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Abstract

Let G be a simple graph, and let p be a positive integer. A subset
D ⊆ V (G) is a p-dominating set of the graph G, if every vertex v ∈
V (G)−D is adjacent with at least p vertices of D. The p-domination
number γp(G) is the minimum cardinality among the p-dominating
sets of G. Note that the 1-domination number γ1(G) is the usual
domination number γ(G).

If G is a nontrivial connected block graph, then we show that
γ2(G) ≥ γ(G) + 1, and we characterize all connected block graphs
with γ2(G) = γ(G) + 1. Our results generalize those of Volkmann [12]
for trees.
Keywords: domination, 2-domination, multiple domination, block
graph.
2000 Mathematics Subject Classification: 05C69.

1. Terminology and Introduction

We consider finite, undirected, and simple graphs G with vertex set V (G)
and edge set E(G). The number of vertices |V (G)| of a graph G is called
the order of G and is denoted by n = n(G).

The open neighborhood N(v) = NG(v) of a vertex v consists of the
vertices adjacent to v and d(v) = dG(v) = |N(v)| is the degree of v. The
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closed neighborhood of a vertex v is defined by N [v] = NG[v] = N(v) ∪ {v}.
A vertex of degree one is called a leaf and its neighbor is called a support
vertex. An edge incident with a leaf is called a pendant edge. Let L(G)
be the set of leaves of a graph G. For a subset S ⊆ V (G), we define
N(S) = NG(S) =

⋃
v∈S N(v), N [S] = NG[S] = N(S) ∪ S, and G[S] is the

subgraph induced by S.
A block of a graph G is maximal subgraph of G without a cutvertex.

If every block of a graph is complete, then we speak of a block graph. We
write Kn for the complete graph of order n, and Kp,q for the the complete
bipartite graph with bipartition X, Y such that |X| = p and |Y | = q.

The subdivision graph S(G) of a graph G is that graph obtained from
G by replacing each edge uv of G by a vertex w and edges uw and vw.
In the case that G is the trivial graph, we define S(G) = G. Let SSt be
the subdivision graph of the star K1,t. A tree is a double star if it contains
exactly two vertices of degree at least two. A double star with respectively
s and t leaves attached at each support vertex is denoted by Ss,t. Instead
of S(Ss,t) we write SSs,t.

The corona graph G ◦K1 of a graph G is the graph constructed from a
copy of G, where for each vertex v ∈ V (G), a new vertex v′ and a pendant
edge vv′ are added.

A vertex and an edge are said to cover each other if they are incident. A
vertex cover in a graph G is a set of vertices that covers all edges of G. The
minimum cardinality of a vertex cover in a graph G is called the covering
number of G and is denoted by β(G) = β. A set of pairwise non-adjacent
vertices of G is an independent set of G. The cardinality of a maximum
independent set is called the independence number α(G) of the graph G.

Let p be a positive integer. A subset D ⊆ V (G) is a p-dominating set of
the graph G, if |NG(v)∩D| ≥ p for every v ∈ V (G)−D. The p-domination
number γp(G) is the minimum cardinality among the p-dominating sets of G.
Note that the 1-domination number γ1(G) is the usual domination number
γ(G). A p-dominating set of minimum cardinality of a graph G is called a
γp(G)-set.

In [2, 3], Fink and Jacobson introduced the concept of p-domination.
For a comprehensive treatment of domination in graphs, see the monographs
by Haynes, Hedetniemi, and Slater [6, 7].

If T is a nontrivial tree, then it is easy to see that γ2(T ) ≥ γ(T ) + 1.
Recently, Volkmann has proved the following result.
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Theorem 1.1 (Volkmann [12]). A nontrivial tree T satisfies γ2(T ) = γ(T )+
1 if and only if T is a subdivided star SSt or a subdivided star SSt minus a
leaf or a subdivided double star SSs,t.

In this paper we show that γ2(G) ≥ γ(G) + 1 for every nontrivial connected
block graph G, and as an extension of Theorem 1.1, we characterize all block
graphs G with γ2(G) = γ(G) + 1.

The procedure to achieve this objective is to classify all connected block
graphs with γ2 = γ + 1 in a finite number of determined family classes.
The family classes are given by a reduction method, in which every graph
is assigned to a certain subgraph.

