Discussiones Mathematicae Graph Theory 27 (2007) 137–142

A NEW UPPER BOUND FOR THE CHROMATIC NUMBER OF A GRAPH*

INGO SCHIERMEYER

Institut für Diskrete Mathematik und Algebra Technische Universität Bergakademie Freiberg 09596 Freiberg, Germany **e-mail:** schierme@tu-freiberg.de

Abstract

Let G be a graph of order n with clique number $\omega(G)$, chromatic number $\chi(G)$ and independence number $\alpha(G)$. We show that $\chi(G) \leq \frac{n+\omega+1-\alpha}{2}$. Moreover, $\chi(G) \leq \frac{n+\omega-\alpha}{2}$, if either $\omega + \alpha = n + 1$ and G is not a split graph or $\alpha + \omega = n - 1$ and G contains no induced $K_{\omega+3} - C_5$.

Keywords: Vertex colouring, chromatic number, upper bound.

2000 Mathematics Subject Classification: 05C15, 05C69.

1. Introduction

We consider [10] for terminology and notation not defined here and consider finite, simple and undirected graphs only. A *k*-colouring of a graph G is an assignment of k different colours to the vertices of G such that adjacent vertices receive different colours. The minimum cardinality k for which Ghas a *k*-colouring is called the *chromatic number* of G and is denoted by $\chi(G)$ or briefly χ if no ambiguity can arise.

An obvious lower bound for χ is the size of a largest clique in a graph G. This number is called the *clique number* of G and denoted by $\omega(G)$ or briefly ω . Unfortunately, the computations of χ and ω are both NP-hard.

^{*}Parts of this research were performed during the workshop HEREDITARNIA'05. Hospitality and financial support by UNISA at Pretoria and the University of Johannesburg are gratefully acknowledged.

By a classical result of Erdős [9] we know that the difference $\chi(G) - \omega(G)$ can be arbitrarily large. On the other hand the graphs, where χ attains the lower bound ω , form a graph class of great variety, even if we impose the equality on all induced subgraphs of a graph. A graph G is called *perfect* if the chromatic number $\chi(H)$ equals the clique number $\omega(H)$ for every induced subgraph H of G. More than four decades ago Berge [2] introduced the concept of perfect graphs.

Berge [3] conjectured that a graph G is perfect if and only if neither G nor its complement \overline{G} contains an induced odd cycle of order at least five. In honor of Berge the graphs defined by the righthand side of the conjecture are known as *Berge graphs*. This famous longstanding conjecture known as *Strong Perfect Graph Conjecture* has recently been solved by Chudnovsky, Robertson, Seymour and Thomas [7]. Polynomial time recognition algorithms for Berge graphs have recently be announced by Chudnovsky and Seymour and Cornuéjols, Liu and Vušković (see [8, ?, ?]).

Upper bounds for χ can be obtained by studying the degrees of the vertices of a graph G. In particular, we are interested in the maximum degree of G, which is denoted by $\Delta(G)$ or simply Δ . Obviously, the chromatic number of G is at most $\Delta + 1$. In fact, there is a simple recursive greedy algorithm for colouring G with at most $\Delta + 1$ colours. Having coloured G-v, we just colour the vertex v of G with one of the colours not appearing on any of the at most Δ neighbours of v.

Hence, for a given graph G, the clique number $\omega(G)$, the chromatic number $\chi(G)$ and the maximum degree $\Delta(G)$ satisfy

$$\omega(G) \le \chi(G) \le \Delta(G) + 1.$$

In 1941 Brooks [5] determined for connected graphs G the families of graphs attaining the upper bound $\Delta(G)+1$, namely complete graphs and odd cycles. This characterization leads to an improvement of the upper bound.

Theorem 1 [5]. If a connected graph G = (V, E) is neither complete nor an odd cycle, then G has a $\Delta(G)$ -colouring.

Based on Lovász algorithmic proof [11] of Brooks Theorem it is possible to design a linear time algorithm (see for instance [1] for an implementation in time O(|V| + |E|)).

2. A New Upper Bound

Theorem 2. Let G be a connected graph of order n with clique number $\omega(G)$, chromatic number $\chi(G)$ and independence number $\alpha(G)$. Then $\chi(G) \leq \frac{n+\omega+1-\alpha}{2}$. Moreover, $\chi(G) \leq \frac{n+\omega-\alpha}{2}$, if either $\omega + \alpha = n + 1$ and G is not a split graph or $\alpha + \omega = n - 1$ and G contains no induced $K_{\omega+3} - C_5$.

