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Abstract

Let G be a graph of order n with clique number ω(G), chromatic
number χ(G) and independence number α(G). We show that χ(G) ≤
n+ω+1−α

2 . Moreover, χ(G) ≤ n+ω−α
2 , if either ω + α = n + 1 and G is

not a split graph or α+ω = n−1 and G contains no induced Kω+3−C5.
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1. Introduction

We consider [10] for terminology and notation not defined here and consider
finite, simple and undirected graphs only. A k-colouring of a graph G is
an assignment of k different colours to the vertices of G such that adjacent
vertices receive different colours. The minimum cardinality k for which G
has a k-colouring is called the chromatic number of G and is denoted by
χ(G) or briefly χ if no ambiguity can arise.

An obvious lower bound for χ is the size of a largest clique in a graph
G. This number is called the clique number of G and denoted by ω(G) or
briefly ω. Unfortunately, the computations of χ and ω are both NP-hard.
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By a classical result of Erdős [9] we know that the difference χ(G) − ω(G)
can be arbitrarily large. On the other hand the graphs, where χ attains the
lower bound ω, form a graph class of great variety, even if we impose the
equality on all induced subgraphs of a graph. A graph G is called perfect
if the chromatic number χ(H) equals the clique number ω(H) for every
induced subgraph H of G. More than four decades ago Berge [2] introduced
the concept of perfect graphs.

Berge [3] conjectured that a graph G is perfect if and only if neither G
nor its complement Ḡ contains an induced odd cycle of order at least five.
In honor of Berge the graphs defined by the righthand side of the conjecture
are known as Berge graphs. This famous longstanding conjecture known as
Strong Perfect Graph Conjecture has recently been solved by Chudnovsky,
Robertson, Seymour and Thomas [7]. Polynomial time recognition algo-
rithms for Berge graphs have recently be announced by Chudnovsky and
Seymour and Cornuéjols, Liu and Vušković (see [8, ?, ?]).

Upper bounds for χ can be obtained by studying the degrees of the
vertices of a graph G. In particular, we are interested in the maximum degree
of G, which is denoted by ∆(G) or simply ∆. Obviously, the chromatic
number of G is at most ∆ + 1. In fact, there is a simple recursive greedy
algorithm for colouring G with at most ∆+1 colours. Having coloured G−v,
we just colour the vertex v of G with one of the colours not appearing on
any of the at most ∆ neighbours of v.

Hence, for a given graph G, the clique number ω(G), the chromatic
number χ(G) and the maximum degree ∆(G) satisfy

ω(G) ≤ χ(G) ≤ ∆(G) + 1.

In 1941 Brooks [5] determined for connected graphs G the families of graphs
attaining the upper bound ∆(G)+1, namely complete graphs and odd cycles.
This characterization leads to an improvement of the upper bound.

Theorem 1 [5]. If a connected graph G = (V, E) is neither complete nor
an odd cycle, then G has a ∆(G)-colouring.

Based on Lovász algorithmic proof [11] of Brooks Theorem it is possible to
design a linear time algorithm (see for instance [1] for an implementation in
time O(|V |+ |E|)).
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2. A New Upper Bound

Theorem 2. Let G be a connected graph of order n with clique number ω(G),
chromatic number χ(G) and independence number α(G). Then χ(G) ≤
n+ω+1−α

2 . Moreover, χ(G) ≤ n+ω−α
2 , if either ω + α = n + 1 and G is

not a split graph or α + ω = n− 1 and G contains no induced Kω+3 − C5.

Corollary 1 (Brigham and Dutton, 1985, [4]). Let G be a connected graph
of order n with clique number ω(G), chromatic number χ(G) and indepen-
dence number α(G). Then χ(G) ≤ n+ω+1−α

2 .

Applying this upper bound both to G and its complement G, we obtain the
following result of Nordhaus and Gaddum [12].

Corollary 2 (Nordhaus and Gaddum, 1956, [12]). Let G be a graph of
order n with clique number ω(G), chromatic number χ(G) and independence
number α(G). Then χ(G) + χ(G) ≤ n + 1.

Combining Theorem 1 and Theorem 2 we obtain the following improved
upper bound for the chromatic number of a graph.

Theorem 3. Let G be a connected graph of order n with clique number ω(G),
chromatic number χ(G), maximum degree ∆(G) and independence number
α(G). Then χ(G) ≤ min{∆(G) + 1, n+ω+1−α

2 }. Moreover, if G contains no
induced (Kω+3 − C5) and is neither a split graph nor an odd cycle, then
χ(G) ≤ min{∆(G), n+ω−α

2 }.