If G is a connected block graph with γ2(G) = γ(G) + 1, we will show
that, if there is an endblock B of G − L(G) with cutvertex u in G − L(G)
and with NG(B − u)∩L(G) 6= ∅, then the graph G′ = G− (NG[B − u]− u)
satisfies again the property γ2(G′) = γ(G′) + 1. If we repeat this reduction
process until it is not possible anymore, we obtain a subgraph that belongs
to the set of graphs that represent the family class of this particular block
graph. As an example, regard following reduction of a block graph G with
γ2(G) = γ(G) + 1:
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The resulted graph is the block K4. The graph G will belong to the family
of block graphs with γ2 = γ +1 which can be reduced to a Kp for an integer
p ≥ 3.

We consider this reduction method to be important concerning graph
characterization problems and therefore it could be in some way attractive
for other graph theoretical investigations.

2. Preliminary Results

The following well known results play an important role in our investigations.
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Theorem 2.1 (Gallai [5], 1959). If G is a graph, then α(G)+β(G) = n(G).

Theorem 2.2 (Blidia, Chellali, Volkmann [1], 2006). If G is block graph,
then γ2(G) ≥ α(G).

Theorem 2.3 (Topp, Volkmann [10] 1990). If G is a block graph, then
γ(G) = α(G) if and only if every vertex belongs to exactly one simplex.

Theorem 2.4 (Payan, Xuong [8] 1982, Fink Jacobson, Kinch, Roberts [4]
1985). For a graph G with even order n and no isolated vertices, γ(G) = n/2
if and only if the components of G consist of the cycle C4 or the corona
graph H ◦K1 for any connected graph H.

Proofs of Theorems 2.1, 2.3 and 2.4 can also be found in the book of Volk-
mann [11], pp. 193, 223 and 228. In 1998, Randerath and Volkmann [9]
and independently, in 2000, Xu, Cockayne, Haynes, Hedetniemi and Zhou
[13] (cf. also [6], pp. 42–48) characterized the odd order graphs G for which
γ(G) = bn/2c. In the next theorem we only note the part of this character-
ization which we will use in the next section

Theorem 2.5 (Randerath, Volkmann [9] 1998). Let G be a nontrivial
connected block graph of odd order n with δ(G) = 1, γ(G) = bn/2c and
γ(G) = β(G). Then the following cases are possible:

(1) |NG(L(G))| = |L(G)| − 1 and G−NG[L(G)] = ∅.
(2) |NG(L(G))| = |L(G)| and G−NG[L(G)] is an isolated vertex.
(3) |NG(L(G))| = |L(G)| and G − NG[L(G)] is a star of order three such

that the center of the star has degree two in G.

3. Main Results

Theorem 3.1. If G is a nontrivial connected block graph, then γ2(G) ≥
γ(G) + 1.

Proof. Since every maximal independent set is also a domination set, we
deduce that α(G) ≥ γ(G). Combining this with Theorem 2.2, we obtain
γ2(G) ≥ α(G) ≥ γ(G). In view of Theorem 2.3, we have γ(G) = α(G) if and
only if every vertex belongs to exactly one simplex. If S1, S2, . . . , Sq are the
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simplexes of G, then it is clear that γ(G) ≤ q < γ2(G) or γ(G) = 1 = γ2(G)
and G is the trivial graph.

Lemma 3.2. If G is a connected block graph with γ2(G) = γ(G) + 1, then
either |NG(L(G))| = |L(G)| or G = K1,2.

Proof. If n(G) = 2, then the statement is valid. Therefore let n(G) ≥ 3 in
the following. Assume that there exists a vertex v ∈ V (G) with |NG(v) ∩
L(G)| ≥ 2. Let NG(v) ∩ L(G) = {x1, x2, . . . , xp} with p ≥ 2, and let
G′ = G − {x1, x2, . . . , xp}. If V (G) = {v, x1, x2, . . . , xp}, then it follows
from the hypothesis γ2(G) = γ(G) + 1 that G = K1,2. Hence we assume
in the following that |V (G)| ≥ p + 2 and thus, since |NG(v) ∩ L(G)| =
p, |V (G)| ≥ p + 3. If D2 is a minimum 2-dominating set of G, then we
distinguish two cases.

Case 1. Assume that v ∈ D2. It follows that D2 − {x1, x2, . . . , xp} is a
2-dominating set of G′, and the hypothesis γ2(G) = γ(G) + 1 leads to

γ2(G′) ≤ γ2(G)− p = γ(G)− p + 1 ≤ γ(G′)− p + 2.

