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Abstract
The orientation distance graph Do(G) of a graph G is defined as

the graph whose vertex set is the pair-wise non-isomorphic orientations
of G, and two orientations are adjacent iff the reversal of one edge in
one orientation produces the other. Orientation distance graphs was
introduced by Chartrand et al. in 2001. We provide new results about
orientation distance graphs and simpler proofs to existing results, espe-
cially with regards to the bipartiteness of orientation distance graphs
and the representation of orientation distance graphs using hypercubes.
We provide results concerning the orientation distance graphs of paths,
cycles and other common graphs.
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1. Introduction

Often, one needs to compare objects from some family such as trees or
DNA sequences. One approach is to define an elementary operation that
transforms objects into each other. Then the distance between two objects
is defined to be the minimum number of elementary operations that can
transform one object into the other. Given this notion, one needs to know
properties of this distance measure: for example, if two objects are at dis-
tance 10, does this mean they are close or far. One can represent such a
situation as a graph where the vertices are the objects and two vertices are
adjacent if one object can be transformed into the other by a single elemen-
tary operation. The graph-theoretical distance is the same as the distance
mentioned before. This graph has become known as a distance graph.
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Chartrand et al. [1] defined the orientation distance graph Do(G) of a graph
G = (V, E). This has vertex set O(G), the collection of pair-wise non-
isomorphic orientations of G. Adjacency is defined between two orientations
iff the reversal of one arc in one orientation generates (an orientation isomor-
phic to) the other. If G has m edges, then the number of orientations of G is
2m and so | O(G)| ≤ 2m. The orientation distance between two orientations
of G is the number of arcs that need to be reversed to obtain the one from
the other. A similar notion of distance between distinct orientations was
discussed earlier by Zelinka in [6].

For a nonempty subset S of O(G), the orientation distance graph is
the induced subgraph 〈S〉 over Do(G). Also, a graph H is said to be an
orientation distance graph if there exists a graph G and a set S ⊆ O(G)
such that Do(G) restricted to S is isomorphic to H [1].

In this paper we observe a simple sufficient condition for the orientation
distance graph to be bipartite, and show a connection with hypercubes. We
then investigate the orientation distance graphs of common graphs such as
paths, cycles, complete bipartite and complete graphs. This include work
from the second author’s thesis [2].

2. Bipartiteness and Hypercubes

We start with a simple sufficient condition for the orientation distance graph
to be bipartite.

Theorem 1. Let G be a connected bipartite graph. If the two bipartite sets
have different sizes, or the number of edges is even, then Do(G) is bipartite.

Proof. Say the bipartition of G is (A,B). Since G is connected, this parti-
tion is unique. Suppose first the two partite sets have different sizes. Then
any automorphism of G maps A to A, and so one can define an orientation
D of G as even or odd depending on the parity of the number of arcs ori-
ented from A to B: isomorphic orientations have the same parity. Further,
reversing an arc changes the parity of the orientation. Thus every edge in
Do(G) joins an even and an odd orientation.

If G has an even number of edges, then the same argument works. An
orientation is odd or even depending on the parity of the number of arcs
oriented from one set to the other. Since the number of edges is even, the
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parity from A to B is the same as the parity from B to A. Again Do(G) is
bipartite.

Corollary 1.1. (a) [1] Do(Pn) is bipartite for n odd.
(b) Do(Cn) is bipartite for n even.
(c) Do(Ka,b) is bipartite for a 6= b and for a = b even.

We turn next to another approach for showing bipartiteness and other prop-
erties of the distance graph. We define the raw orientation distance graph
RO(G) of a graph G as the graph with all labeled (isomorphic or not) ori-
entations of G as vertices and adjacency is defined between two orientations
iff the reversal of exactly one arc generates the other.

The simple but powerful observation is that RO(G) of G with m edges is
the m-dimensional hypercube, denoted Qm. (The m-dimensional hypercube
is defined recursively by: Qm = Qm−1 ×K2, where Q0 is the trivial graph.)
For example, it follows that graphs that have no non-trivial automorphism
have the hypercube as their orientation distance graph.

Theorem 2 [6]. The orientation distance graph of an asymmetric graph
with m edges is the m-dimensional hypercube.

Proof. An asymmetric graph G has no non-trivial automorphism, and so
no two orientations of G are isomorphic. That is, Do(G) = RO(G) = Qm.

Corollary 2.1. Every tree is an orientation distance graph.

Proof. It is well known (see for example [3]) that any tree is isometrically
embeddable into (is an induced subgraph of) a hypercube Qn for some value
of n.

Chartrand et al. [1] showed that in fact every tree is an orientation distance
graph with respect to some path.