Corollary 1 (Brigham and Dutton, 1985, [4]). Let G be a connected graph of order n with clique number $\omega(G)$, chromatic number $\chi(G)$ and independence number $\alpha(G)$. Then $\chi(G) \leq \frac{n+\omega+1-\alpha}{2}$.

Applying this upper bound both to G and its complement \overline{G} , we obtain the following result of Nordhaus and Gaddum [12].

Corollary 2 (Nordhaus and Gaddum, 1956, [12]). Let G be a graph of order n with clique number $\omega(G)$, chromatic number $\chi(G)$ and independence number $\alpha(G)$. Then $\chi(G) + \chi(\overline{G}) \leq n + 1$.

Combining Theorem 1 and Theorem 2 we obtain the following improved upper bound for the chromatic number of a graph.

Theorem 3. Let G be a connected graph of order n with clique number $\omega(G)$, chromatic number $\chi(G)$, maximum degree $\Delta(G)$ and independence number $\alpha(G)$. Then $\chi(G) \leq \min\{\Delta(G) + 1, \frac{n+\omega+1-\alpha}{2}\}$. Moreover, if G contains no induced $(K_{\omega+3} - C_5)$ and is neither a split graph nor an odd cycle, then $\chi(G) \leq \min\{\Delta(G), \frac{n+\omega-\alpha}{2}\}$.

For the proof of Theorem 2 we will make use of the following lemma.

Lemma 1. Let G be a K₃-free graph. Then $\chi(G) \leq \lfloor \frac{n+4}{3} \rfloor$

Proof. We generate $t = \lceil \frac{n-(r(K_3,K_3)-1)}{3} \rceil = \lceil \frac{n-5}{3} \rceil$ independent sets I_1 , I_2, \ldots, I_t of order three using the Ramsey number $r(K_3, K_3) = 6$. Let $H = G - (\cup_{i=1}^t I_i)$. If |V(H)| = 3, then $\chi(H) \le 2$ and thus $\chi(G) \le \frac{n-3}{3} + 2 = \frac{n+3}{3}$. If |V(H)| = 4, then $\chi(H) \le 2$ and thus $\chi(G) \le \frac{n-4}{3} + 2 = \frac{n+2}{3}$. If |V(H)| = 5, then $\chi(H) \le 3$ and thus $\chi(G) \le \frac{n-5}{3} + 3 = \frac{n+4}{3}$.

Proof of Theorem 2. Let I be a maximum independent set and F = G-I. Compute a maximum matching with vertex set M in \overline{F} . Let H = F - M. Then \overline{H} is independent and H is complete. Let p = |V(H)|. Then $\chi(G) \le 1 + \frac{|M|}{2} + p = p + \frac{n-\alpha-p}{2} + 1 = \frac{n+p+2-\alpha}{2} \le \frac{n+\omega+2-\alpha}{2}$.

If $\omega = p \ge 2$, then $d_H(v) \le p - 1$ for all vertices $v \in I$. Hence each vertex of I can be coloured with a colour used for H. Hence $\chi(G) \le \frac{n-\alpha-p}{2} + p = \frac{n+p-\alpha}{2} = \frac{n+\omega-\alpha}{2}$. If $\omega \ge p+2$, then $\chi(G) \le \frac{n+p+2-\alpha}{2} \le \frac{n+\omega-\alpha}{2}$. Therefore, if $\omega \ne p+1$, then $\chi(G) \le \frac{n+\omega-\alpha}{2}$. So assume $\omega = p+1$.

Case 1. $p = 1, \omega = 2$

Applying Lemma 1 to the graph G - I, we get $\chi(G) \leq 1 + \lfloor \frac{n-\alpha+4}{3} \rfloor \leq \frac{n-\alpha+7}{3} \leq \frac{n+2-\alpha}{2}$ for $\alpha \leq n-8$. Hence we may assume $\alpha \geq n-7$.

If |M| = 6, then |V(F)| = 7. If $\Delta(F) \ge 4$, then $\chi(F) \le 3$. If $\Delta(F) = 3$, then $\chi(F) \le 3$ by Brooks' Theorem (1). And if $\Delta(F) \le 2$, then $\chi(F) \le \Delta + 1 \le 3$. Therefore $\chi(G) \le 1 + 3 = 4 < \frac{n+2-\alpha}{2}$.