In the case p ≥ 3, we obtain the contradiction γ2(G′) < γ(G′). In the
remaining case p = 2, Theorem 3.1 implies that G′ is the trivial graph, a
contradiction to |V (G)| ≥ p + 3.

Case 2. Assume that v 6∈ D2. It follows that D2 − {x1, x2, . . . , xp} is a
2-dominating set of G′ − v, and we observe that all the components of the
block graph G′− v are of order at least 2. The hypothesis γ2(G) = γ(G)+1
leads to

γ2(G′ − v) ≤ γ2(G)− p = γ(G)− p + 1 ≤ γ(G′ − v)− p + 2.

Like above, we obtain the contradiction γ2(G′ − v) < γ(G′ − v) when p ≥
3, and if p = 2, then Theorem 3.1 implies the contradiction that all the
components of G′ − v are trivial graphs.

Lemma 3.3. Let G be a connected block graph with γ2(G) = γ(G) + 1, and
let B be an endblock of G− L(G) with a cutvertex s. Then

(1) Either |NG(v) ∩ L(G)| = 1 for all vertices v ∈ V (B − s) or |NG(v) ∩
L(G)| = 0 for all vertices v ∈ V (B − s).
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(2) The block graph G′ = G−(NG[V (B−s)]−s) satisfies γ2(G′) = γ(G′)+1.
(3) There is at most one endblock B in G−L(G) with |NG(v)∩L(G)| = 0

for all vertices v ∈ V (B − s).

Proof. (1) Assume that there is a vertex w ∈ V (B−s) such that |NG(w)∩
L(G)| ≥ 1. Then Lemma 3.2 implies that |NG(w)∩L(G)| = 1. If n(B) = 2,
then we are done. Now let n(B) ≥ 3 and suppose that there is a vertex
v ∈ V (B−s) such that |NG(v)∩L(G)| = 0. Let t be the number of vertices in
B−s which are adjacent with a leaf in G, and let G′ = G−(NG[V (B−s)]−s).
If D2 is a minimum 2-dominating set of G, then we distinguish two cases.

Case 1. Assume that s ∈ D2. Then D2 ∩ V (G′) is a 2-dominating set
of G′. Since |D2 ∩ (NG[V (B − s)]− s)| = t + 1, it follows that

γ2(G′) ≤ γ2(G)− t− 1 = γ(G)− t ≤ γ(G′),

a contradiction to Theorem 3.1.

Case 2. Assume that s 6∈ D2. It follows that D2 ∩ V (G′ − s) is a 2-
dominating set of G′ − s. Since |D2 ∩ NG[V (B − s)]| ≥ t + 1, it follows
that

γ2(G′ − s) ≤ γ2(G)− t− 1 = γ(G)− t ≤ γ(G′ − s).

In view of Theorem 3.1, we deduce that the components of G′− s are trivial
graphs. However, this is a contradiction to the fact that s is a cutvertex of
G− L(G).

(2) In the case that |NG(v)∩L(G)| = 0 for all vertices v ∈ V (B − s), it
follows that n(B) ≥ 3 and hence

γ2(G′) ≤ γ2(G)− 1 = γ(G) ≤ γ(G′) + 1.

Now Theorem 3.1 yields the identity γ2(G′) = γ(G′) + 1. In the remaining
case that |NG(v) ∩ L(G)| = 1 for all vertices v ∈ V (B − s), we obtain

γ2(G′) ≤ γ2(G)− (n(B)− 1) = γ(G)− n(B) + 2 ≤ γ(G′) + 1.

Again Theorem 3.1 leads to the desired result.
(3) Suppose that there are two endblocks B1 and B2 in G− L(G) with

NG(v) ∩ L(G) = ∅ for all vertices v ∈ V (Bi − si), where si ∈ V (Bi) is the



Characterization of Block Graphs with ... 99

cutvertex of G − L(G) for i = 1, 2. It follows that n(Bi) ≥ 3 for i = 1, 2.
Now let G′′ = G− (V (B1 − s1) ∪ V (B2 − s2)), and let D2 be a minimum 2-
dominating set of G. We can assume, without loss of generality, that s1, s2 ∈
D2. Then D2 ∩ V (G′′) is a 2-dominating set of G′′ and so a dominating set
of G′′. Because of s1, s2 ∈ (D2∩V (G′′)), we observe that D2∩V (G′′) is also
a dominating set of G. The property |D2 ∩ V (Bi)| ≥ 2 for i = 1, 2 leads to

γ2(G) = |D2| = |D2 ∩ V (G′′)|+ 2 ≥ γ(G) + 2.

