large. On the other hand the graphs, where χ attains the lower bound ω, form a graph class of great variety, even if we impose the equality on all induced subgraphs of a graph. A graph G is called perfect if the chromatic number $\chi(H)$ equals the clique number $\omega(H)$ for every induced subgraph H of G. More than four decades ago Berge [2] introduced the concept of perfect graphs.

Berge [3] conjectured that a graph G is perfect if and only if neither G nor its complement \bar{G} contains an induced odd cycle of order at least five. In honor of Berge the graphs defined by the righthand side of the conjecture are known as Berge graphs. This famous longstanding conjecture known as Strong Perfect Graph Conjecture has recently been solved by Chudnovsky, Robertson, Seymour and Thomas [7]. Polynomial time recognition algorithms for Berge graphs have recently be announced by Chudnovsky and Seymour and Cornuéjols, Liu and Vušković (see [8, ?, ?]).

Upper bounds for χ can be obtained by studying the degrees of the vertices of a graph G. In particular, we are interested in the maximum degree of G, which is denoted by $\Delta(G)$ or simply Δ. Obviously, the chromatic number of G is at most $\Delta+1$. In fact, there is a simple recursive greedy algorithm for colouring G with at most $\Delta+1$ colours. Having coloured $G-v$, we just colour the vertex v of G with one of the colours not appearing on any of the at most Δ neighbours of v.

Hence, for a given graph G, the clique number $\omega(G)$, the chromatic number $\chi(G)$ and the maximum degree $\Delta(G)$ satisfy

$$
\omega(G) \leq \chi(G) \leq \Delta(G)+1 .
$$

In 1941 Brooks [5] determined for connected graphs G the families of graphs attaining the upper bound $\Delta(G)+1$, namely complete graphs and odd cycles. This characterization leads to an improvement of the upper bound.

Theorem 1 [5]. If a connected graph $G=(V, E)$ is neither complete nor an odd cycle, then G has a $\Delta(G)$-colouring.

Based on Lovász algorithmic proof [11] of Brooks Theorem it is possible to design a linear time algorithm (see for instance [1] for an implementation in time $O(|V|+|E|))$.

2. A New Upper Bound

Theorem 2. Let G be a connected graph of order n with clique number $\omega(G)$, chromatic number $\chi(G)$ and independence number $\alpha(G)$. Then $\chi(G) \leq$ $\frac{n+\omega+1-\alpha}{2}$. Moreover, $\chi(G) \leq \frac{n+\omega-\alpha}{2}$, if either $\omega+\alpha=n+1$ and G is not a split graph or $\alpha+\omega=n-1$ and G contains no induced $K_{\omega+3}-C_{5}$.

Corollary 1 (Brigham and Dutton, 1985, [4]). Let G be a connected graph of order n with clique number $\omega(G)$, chromatic number $\chi(G)$ and independence number $\alpha(G)$. Then $\chi(G) \leq \frac{n+\omega+1-\alpha}{2}$.

Applying this upper bound both to G and its complement \bar{G}, we obtain the following result of Nordhaus and Gaddum [12].

Corollary 2 (Nordhaus and Gaddum, 1956, [12]). Let G be a graph of order n with clique number $\omega(G)$, chromatic number $\chi(G)$ and independence number $\alpha(G)$. Then $\chi(G)+\chi(\bar{G}) \leq n+1$.

Combining Theorem 1 and Theorem 2 we obtain the following improved upper bound for the chromatic number of a graph.

Theorem 3. Let G be a connected graph of order n with clique number $\omega(G)$, chromatic number $\chi(G)$, maximum degree $\Delta(G)$ and independence number $\alpha(G)$. Then $\chi(G) \leq \min \left\{\Delta(G)+1, \frac{n+\omega+1-\alpha}{2}\right\}$. Moreover, if G contains no induced $\left(K_{\omega+3}-C_{5}\right)$ and is neither a split graph nor an odd cycle, then $\chi(G) \leq \min \left\{\Delta(G), \frac{n+\omega-\alpha}{2}\right\}$.