If |M| = 4, then |V(F)| = 5. If $\Delta(F) \ge 3$, then $\chi(F) \le 2$. If $\Delta(F) = 2$, then $\chi(F) = 2$ or $H \cong C_5$. And if $\Delta(F) = 1$, then $\chi(F) \le \Delta + 1 = 2$. Therefore $\chi(G) \le 1 + 2 = 3 < \frac{n+2-\alpha}{2}$, if $F \not\cong C_5$. Suppose $F \cong C_5$. Since Gis K_3 -free, we have $d_F(v) \le 2$ for all vertices $v \in I$. Then any 3-colouring of the C_5 can be extended to a 3-colouring of G. Therefore $\chi(G) \le 3 < \frac{n+2-\alpha}{2}$.

If |M| = 2, then |V(F)| = 3. If G is bipartite, then $\chi(G) \leq 2$. Else G contains a C_5 , since I is an independent set and |V(F)| = 3. We may assume that $V(F) = \{w_1, w_2, w_4\}$ and I contains two vertices w_3, w_5 such that $G[\{w_1, w_2, w_3, w_4, w_5\}] \cong C_5$ with edges $w_i w_{i+1} \pmod{5}$. Since G is K_3 -free, we have $|N(v) \cap \{w_1, w_2, w_3, w_4, w_5\}| \leq 2$ for all vertices $v \in I - \{w_3, w_5\}$. Then any 3-colouring of the C_5 can be extended to a 3-colouring of G. Hence $\chi(G) = 3 = \frac{n+3-\alpha}{2} = \frac{n+\omega+1-\alpha}{2}$. Note that $C_5 \cong K_{\omega+3} - C_5$ for $\omega = 2$.

If |M| = 0, then |V(F)| = 1. Thus G is a split graph. Since G is connected, $G \cong K_{1,n-1}$. Therefore, $\chi(G) = 2 = \frac{n+\omega+1-\alpha}{2}$.

Case 2. $p \ge 2$

Let $M = U \cup W = \{u_1, u_2, \dots, u_q\} \cup \{w_1, w_2, \dots, w_q\}$ such that $u_i w_i \in E(\overline{G})$ for $1 \le i \le q$. If $u_i v, w_i v \notin E(G)$ for some *i* and a vertex $v \in V(H)$, then u_i, w_i can receive the same colour as *v*. Hence $\chi(G) \le p + \frac{n-\alpha-p}{2} - 1 + 1 = \frac{n+p-\alpha}{2} < \frac{n+\omega-\alpha}{2}$.

If $u_iv_1, w_iv_2 \notin E(G)$ for four vertices $v_1, v_2 \in V(H)$ and $u_i, w_i \in M$, then M is not a maximum matching, since $u_iw_i \in E(\overline{G})$ could be replaced by $u_iv_1, w_iv_2 \in E(\overline{G})$, a contradiction. Hence we may assume that $d_H(u_i) = p$ for $1 \leq i \leq q$. Then G[U] is independent, since $\omega = p + 1$. If $d_H(v) \leq p - 1$ for all vertices $v \in I$, then every vertex $v \in I$ can be coloured with a colour from H. Then $\chi(G) \leq \frac{n+p-\alpha}{2} < \frac{n+\omega-\alpha}{2}$.

So let $I_0 \subset I$ contain all vertices of I such that $d_H(v) = p$. Then $I_0 \cup U$ is independent, since $\omega = p+1$. If $\chi(G[W]) \leq q-1$, then $\chi(G) \leq \chi(G[V(H) \cup (I-I_0)]) + \chi(G[W]) + \chi(G[U \cup I_0]) \leq p + (q-1) + 1 = \frac{n+p-\alpha}{2} < \frac{n+\omega-\alpha}{2}$ using one colour for all vertices of $I_0 \cup U$. If $\chi(G[W]) = q$, then $G[W] \cong K_q$. Let $d_H(w_1) \leq d_H(w_2) \leq \ldots \leq d_H(w_q)$. If $v_1w_i, v_2w_j \notin E(G)$ for four vertices $v_1, v_2 \in V(H)$ and $w_i, w_j \in W$, then M is not a maximum matching, since $u_iw_i, u_jw_j \in E(\overline{G})$ could be replaced by $v_1w_i, v_2w_j, u_iu_j \in E(\overline{G})$, a contradiction. Therefore we may assume $N_H(w_1) \subset N_H(w_2) \subset \ldots \subset N_H(w_q)$. This implies that either $d_H(w_i) = p$ for all $i \geq 2$ or $d_H(w_i) \geq p-1$ for all $i \geq 1$. In both cases, one can deduce that $p+1 \geq q+p-1$, and therefore $q \leq 2$.