For the proof of Theorem 2 we will make use of the following lemma.

Lemma 1. Let G be a K3-free graph. Then χ(G) ≤ bn+4
3 c

Proof. We generate t = dn−(r(K3,K3)−1)
3 e = dn−5

3 e independent sets I1,
I2, . . . , It of order three using the Ramsey number r(K3,K3) = 6. Let H =
G−(∪t

i=1Ii). If |V (H)| = 3, then χ(H) ≤ 2 and thus χ(G) ≤ n−3
3 +2 = n+3

3 .
If |V (H)| = 4, then χ(H) ≤ 2 and thus χ(G) ≤ n−4

3 +2 = n+2
3 . If |V (H)| = 5,

then χ(H) ≤ 3 and thus χ(G) ≤ n−5
3 + 3 = n+4

3 .

Proof of Theorem 2. Let I be a maximum independent set and F = G−I.
Compute a maximum matching with vertex set M in F. Let H = F −M.
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Then H is independent and H is complete. Let p = |V (H)|. Then χ(G) ≤
1 + |M |

2 + p = p + n−α−p
2 + 1 = n+p+2−α

2 ≤ n+ω+2−α
2 .

If ω = p ≥ 2, then dH(v) ≤ p − 1 for all vertices v ∈ I. Hence each vertex
of I can be coloured with a colour used for H. Hence χ(G) ≤ n−α−p

2 + p =
n+p−α

2 = n+ω−α
2 . If ω ≥ p + 2, then χ(G) ≤ n+p+2−α

2 ≤ n+ω−α
2 . Therefore,

if ω 6= p + 1, then χ(G) ≤ n+ω−α
2 . So assume ω = p + 1.

Case 1. p = 1, ω = 2
Applying Lemma 1 to the graph G − I, we get χ(G) ≤ 1 + bn−α+4

3 c ≤
n−α+7

3 ≤ n+2−α
2 for α ≤ n− 8. Hence we may assume α ≥ n− 7.

If |M | = 6, then |V (F )| = 7. If ∆(F ) ≥ 4, then χ(F ) ≤ 3. If ∆(F ) = 3,
then χ(F ) ≤ 3 by Brooks’ Theorem (1). And if ∆(F ) ≤ 2, then χ(F ) ≤
∆ + 1 ≤ 3. Therefore χ(G) ≤ 1 + 3 = 4 < n+2−α

2 .

If |M | = 4, then |V (F )| = 5. If ∆(F ) ≥ 3, then χ(F ) ≤ 2. If ∆(F ) = 2,
then χ(F ) = 2 or H ∼= C5. And if ∆(F ) = 1, then χ(F ) ≤ ∆ + 1 = 2.
Therefore χ(G) ≤ 1 + 2 = 3 < n+2−α

2 , if F 6∼= C5. Suppose F ∼= C5. Since G
is K3-free, we have dF (v) ≤ 2 for all vertices v ∈ I. Then any 3-colouring of
the C5 can be extended to a 3-colouring of G. Therefore χ(G) ≤ 3 < n+2−α

2 .

If |M | = 2, then |V (F )| = 3. If G is bipartite, then χ(G) ≤ 2. Else G
contains a C5, since I is an independent set and |V (F )| = 3. We may assume
that V (F ) = {w1, w2, w4} and I contains two vertices w3, w5 such that
G[{w1, w2, w3, w4, w5}] ∼= C5 with edges wiwi+1 (mod 5). Since G is K3-free,
we have |N(v) ∩ {w1, w2, w3, w4, w5}| ≤ 2 for all vertices v ∈ I − {w3, w5}.
Then any 3-colouring of the C5 can be extended to a 3-colouring of G. Hence
χ(G) = 3 = n+3−α

2 = n+ω+1−α
2 . Note that C5

∼= Kω+3 − C5 for ω = 2.

If |M | = 0, then |V (F )| = 1. Thus G is a split graph. Since G is
connected, G ∼= K1,n−1. Therefore, χ(G) = 2 = n+ω+1−α

2 .

Case 2. p ≥ 2
Let M = U ∪W = {u1, u2, . . . , uq}∪{w1, w2, . . . , wq} such that uiwi ∈ E(G)
for 1 ≤ i ≤ q. If uiv, wiv /∈ E(G) for some i and a vertex v ∈ V (H), then
ui, wi can receive the same colour as v. Hence χ(G) ≤ p + n−α−p

2 − 1 + 1 =
n+p−α

2 < n+ω−α
2 .