Now, suppose we identify the vertices of RO(G) that correspond to
isomorphic orientations, grouping them together as one vertex. Adjacency
for the new graph exists between those vertices if any isomorphic form of one
vertex and any isomorphic form of the other vertex were adjacent in RO(G).
From the definition, the graph so obtained is the orientation distance graph
for G.

Theorem 3. Do(G) is obtained from RO(G) by identification.
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We demonstrate the idea with P4. Figure 1 shows the 3-cube with a bit-
string labeling. Consider each bit-string as the representation of an orien-
tation of P4, where an edge oriented from left to right is labeled 1 and 0
otherwise. Those vertices of the 3-cube that are isomorphic with respect
to P4 are marked in Figure 1. By grouping the identified orientations as one
vertex, one obtains Do(P4).

000

001 010 100

101 011 110

111

000
111

001
011

010
101

100
110

Figure 1: Obtaining Do(P4) from RO(P4).

3. Distance Graphs of Paths and Cycles

Paths were the focus of Chartrand et al. in [1].

3.1. Paths of odd order

Chartrand et al. showed the following:

Theorem 4 [1]. (a) Do(P2k+1) is bipartite.
(b) Further, 22k−2 orientations have one color and 22k−2 + 2k−1 have the

other.
(c) Hence Do(P2k+1) is not hamiltonian.

They showed that the orientation distance graphs of paths are 2-connected
for P4 onwards. We can improve this. We utilize an idea similar to their
discussion of the case where one graph is the disjoint union of two copies
of another graph. We define the pair graph G(2) as having vertex set all
unordered pairs of vertices of G, duplicates allowed. So if G has n ver-
tices, then G(2) has

(n+1
2

)
vertices. Two pairs are defined to be adjacent

iff they overlap in one vertex and their other vertices are adjacent in G.
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(The pair graph of C4 is the right-hand graph of Figure 3.) The following
lemma is probably known.

Lemma 1. If G is k-connected then so is G(2).

Proof. It suffices to show that there are k internally disjoint paths between
any two vertices x and y in G(2). For vertex v ∈ V we use the notation Gv

to denote the copy of G induced by the pairs of G(2) containing v.
There are two possibilities. Suppose pairs x and y overlap in one vertex

of G: say x = {a, b} and y = {a, c} (where possibly a = b or a = c). Then in
G there are k internally disjoint b–c paths, and thus there are k internally
disjoint x–y paths in Ga.

The second possibility is that x and y are disjoint: say x = {a, b} and
y = {c, d}. Assume first that a 6= b and c 6= d.

Let R be k− 2 vertices of G distinct from a and c; say r1, . . . , rk−2. Let
T1 be k− 1 internally disjoint paths in G from a to R ∪ {c} avoiding d. Let
T2 be k − 1 internally disjoint paths in G from c to R ∪ {a} avoiding b.

Construct paths as follows. For 1 ≤ i ≤ k − 2, the path Pi has three
segments: {a, b}–{ri, b}–{ri, d}–{c, d}. Paths Q1 and Q2 have two segments:
Q1 goes {a, b}–{a, d}–{c, d} and Q2 goes {a, b}–{c, b}–{c, d}. See Figure 2.
The first segments of Q2 and each Pi lie inside Gb and use the family T1.
The middle segment of each Pi lies inside Gri and uses a b–d path disjoint
from R−{ri}∪{a, c}. The first segment of Q1 lies inside Ga and uses a b–d
path disjoint from R ∪ {c}; the final segment of Q2 lies inside Gc and uses
a b–d path disjoint from R ∪ {a}. The final segments of Q1 and each Pi lie
inside Gd and use the family T2.

{a, b}

{r1, b}

{r2, b}

{c, b}

{a, d}

{r1, d}

{r2, d}

{c, d}

Q1

P1

P2

Q2

Figure 2: If G is 4-connected then so is G(2).
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By construction, each ri appears only on Pi. So the middle segments of Pi are
disjoint from one another and from any other vertex used. By construction,
a appears in the interior of only Q1 and c in the interior of only Q2. So the
first segment of Q1 and the final segment of Q2 are disjoint from the rest of
the vertices. The first segments of Q2 and each Pi use T1 and contain b. But
neither the final segment of Q1 nor the final segment of any Pi contains b.
And so the Pi together with the Qj provide k internally disjoint x–y paths
in G(2).

The case where a = b and/or c = d is handled similarly.

Theorem 5. Do(P2k+1) has connectivity k.

Proof. The path P2k+1 can be obtained by taking two copies of Pk+1 and
identifying an end-vertex. Consider then Do(PM

k+1), where PM
k+1 is Pk+1 with

a distinguished end-vertex. It follows that Do(P2k+1) is the pair graph of
Do(PM

k+1): every orientation of P2k+1 corresponds to an unordered pair of
orientations of Pk+1, and reversing one arc in P2k+1 is equivalent to reversing
one arc in one of the orientations of Pk+1.