For the proof of Theorem 2 we will make use of the following lemma.
Lemma 1. Let G be a K_{3}-free graph. Then $\chi(G) \leq\left\lfloor\frac{n+4}{3}\right\rfloor$
Proof. We generate $t=\left\lceil\frac{n-\left(r\left(K_{3}, K_{3}\right)-1\right)}{3}\right\rceil=\left\lceil\frac{n-5}{3}\right\rceil$ independent sets I_{1}, I_{2}, \ldots, I_{t} of order three using the Ramsey number $r\left(K_{3}, K_{3}\right)=6$. Let $H=$ $G-\left(\cup_{i=1}^{t} I_{i}\right)$. If $|V(H)|=3$, then $\chi(H) \leq 2$ and thus $\chi(G) \leq \frac{n-3}{3}+2=\frac{n+3}{3}$. If $|V(H)|=4$, then $\chi(H) \leq 2$ and thus $\chi(G) \leq \frac{n-4}{3}+2=\frac{n+2}{3}$. If $|V(H)|=5$, then $\chi(H) \leq 3$ and thus $\chi(G) \leq \frac{n-5}{3}+3=\frac{n+4}{3}$.

Proof of Theorem 2. Let I be a maximum independent set and $F=G-I$. Compute a maximum matching with vertex set M in \bar{F}. Let $H=F-M$.

Then \bar{H} is independent and H is complete. Let $p=|V(H)|$. Then $\chi(G) \leq$ $1+\frac{|M|}{2}+p=p+\frac{n-\alpha-p}{2}+1=\frac{n+p+2-\alpha}{2} \leq \frac{n+\omega+2-\alpha}{2}$.
If $\omega=p \geq 2$, then $d_{H}(v) \leq p-1$ for all vertices $v \in I$. Hence each vertex of I can be coloured with a colour used for H. Hence $\chi(G) \leq \frac{n-\alpha-p}{2}+p=$ $\frac{n+p-\alpha}{2}=\frac{n+\omega-\alpha}{2}$. If $\omega \geq p+2$, then $\chi(G) \leq \frac{n+p+2-\alpha}{2} \leq \frac{n+\omega-\alpha}{2}$. Therefore, if $\omega \neq p+1$, then $\chi(G) \leq \frac{n+\omega-\alpha}{2}$. So assume $\omega=p+1$.

Case 1. $p=1, \omega=2$
Applying Lemma 1 to the graph $G-I$, we get $\chi(G) \leq 1+\left\lfloor\frac{n-\alpha+4}{3}\right\rfloor \leq$ $\frac{n-\alpha+7}{3} \leq \frac{n+2-\alpha}{2}$ for $\alpha \leq n-8$. Hence we may assume $\alpha \geq n-7$.

If $|M|=6$, then $|V(F)|=7$. If $\Delta(F) \geq 4$, then $\chi(F) \leq 3$. If $\Delta(F)=3$, then $\chi(F) \leq 3$ by Brooks' Theorem (1). And if $\Delta(F) \leq 2$, then $\chi(F) \leq$ $\Delta+1 \leq 3$. Therefore $\chi(G) \leq 1+3=4<\frac{n+2-\alpha}{2}$.

If $|M|=4$, then $|V(F)|=5$. If $\Delta(F) \geq 3$, then $\chi(F) \leq 2$. If $\Delta(F)=2$, then $\chi(F)=2$ or $H \cong C_{5}$. And if $\Delta(F)=1$, then $\chi(F) \leq \Delta+1=2$. Therefore $\chi(G) \leq 1+2=3<\frac{n+2-\alpha}{2}$, if $F \not \approx C_{5}$. Suppose $F \cong C_{5}$. Since G is K_{3}-free, we have $d_{F}(v) \leq 2$ for all vertices $v \in I$. Then any 3 -colouring of the C_{5} can be extended to a 3 -colouring of G. Therefore $\chi(G) \leq 3<\frac{n+2-\alpha}{2}$.

If $|M|=2$, then $|V(F)|=3$. If G is bipartite, then $\chi(G) \leq 2$. Else G contains a C_{5}, since I is an independent set and $|V(F)|=3$. We may assume that $V(F)=\left\{w_{1}, w_{2}, w_{4}\right\}$ and I contains two vertices w_{3}, w_{5} such that $G\left[\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right\}\right] \cong C_{5}$ with edges $w_{i} w_{i+1}(\bmod 5)$. Since G is K_{3}-free, we have $\left|N(v) \cap\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right\}\right| \leq 2$ for all vertices $v \in I-\left\{w_{3}, w_{5}\right\}$. Then any 3 -colouring of the C_{5} can be extended to a 3 -colouring of G. Hence $\chi(G)=3=\frac{n+3-\alpha}{2}=\frac{n+\omega+1-\alpha}{2}$. Note that $C_{5} \cong K_{\omega+3}-C_{5}$ for $\omega=2$.

