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Abstract

For a graph G = (V,E), a set D ⊆ V (G) is a total restrained domi-
nating set if it is a dominating set and both 〈D〉 and 〈V (G)−D〉 do not
have isolated vertices. The cardinality of a minimum total restrained
dominating set in G is the total restrained domination number. A set
D ⊆ V (G) is a restrained dominating set if it is a dominating set and
〈V (G) − D〉 does not contain an isolated vertex. The cardinality of
a minimum restrained dominating set in G is the restrained domina-
tion number. We characterize all trees for which total restrained and
restrained domination numbers are equal.
Keywords: total restrained domination number, restrained domina-
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1. Introduction

Let G = (V (G), E(G)) be a simple graph with |V (G)| = n(G). The neigh-
bourhood NG(u) of a vertex u is the set of all vertices adjacent to u in
G and the closed neighbourhood of u is NG[u] = NG(u) ∪ {u}. For a set
D ⊆ V (G) the closed neighbourhood of D is defined to be

⋃
u∈D NG[u]. The

private neighbourhood of a vertex u with respect to a set D ⊆ V (G), where
u ∈ D, is the set PNG[u,D] = NG[u] − NG[D − {u}]. If v ∈ PNG[u,D],
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then we say that v is a private neighbour of u with respect to the set D.
The degree dG(u) of a vertex u is the number of edges incident to u in G,
that is dG(u) = |NG(u)|. Let Ω(G) be the set of all leaves of G, that is the
set of vertices degree 1. A vertex which is a neighbour of a leaf is called a
support vertex. Let S(G) be the set of all support vertices in G. The di-
ameter diam(G) of a connected graph G is the maximum distance between
two vertices of G, that is diam(G) = maxu,v∈V (G) dG(u, v). We say that a
set D ⊆ V (G) is independent, if the induced subgraph 〈D〉 has no edge.

A set D ⊆ V (G) is a dominating set of G if for every vertex v ∈ V (G)−D
there exists a vertex u ∈ D such that v and u are adjacent. The minimum
cardinality of a dominating set in G is the domination number denoted γ(G).
A minimum dominating set of a graph G is called a γ(G)-set.

A set D ⊆ V (G) is a restrained dominating set of G (RDS) if D is
a dominating set and the induced subgraph 〈V (G) − D〉 does not contain
an isolated vertex. The cardinality of a minimum restrained dominating
set in G is the restrained domination number and is denoted by γr(G). A
minimum RDS of a graph G is called a γr(G)-set. The concept of restrained
domination was introduced by Telle and Proskurowski [6], albeit indirectly,
as a vertex partitioning problem. Restrained domination was studied further
for example by Domke et al. [1, 2].

The total restrained domination number of a graph was defined by Ma,
Chen and Sun [5]. A set D ⊆ V (G) is a total restrained dominating set of G
(TRDS) if it is a dominating set and the induced subgraphs 〈D〉 and 〈V (G)−
D〉 do not contain isolated vertices. The cardinality of a minimum total
restrained dominating set in G is the total restrained domination number
and is denoted by γt

r(G). A minimum TRDS of a graph G is called a γt
r(G)-

set. We note that every graph G without an isolated vertex has a (total)
restrained dominating set, since D = V (G) is such a set.

For any graph theoretical parameters λ and µ, we define G to be (λ, µ)-
graph if λ(G) = µ(G). Henning has wrtitten an extensive series of papers
which give constructive characterizations of trees for which certain domina-
tion parameters are equal (see, for example [4]). In this paper we provide
a constructive characterization of (γr, γ

t
r)-trees. For any unexplained terms

and symbols see [3].

2. A Characterization of (γr, γ
t
r)-Trees

As a consequence of the definitions of the restrained and total restrained
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domination numbers we have the following observations.

Observation 1. Let G be a graph without isolated vertices. Then
(i) every leaf is in every γt

r(G)-set;
(ii) every support vertex is in every γt

r(G)-set;
(iii) every leaf is in every γr(G)-set;
(iv) γ(G) ≤ γr(G) ≤ γt

r(G).

Observation 2. Let T be a (γr, γ
t
r)-tree. Then each γt

r(T )-set is a γr(T )-set.

Let T1 and T2 be the following two operations defined on a tree T .

• Operation T1. Assume x ∈ V (T ) is a support vertex. Then add a
vertex y and the edge xy.

• Operation T2. Assume x ∈ V (T ) is a support vertex. Then add a path
P4 = (y1, y2, y3, y4) and the edge xy1.

Let T be the family of trees such that T = {T : T is obtained from P3

by a finite sequence of Operations T1 or T2} ∪ {P2, P6}. We show first that
each tree in the family T has equal restrained domination number and total
restrained domination number.

Lemma 3. If T belongs to the family T , then T is a (γr, γ
t
r)-tree.

Proof. We proceed by induction on the number s(T ) of operations required
to construct the tree T . If s(T ) = 0, then T ∈ {P2, P3, P6} and clearly T is
a (γr, γ

t
r)-tree. Assume now that T is a tree with s(T ) = k for some positive

integer k and each tree T ′ ∈ T with s(T ′) < k is a (γr, γ
t
r)-tree. Then T

can be obtained from a tree T ′ belonging to T by operation T1 or T2. We
now consider two possibilities depending on whether T is obtained from T ′

by Operation T1 or T2.