The case k = 2 is illustrated in Figure 3. There are four distinct orienta-
tions of the rooted PM

3 , say a, b, c and d. The vertices of Do(P5) correspond
to the

(5
2

)
unordered pairs of a, b, c and d, repetitions allowed.

a

b

c

d

a

c d

b {a, a}

{c, c} {d, d}

{b, b}

{a, c}

{c, d}

{b, d}

{a, b}

{a, d}

{b, c}

Figure 3: Obtaining Do(P5) from Do(PM
3 ).

This approach also gives another proof that Do(P2k+1) is bipartite.

3.2. Paths of even order

The path has exactly one non-trivial automorphism: we call this a flip.
It follows that Do(Pn) is obtained from Qn−1 by identifying some pairs of
vertices. This yields the following result:
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Theorem 6. (a) [1] Do(P2k) has 22k−2 vertices; and
(b) Do(P2k) contains Q2k−2 as a spanning subgraph.

Proof. Form the modified path PM
2k by fixing the direction of the middle

edge, say to 1. The mixed graph PM
2k is asymmetric, and so Do(PM

2k ) = Qk−2.
Also, every orientation of P2k is isomorphic to one of PM

2k , and so Do(PM
2k ) is

a spanning subgraph of Do(P2k). There may, however, be some new edges.

Since Qm is hamiltonian and m-connected, it follows that:

Corollary 6.1. (a) [1] Do(P2k) is hamiltonian.
(b) Do(P2k) is (2k − 2)-connected.

Chartrand et al. [1] showed that Do(Pn) is 2-connected for all n ≥ 4.
One idea used in the previous theorem is captured in the following:

Lemma 2. If a mixed graph H is obtained from an undirected graph G by
orienting some of the edges, then Do(H) is a subgraph of Do(G).

For example, this shows the following:

Theorem 7. Do(P2k) is a subgraph of Do(P2k+2).

Proof. Define the modified path PM
2k+2 as P2k+2 with the first and last edges

oriented toward the center. Then, Do(PM
2k+2) = Do(P2k). Hence Do(P2k) is

a subgraph of Do(P2k+2).

(A similar result holds for odd-order paths.)

Corollary 7.1 [1]. For k ≥ 2, Do(P2k) has a triangle.

Proof. We have seen that Do(P4) contains a triangle. From the preceding
theorem, Do(P4) is a subgraph of Do(P2k) for all k ≥ 3.

Chartrand et al. [1] showed that Do(Pn) has no K4.
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3.3. Cycles

The orientation distance graphs of C4, C5 and C6 are shown in Figure 4.
The number of non-isomorphic orientations of cycles is listed in [5]: 1, 2, 2,
4, 4, 9, 10, 22, 30, . . .

Figure 4: Do(C4), Do(C5) and Do(C6).

Theorem 8. Do(Cn) has a leaf and is therefore neither hamiltonian nor
2-connected.

Proof. There is up to isomorphism exactly one transitive orientation of Cn

(in which all edges are oriented in the same direction): call it u. Further,
there is up to isomorphism exactly one orientation of Cn which has exactly
one edge oriented differently from the other edges: call it v. Clearly, u and
v are neighbors in Do(Cn), with u having no other neighbor.

Do(Cn) may or may not have a hamiltonian path: both Do(C4) and Do(C6)
fail to have one, but Do(C5) does.

Some of the results mirror the situation for paths. We saw earlier that
Do(C2k) is bipartite. But Do(C2k+1) is not.

Theorem 9. Do(C2k+1) contains a triangle.

Proof. Let v be a vertex of C2k+1. Then orient all edges towards v except
for the three farthest from v, which remain undirected. Call the resultant
mixed graph CM

2k+1. One can then readily argue that Do(CM
2k+1) = Do(P4).

That graph contains a triangle. Hence Do(CM
2k+1) and thus Do(C2k+1) con-

tains a triangle. Figure 5 shows these three mutually adjacent orientations
in C5.

We believe that the clique number of Do(C2k+1) is 3.
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v v v

Figure 5: 3 mutually adjacent orientations of C5.

4. Distance Graphs of Complete and Complete
Bipartite Graphs

We start with the exact result for the star.

Theorem 10. For m ≥ 2, Do(Sm) for the star graph Sm with m edges is
Pm+1.

Proof. The star graph Sm has m + 1 non-isomorphic orientations: given
by 0, 1, 2, . . . , m arcs oriented towards the central vertex.