If $|M|=0$, then $|V(F)|=1$. Thus G is a split graph. Since G is connected, $G \cong K_{1, n-1}$. Therefore, $\chi(G)=2=\frac{n+\omega+1-\alpha}{2}$.

Case 2. $p \geq 2$
Let $M=U \cup W=\left\{u_{1}, u_{2}, \ldots, u_{q}\right\} \cup\left\{w_{1}, w_{2}, \ldots, w_{q}\right\}$ such that $u_{i} w_{i} \in E(\bar{G})$ for $1 \leq i \leq q$. If $u_{i} v, w_{i} v \notin E(G)$ for some i and a vertex $v \in V(H)$, then u_{i}, w_{i} can receive the same colour as v. Hence $\chi(G) \leq p+\frac{n-\alpha-p}{2}-1+1=$ $\frac{n+p-\alpha}{2}<\frac{n+\omega-\alpha}{2}$.

If $u_{i} v_{1}, w_{i} v_{2} \notin E(G)$ for four vertices $v_{1}, v_{2} \in V(H)$ and $u_{i}, w_{i} \in M$, then M is not a maximum matching, since $u_{i} w_{i} \in E(\bar{G})$ could be replaced by $u_{i} v_{1}, w_{i} v_{2} \in E(\bar{G})$, a contradiction. Hence we may assume that $d_{H}\left(u_{i}\right)=p$ for $1 \leq i \leq q$. Then $G[U]$ is independent, since $\omega=p+1$. If $d_{H}(v) \leq p-1$
for all vertices $v \in I$, then every vertex $v \in I$ can be coloured with a colour from H. Then $\chi(G) \leq \frac{n+p-\alpha}{2}<\frac{n+\omega-\alpha}{2}$.

So let $I_{0} \subset I$ contain all vertices of I such that $d_{H}(v)=p$. Then $I_{0} \cup U$ is independent, since $\omega=p+1$. If $\chi(G[W]) \leq q-1$, then $\chi(G) \leq \chi(G[V(H) \cup$ $\left.\left.\left(I-I_{0}\right)\right]\right)+\chi(G[W])+\chi\left(G\left[U \cup I_{0}\right]\right) \leq p+(q-1)+1=\frac{n+p-\alpha}{2}<\frac{n+\omega-\alpha}{2}$ using one colour for all vertices of $I_{0} \cup U$. If $\chi(G[W])=q$, then $G[W] \cong$ K_{q}. Let $d_{H}\left(w_{1}\right) \leq d_{H}\left(w_{2}\right) \leq \ldots \leq d_{H}\left(w_{q}\right)$. If $v_{1} w_{i}, v_{2} w_{j} \notin E(G)$ for four vertices $v_{1}, v_{2} \in V(H)$ and $w_{i}, w_{j} \in W$, then M is not a maximum matching, since $u_{i} w_{i}, u_{j} w_{j} \in E(\bar{G})$ could be replaced by $v_{1} w_{i}, v_{2} w_{j}, u_{i} u_{j} \in E(\bar{G})$, a contradiction. Therefore we may assume $N_{H}\left(w_{1}\right) \subset N_{H}\left(w_{2}\right) \subset \ldots \subset$ $N_{H}\left(w_{q}\right)$. This implies that either $d_{H}\left(w_{i}\right)=p$ for all $i \geq 2$ or $d_{H}\left(w_{i}\right) \geq p-1$ for all $i \geq 1$. In both cases, one can deduce that $p+1 \geq q+p-1$, and therefore $q \leq 2$.

Subcase 2.1. $q=2$
Suppose $w_{1} v, w_{2} v \in E(G)$ for a vertex $v \in I_{0}$. If $d_{H}\left(w_{2}\right)=p$, then $G[H \cup$ $\left.\left\{w_{2}, v\right\}\right]$ is complete. Hence $\omega(G) \geq p+2$, a contradiction. If $d_{H}\left(w_{2}\right)=p-1$, then $d_{H}\left(w_{1}\right)=p-1$ and $N_{H}\left(w_{1}\right)=N_{H}\left(w_{2}\right)$. Then $\omega(G) \geq(p-1)+3=$ $p+2$, a contradiction. Therefore $d_{W}(v) \leq 1$ for all vertices $v \in I_{0}$. Since $I_{0} \cup U$ is independent we obtain $d(v) \leq p+1$ for all vertices $v \in I_{0}$. Now $\chi\left(G-I_{0}\right) \leq \frac{n+p-\alpha}{2}=\frac{n+\omega-1-\alpha}{2}=p+2$. Then any $(p+2)$-colouring of $G-I_{0}$ can be extended to a $(p+2)$-colouring of G and hence $\chi(G) \leq \frac{n+\omega-1-\alpha}{2}$.