If uiv1, wiv2 /∈ E(G) for four vertices v1, v2 ∈ V (H) and ui, wi ∈ M,
then M is not a maximum matching, since uiwi ∈ E(G) could be replaced by
uiv1, wiv2 ∈ E(G), a contradiction. Hence we may assume that dH(ui) = p
for 1 ≤ i ≤ q. Then G[U ] is independent, since ω = p + 1. If dH(v) ≤ p− 1
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for all vertices v ∈ I, then every vertex v ∈ I can be coloured with a colour
from H. Then χ(G) ≤ n+p−α

2 < n+ω−α
2 .

So let I0 ⊂ I contain all vertices of I such that dH(v) = p. Then I0∪U is
independent, since ω = p+1. If χ(G[W ]) ≤ q−1, then χ(G) ≤ χ(G[V (H)∪
(I − I0)]) + χ(G[W ]) + χ(G[U ∪ I0]) ≤ p + (q − 1) + 1 = n+p−α

2 < n+ω−α
2

using one colour for all vertices of I0 ∪ U. If χ(G[W ]) = q, then G[W ] ∼=
Kq. Let dH(w1) ≤ dH(w2) ≤ . . . ≤ dH(wq). If v1wi, v2wj /∈ E(G) for four
vertices v1, v2 ∈ V (H) and wi, wj ∈ W, then M is not a maximum matching,
since uiwi, ujwj ∈ E(G) could be replaced by v1wi, v2wj , uiuj ∈ E(G),
a contradiction. Therefore we may assume NH(w1) ⊂ NH(w2) ⊂ . . . ⊂
NH(wq). This implies that either dH(wi) = p for all i ≥ 2 or dH(wi) ≥ p− 1
for all i ≥ 1. In both cases, one can deduce that p + 1 ≥ q + p − 1, and
therefore q ≤ 2.

Subcase 2.1. q = 2
Suppose w1v, w2v ∈ E(G) for a vertex v ∈ I0. If dH(w2) = p, then G[H ∪
{w2, v}] is complete. Hence ω(G) ≥ p+2, a contradiction. If dH(w2) = p−1,
then dH(w1) = p − 1 and NH(w1) = NH(w2). Then ω(G) ≥ (p − 1) + 3 =
p + 2, a contradiction. Therefore dW (v) ≤ 1 for all vertices v ∈ I0. Since
I0 ∪ U is independent we obtain d(v) ≤ p + 1 for all vertices v ∈ I0. Now
χ(G−I0) ≤ n+p−α

2 = n+ω−1−α
2 = p+2. Then any (p+2)-colouring of G−I0

can be extended to a (p + 2)-colouring of G and hence χ(G) ≤ n+ω−1−α
2 .

Subcase 2.2. q = 1
We have α(G) + ω(G) = n − 1 and ω(G) = p + 1 ≤ χ(G) ≤ p + 2. We
will now show that χ(G) = p + 1, if G contains no Kp+4 − C5. Suppose
that χ(G) = p + 1.. We may assume that the vertices of H receive colours
1, 2, . . . , p and that c(v) = p+1 for all vertices v ∈ I0 ∪{u1}. If dH(w1) = p,
then I0 ∪ {u1, w1} is independent and we can choose c(w1) = p + 1. Since
dH(v) ≤ p − 1 for all vertices v ∈ I − I0, we can choose c(v) ∈ {1, . . . , p}
for all vertices v ∈ I − I0. Suppose now dH(w1) ≤ p − 1. If I0 ∪ {u1, w1} is
independent, then the same colouring as above can be used. Hence assume
that w1x ∈ E(G) for a vertex x ∈ I0. Choose c(w1) = i for a proper
colour i ∈ {1, . . . , p}. Then we can find c(v) ∈ {1, . . . , p + 1} for a vertex
v ∈ I−I0 unless vu1 ∈ E(G) and NH(w1) = NH(v) with dH(w1) = dH(v) =
p − 1. But then G[H ∪ {u1, w1, x, v}] ∼= Kp+4 − C5, a contradiction, since
χ(Kp+4 − C5) = p + 2.
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Subcase 2.3. q = 0
Then G is a split graph with ω(G) + α(G) = n + 1 and χ(G) = ω(G) =
p + 1 = n+ω+1−α

2 .
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