We saw earlier (Theorem 1) that the orientation distance graphs of most
complete bipartite graphs are bipartite. However, Do(K3,3) is not bipartite.
Indeed, it has a clique of size 4—these are the unique orientations whose
bi-degree sequences are

2, 1, 0 : 3, 2, 1 3, 1, 0 : 2, 2, 1 2, 2, 0 : 3, 1, 1 3, 2, 0 : 2, 1, 1

Do(K3,3) is shown in Figure 6. The orientation distance graph of a complete
bipartite graph always has a leaf (the orientation with all arcs oriented from
one side to the other).

Figure 6: Do(K3,3) (the hollow vertices form a clique).
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For the complete graph, an orientation is commonly known as a tournament.
The following sequence of number of non-isomorphic orientations of complete
graphs is from [4]: 1, 2, 4, 12, 56, 456, 6880, . . .

It is not hard to show that Do(Kn) is a subgraph of Do(Kn+1). Figure 7
shows the orientation distance graphs of K4 and K5. The data for the latter
was generated by computer.

Figure 7: Do(K4) and Do(K5).

It may be noted that Do(K5) contains a clique of size 4. We conjecture
that the clique number of Do(Kn) tends to ∞ as n tends to ∞. (However,
computer calculation shows that Do(K6) does not have a 5-clique.)

5. Other Results

Let us consider a special caterpillar graph: the caterpillar graph which is
formed from a path by attaching to every vertex exactly one leaf. We denote
this tree by In, where n is the number of vertices in the main path (see
Figure 8 for I4).

1 3 3′ 1′

2 2′

Figure 8: The caterpillar I4.

The orientation distance graph of such caterpillars is related to the orienta-
tion distance graph of the path with the same number of edges.

Theorem 11. (a) If n is even, Do(In) = Do(P2n).
(b) If n is odd, Do(In) = Do(P2n−1)×K2.
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Proof. (a) Consider the caterpillar graph I4 shown in Figure 8. This graph
has only one non-trivial automorphism: this maps 1 to 1′, 2 to 2′ and 3 to
3′. The point is that this automorphism behaves exactly like the flip of P8.
We may clearly extend this argument for the case of In (n even), where the
automorphism that maps the corresponding edges about the middle edge
corresponds to the flip of P2n.

(b) Fix the orientation of the leaf adjacent to the central vertex of In.
Again the automorphism that maps the remaining edges around the central
vertex corresponds to the flip in the path of the same size. Further, we
have two such correspondences, one for each direction of the central leaf. It
follows that Do(In) = Do(P2n−1)×K2.

The last line of the above proof is the same argument used in the result
about disjoint union. Chartrand et al. [1] showed that the orientation
distance graph of a graph with non-isomorphic components is given by the
cartesian product of the orientation distance graphs of the components.

Theorem 12 [1]. If G = G1 ∪ G2, where G1 and G2 are non-isomorphic
and connected, then Do(G) = Do(G1)×Do(G2).

We have seen several results that show that a graph has a bipartite orien-
tation distance graph. We close with the following one about graphs with a
pair of identical vertices.

Theorem 13. Suppose graph G has a unique non-trivial automorphism and
that automorphism maps one vertex u to v, and vice versa, leaving the other
vertices fixed, with u and v not adjacent. Then, Do(G) is bipartite.

Proof. If two orientations are isomorphic, then the isomorphism is given
by the unique non-trivial automorphism of G. The number of edges that the
two orientations differ by must be even: if they differ on ux then they differ
on vx and vice versa. Hence the orientations are an even distance apart in
RO(G) and have the same color there.

6. Conclusion

We studied orientation distance graphs of a wide variety of graphs. We ob-
served a simple condition for bipartiteness, while the approach of obtaining
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the orientation distance graph from hypercubes proved useful in their un-
derstanding. Further, we studied the orientation distance graphs of cycles
and complete graphs. We observed that the orientation distance graph of
an even cycle is bipartite and that of an odd cycle has a triangle. We be-
lieve there are more interesting problems to study about orientation distance
graphs and leave the following as open problems:

1. Which graphs are distance graphs? We know trees are distance graphs.
Chartrand et al. [1] showed that every cycle Cn is an orientation distance
graph with respect to the path Pn+1. We found K4 in Do(K5) and in
Do(K3,3). We conjecture that all cliques can be found in Do(Kn) as
n →∞.

2. What is the chromatic number of Do(Pm) for m even, and the clique
and chromatic numbers of Do(Cm) for m odd? We saw that the clique
number of Do(Pn) is 3 when n is odd: we conjecture that the chromatic
number of Do(Pn) is 3 when n is odd.

3. Unique orientations. Chartrand et al. claim in [1] (Theorem 2.5) that
if D is an orientation of G that is isomorphic to no other orientation
of G, then D lies on no odd cycle in Do(G). The proof they provided
is incomplete. But we were unable to provide a complete proof or a
counter-example.
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