Subcase 2.1. q = 2

Suppose $w_1v, w_2v \in E(G)$ for a vertex $v \in I_0$. If $d_H(w_2) = p$, then $G[H \cup \{w_2, v\}]$ is complete. Hence $\omega(G) \ge p+2$, a contradiction. If $d_H(w_2) = p-1$, then $d_H(w_1) = p-1$ and $N_H(w_1) = N_H(w_2)$. Then $\omega(G) \ge (p-1)+3 = p+2$, a contradiction. Therefore $d_W(v) \le 1$ for all vertices $v \in I_0$. Since $I_0 \cup U$ is independent we obtain $d(v) \le p+1$ for all vertices $v \in I_0$. Now $\chi(G-I_0) \le \frac{n+p-\alpha}{2} = \frac{n+\omega-1-\alpha}{2} = p+2$. Then any (p+2)-colouring of $G-I_0$ can be extended to a (p+2)-colouring of G and hence $\chi(G) \le \frac{n+\omega-1-\alpha}{2}$.

Subcase 2.2. q = 1

We have $\alpha(G) + \omega(G) = n - 1$ and $\omega(G) = p + 1 \leq \chi(G) \leq p + 2$. We will now show that $\chi(G) = p + 1$, if G contains no $K_{p+4} - C_5$. Suppose that $\chi(G) = p + 1$.. We may assume that the vertices of H receive colours $1, 2, \ldots, p$ and that c(v) = p + 1 for all vertices $v \in I_0 \cup \{u_1\}$. If $d_H(w_1) = p$, then $I_0 \cup \{u_1, w_1\}$ is independent and we can choose $c(w_1) = p + 1$. Since $d_H(v) \leq p - 1$ for all vertices $v \in I - I_0$, we can choose $c(v) \in \{1, \ldots, p\}$ for all vertices $v \in I - I_0$. Suppose now $d_H(w_1) \leq p - 1$. If $I_0 \cup \{u_1, w_1\}$ is independent, then the same colouring as above can be used. Hence assume that $w_1x \in E(G)$ for a vertex $x \in I_0$. Choose $c(w_1) = i$ for a proper colour $i \in \{1, \ldots, p\}$. Then we can find $c(v) \in \{1, \ldots, p+1\}$ for a vertex $v \in I - I_0$ unless $vu_1 \in E(G)$ and $N_H(w_1) = N_H(v)$ with $d_H(w_1) = d_H(v) = p - 1$. But then $G[H \cup \{u_1, w_1, x, v\}] \cong K_{p+4} - C_5$, a contradiction, since $\chi(K_{p+4} - C_5) = p + 2$. Subcase 2.3. q = 0

Then G is a split graph with $\omega(G) + \alpha(G) = n + 1$ and $\chi(G) = \omega(G) = p + 1 = \frac{n + \omega + 1 - \alpha}{2}$.

Acknowledgement

We thank the referees for some valuable comments.

References

- B. Baetz and D.R. Wood, Brooks' Vertex Colouring Theorem in Linear Time, TR CS-AAG-2001-05, Basser Dep. Comput. Sci., Univ. Sydney, (2001) 4 pages.
- [2] C. Berge, Les problèms de coloration en théorie des graphes, Publ. Inst. Statist. Univ. Paris 9 (1960) 123–160.
- [3] C. Berge, *Perfect graphs*, in: Six papers on graph theory, Indian Statistical Institute, Calcutta (1963), 1–21.
- [4] R.C. Brigham and R.D. Dutton, A Compilation of Relations between Graph Invariants, Networks 15 (1985) 73–107.
- [5] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194–197.
- M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, Progress on perfect graphs, Math. Program. (B) 97 (2003) 405–422.
- [7] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. Math. (2) 164 (2006) 51–229.
- [8] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour and K. Vušković, *Recog*nizing Berge Graphs, Combinatorica 25 (2005) 143–186.
- [9] P. Erdős, Graph theory and probability, Canad. J. Math. 11 (1959) 34–38.
- [10] J.L. Gross and J. Yellen, Handbook of Graph Theory (CRC Press, 2004).
- [11] L. Lovász, Three short proofs in graph theory, J. Combin. Theory (B) 19 (1975) 269–271.
- [12] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175–177.
- [13] B. Randerath and I. Schiermeyer, Vertex colouring and forbidden subgraphs a survey, Graphs and Combinatorics **20** (2004) 1–40.

Received 20 January 2006 Revised 28 December 2006