This is a contradiction to our hypothesis γ2(G) = γ(G) + 1, and the proof
is complete.

Corollary 3.4. Let G be a connected block graph with γ2(G) = γ(G)+1. If
we extract, like in Lemma 3.3 (2), the vertex set NG[V (B − s)]− s from G
for every endblock B of G− L(G) with cutvertex s and |NG(v) ∩ L(G)| = 1
for all v ∈ V (B−s), and if we repeat this process again and again until there
is no more such endblock, then the remaining block graph G0 is isomorphic
to Kp, to Kp ◦K1 or to (Kp ◦K1)− w for a vertex w ∈ L(Kp ◦K1), where
p ≥ 1 is an integer.

Proof. It follows from Lemma 3.3 (2) and (3) that γ2(G0) = γ(G0)+1 and
G0 − L(G0) = Kp for some integer p ≥ 1. Now it is easy to see that G0 is
isomorphic to Kp, to Kp◦K1 or to (Kp◦K1)−w for a vertex w ∈ L(Kp◦K1).

Theorem 3.5. Let G be a nontrivial connected block graph. Then G satisfies
γ2(G) = γ(G) + 1 if and only if
(a) G = H ◦ K1, where H is a connected block graph with at most one

cutvertex.
(b) G = (H ◦ K1) − w, where H is either a connected block graph with

exactly one cutvertex s and w is the leaf adjacent to s in H ◦K1 or it
is isomorphic to Kp for an integer p ≥ 2 and w is an arbitrary leaf of
H ◦K1.

(c) G = (H1 ◦K1)∪(H2 ◦K1), where H1 and H2 are connected block graphs
with at most one cutvertex such that there is a vertex v ∈ V (G) with

V (H1 ◦K1) ∩ V (H2 ◦K1) = {v} = NHi◦K1(si) ∩ L(Hi ◦K1),

where si is the cutvertex of Hi or, if does not exist, some vertex in
V (Hi) for i = 1, 2.
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(d) G consists of a block B isomorphic to Kp for some p ≥ 3 and of two
graphs G1 = (H1 ◦K1)−w1 and G2 = (H2 ◦K1)−w2 of the form as in
(b), where NHi◦K1(wi) = {si} = V (Gi)∩ V (B) for i = 1, 2 and s1 6= s2

(G1 and G2 can also be trivial).

In order to illustrate the different types of block graphs of this theorem, we
want to give some example graphs for each case (a)–(d).
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Proof. It is straightforward to verify that the graphs of the families (a)–(d)
satisfy the identity γ2(G) = γ(G) + 1.

Conversely, assume that G is a nontrivial connected block graph such
that γ2(G) = γ(G) + 1. Let G0 be one of the graphs resulting from the
reducing process described in Corollary 3.4. Assume that G− L(G) has an
end block B with cutvertex s such that NG(V (B−s))∩L(G) 6= ∅. It follows
from Lemma 3.3(1) that |NG(v)∩L(G)| = 1 for every v ∈ V (B− s). If U is
a minimum covering of G, then we can assume, without loss of generality,
that V (B − s) is contained in U . Hence U − V (B − s) is a covering of
G′ = G− (NG[V (B−s)]−s), and it is easy to see that U −V (B−s) is even
a minimum covering of G′. Thus β(G′) = β(G)− n(B − s) and the order of
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G and G′ are of the same parity. The condition |NG(v) ∩ L(G)| = 1 for all
vertices v ∈ V (B − s) leads to

γ2(G′) ≤ γ2(G)− (n(B)− 1) = γ(G)− n(B) + 2 ≤ γ(G′) + 1.

Applying the identity γ2(G′) = γ(G′)+1 in Lemma 3.3(2), we conclude that
γ(G′) = γ(G) − n(B − s). If we continue this process we finally arrive at
β(G0) = β(G)− k and γ(G0) = γ(G)− k for an integer k ≥ 0.