Subcase 2.2. $q=1$
We have $\alpha(G)+\omega(G)=n-1$ and $\omega(G)=p+1 \leq \chi(G) \leq p+2$. We will now show that $\chi(G)=p+1$, if G contains no $K_{p+4}-C_{5}$. Suppose that $\chi(G)=p+1$.. We may assume that the vertices of H receive colours $1,2, \ldots, p$ and that $c(v)=p+1$ for all vertices $v \in I_{0} \cup\left\{u_{1}\right\}$. If $d_{H}\left(w_{1}\right)=p$, then $I_{0} \cup\left\{u_{1}, w_{1}\right\}$ is independent and we can choose $c\left(w_{1}\right)=p+1$. Since $d_{H}(v) \leq p-1$ for all vertices $v \in I-I_{0}$, we can choose $c(v) \in\{1, \ldots, p\}$ for all vertices $v \in I-I_{0}$. Suppose now $d_{H}\left(w_{1}\right) \leq p-1$. If $I_{0} \cup\left\{u_{1}, w_{1}\right\}$ is independent, then the same colouring as above can be used. Hence assume that $w_{1} x \in E(G)$ for a vertex $x \in I_{0}$. Choose $c\left(w_{1}\right)=i$ for a proper colour $i \in\{1, \ldots, p\}$. Then we can find $c(v) \in\{1, \ldots, p+1\}$ for a vertex $v \in I-I_{0}$ unless $v u_{1} \in E(G)$ and $N_{H}\left(w_{1}\right)=N_{H}(v)$ with $d_{H}\left(w_{1}\right)=d_{H}(v)=$ $p-1$. But then $G\left[H \cup\left\{u_{1}, w_{1}, x, v\right\}\right] \cong K_{p+4}-C_{5}$, a contradiction, since $\chi\left(K_{p+4}-C_{5}\right)=p+2$.

Subcase 2.3. $q=0$
Then G is a split graph with $\omega(G)+\alpha(G)=n+1$ and $\chi(G)=\omega(G)=$ $p+1=\frac{n+\omega+1-\alpha}{2}$.

Acknowledgement

We thank the referees for some valuable comments.

References

[1] B. Baetz and D.R. Wood, Brooks' Vertex Colouring Theorem in Linear Time, TR CS-AAG-2001-05, Basser Dep. Comput. Sci., Univ. Sydney, (2001) 4 pages.
[2] C. Berge, Les problèms de coloration en théorie des graphes, Publ. Inst. Statist. Univ. Paris 9 (1960) 123-160.
[3] C. Berge, Perfect graphs, in: Six papers on graph theory, Indian Statistical Institute, Calcutta (1963), 1-21.
[4] R.C. Brigham and R.D. Dutton, A Compilation of Relations between Graph Invariants, Networks 15 (1985) 73-107.
[5] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194-197.
[6] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, Progress on perfect graphs, Math. Program. (B) 97 (2003) 405-422.
[7] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. Math. (2) 164 (2006) 51-229.
[8] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour and K. Vušković, Recognizing Berge Graphs, Combinatorica 25 (2005) 143-186.
[9] P. Erdős, Graph theory and probability, Canad. J. Math. 11 (1959) 34-38.
[10] J.L. Gross and J. Yellen, Handbook of Graph Theory (CRC Press, 2004).
[11] L. Lovász, Three short proofs in graph theory, J. Combin. Theory (B) 19 (1975) 269-271.
[12] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177.
[13] B. Randerath and I. Schiermeyer, Vertex colouring and forbidden subgraphs a survey, Graphs and Combinatorics 20 (2004) 1-40.

Received 20 January 2006
Revised 28 December 2006

[^0]: *Parts of this research were performed during the workshop HEREDITARNIA'05. Hospitality and financial support by UNISA at Pretoria and the University of Johannesburg are gratefully acknowledged.