Case 1. Assume that G0 is isomorphic to Kp ◦K1 or to (Kp ◦K1)−w,
where w is a leaf of Kp ◦K1. Because of γ(G0) = β(G0), we conclude that
γ(G) = β(G). Applying Theorem 2.2, we obtain γ(G)+1 = γ2(G) ≥ α(G) ≥
γ(G) and therefore α(G) = γ(G) or α(G) = γ(G)+1. This implies together
with Theorem 2.1 that γ(G) = bn(G)/2c.

Subcase 1.1. Assume that G0 is isomorphic to Kp ◦ K1. Since G and
G0 are of the same parity, it follows from Theorem 2.5 that G = H ◦ K1,
where H is a connected block graph. If H has more than one cutvertex,
then we observe that γ2(G) ≥ |L(G)|+ 2, a contradiction to the hypothesis
γ2(G) = γ(G) + 1 = |L(G)|+ 1. Thus G is of the structure described in (a).

Subcase 1.2. Assume that G0 is isomorphic to (Kp ◦K1)− w, where w
is a leaf of Kp ◦K1. Then G is of odd order, and one of the cases (1)–(3) of
Theorem 2.5 has to be satisfied.

Case (1) in Theorem 2.5 is only possible when G = K1,2 = (K2◦K1)−w.
Case (2) in Theorem 2.5 shows that G is of the form (H ◦K1)−w for a

connected block graph H with, as in the proof of Subcase 1.1, at most one
cutvertex. If H is a block, then we are done. It remains the case that H
has a cutvertex s. If there is a vertex v 6= s in H with NG(v) ∩ L(G) = ∅,
then we arrive at the contradiction γ2(G) > γ(G) + 1. This shows that G
has structure described in (b).

In Case (3) of Theorem 2.5 let G − NG[L(G)] be the star with vertex
set a1, a2, v and edge set va1 and va2. Since a1 and a2 are not adjacent, we
deduce that G−v consists of exactly two connected block graphs G′

1 and G′
2

such that G[V (G1) ∪ {v}] = H1 ◦K1 and G[V (G2) ∪ {v}] = H1 ◦K1, where
H1 and H2 are connected block graphs. As above, it is a simple matter to
verify that H1 as well as H2 has at most one cutvertex, and hence G has
the form described in (c).
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Case 2. Assume that G0 = Kp. Assume that there are three different
vertices u, v, w in V (G0) with the property that they also belong to other
blocks B1, B2 and B3 of G. Then we can reduce G, as in Corollary 3.4,
to a graph G′′ that consists of G0, the blocks B1, B2, B3 together with the
individual leaves to every vertex in V (B1∪B2∪B3)−{u, v, w}. It is evident
that γ2(G′′) = |L(G′′)| + 3 and γ(G′′) = |L(G′′)| + 1, a contradiction to
γ2(G′′) = γ(G′′) + 1.

This implies that there are at most two different vertices in G0 which
belong to another block of G. Since the cases p = 1, 2 are contained in the
cases discussed above, we assume in the following that p ≥ 3. Assume next
that there exists a vertex u in V (G0) which belongs to another block B1 of
G − L(G) and that there exists a vertex v 6= u in B1 which belongs to a
further block B2 of G− L(G).

Subcase 2.1. Assume that n(B1) ≥ 3 or n(B2) ≥ 3. Then we can reduce
G, as in Corollary 3.4, to a graph G′′ that consists of G0, the blocks B1, B2

together with the individual leaves to every vertex in V (B1∪B2)−{u}. It is
evident that γ2(G′′) = |L(G′′)|+3 and γ(G′′) = |L(G′′)|+1, a contradiction
to γ2(G′′) = γ(G′′) + 1.

Subcase 2.2. Assume that V (B1) = {u, v} and V (B2) = {v, w}. Since
B2 is no endblock in G, there exists a block B3 in G such that w ∈ V (B3).
If n(B3) = 2, then let V (B3) = {w, x}. In this case we can reduce G to a
graph G′′ that consists of G0, the blocks B1, B2, B3 and with either a leaf to
the vertex v or to the vertex x. Next assume that n(B3) ≥ 3 and that there
is no other block B′ with w ∈ V (B′) and n(B′) = 2. Then we can reduce G
to a graph G′′ that consists of G0 and the blocks B1, B2, B3 together with
the individual leaves to every vertex in V (B3 − w). Both cases lead to the
contradiction γ2(G′′) = |L(G′′)|+ 3 and γ(G′′) = |L(G′′)|+ 1.

In the remaining cases, the block graph G is of the structure described
in (d), and the proof is complete.
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