Case 1. T is obtained from T ′ by Operation T1. Suppose T is obtained
from T ′ by adding a vertex y and the edge xy, where x ∈ V (T ′) is a support
vertex. Thus y belongs to every γr(T )-set and every γt

r(T )-set. Hence
γr(T ) = γr(T ′) + 1 and γt

r(T ) = γt
r(T

′) + 1. Since γr(T ′) = γt
r(T

′) and
γr(T ) ≤ γt

r(T ), we conclude that γr(T ) = γt
r(T ).

Case 2. T is obtained from T ′ by Operation T2. Suppose T is obtained
from T ′ by adding a path (y1, y2, y3, y4) and the edge xy1, where x ∈ V (T ′)
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is a support vertex. Then x and y3 are support vertices in T and y4 is
a leaf. Hence x, y3 and y4 belong to every γt

r(T )-set and for this reason
γt

r(T ) ≥ γt
r(T

′) + 2. On the other hand, any γt
r(T

′)-set may be extended to
a TRDS of T by adding to it y3 and y4. Thus γt

r(T ) = γt
r(T

′) + 2.
Now let D be a γr(T )-set. Then y4 ∈ D and NT [y2] ∩D 6= ∅. For this

reason γr(T ) ≥ γr(T ′) + 2. On the other hand, γr(T ) ≤ γt
r(T ) = γt

r(T
′) +

2 = γr(T ′) + 2. We conclude that γr(T ) = γr(T ′) + 2 and consequently,
γr(T ) = γt

r(T ).

We now show that every (γr, γ
t
r)-tree belongs to the family T . It is clear

that P2 is a (γr, γ
t
r)-tree and P2 belongs to the family T . Therefore from

now on we consider only trees T with n(T ) ≥ 3.

Lemma 4. Let T be a (γr, γ
t
r)-tree with n(T ) ≥ 3 and let Dt

r be a minimum
total restrained dominating set of T . If u, v ∈ Dt

r and uv ∈ E(T ), then
either u or v is a leaf.

Proof. It is possible to see that the statement is true for all trees T with
diameter 2 and 3. For this reason we consider only trees with diameter at
least 4. Suppose T is a (γr, γ

t
r)-tree, u, v ∈ Dt

r, uv ∈ E(T ) and neither u nor
v is a leaf. We consider three cases.

Case 1. u is an isolated vertex in 〈(V (T ) − Dt
r) ∪ {u}〉 and v is an

isolated vertex in 〈(V (T ) −Dt
r) ∪ {v}〉. Since neither u nor v is a leaf, we

conclude that Dt
r − {u, v} is a RDS of T of cardinality smaller than γr(T ),

a contradiction.

U8 U7 U6 U5

U4 U3 U2 U1 U0 V0 V1 V2 V3 V4

V5 V6 V7 V8

Figure 1. Illustration for Case 2 of the proof of Lemma 4.

Case 2. Both 〈(V (T )−Dt
r)∪{u}〉 and 〈(V (T )−Dt

r)∪{v}〉 are without
isolated vertices. Then since T is a (γr, γ

t
r)-tree, we conclude that Dt

r −{u}
and Dt

r − {v} are not dominating sets of T . Therefore, both u and v have
a private neighbour with respect to Dt

r. Let U0 = {u} and V0 = {v} and
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denote by U1 and V1 the sets of private neighbours of u and v with respect
to Dt

r, respectively. Of course, U1∩V1 = ∅ and U1∪V1 is an independent set
of vertices, because T is a tree. Since Dt

r is a TRDS, each vertex of U1 ∪ V1

has a neighbour in V (T )−Dt
r. Denote by U2 and V2 the sets of all vertices

of V (T ) − Dt
r which are neighbours of vertices of U1 and V1, respectively.

Observe that U2 ∩ V2 = ∅, U1 ∩ U2 = ∅, V1 ∩ V2 = ∅ and U2 ∪ V2 is an
independent set of vertices. Since T is a tree, no two vertices of U1∪V1 have
common neighbour in U2 ∪ V2, so |U1| ≤ |U2| and |V1| ≤ |V2|. Moreover,
since Dt

r is a dominating set of T , each vertex of U2 ∪ V2 has a neighbour
in Dt

r. Denote by U3 and V3 the sets of all vertices belonging to Dt
r which

are neighbours of vertices of U2 and V2, respectively. Since T is a tree,
(U3∪V3)∩{u, v} = ∅, U3∩V3 = ∅, U3∪V3 is an independent set of vertices,
|U2| ≤ |U3| and |V2| ≤ |V3|. Finally, since Dt

r is a TRDS of T , each vertex of
U3 ∪ V3 has a neighbour in Dt

r. Denote by U4 and V4 the sets of all vertices
belonging to Dt

r which are neighbours of vertices of U3 and V3, respectively.
Since T is a tree, (U4∪V4)∩{u, v} = ∅, (U4∪V4)∩(U3∪V3) = ∅, U4∩V4 = ∅,
U4 ∪ V4 is an independent set of vertices, |U3| ≤ |U4| and |V3| ≤ |V4|. Define
U5 to be the set of vertices of V (T ) − U2 which are private neighbours
with respect to Dt

r of vertices belonging to U3 and define V5 to be the set
of vertices of V (T ) − V2 which are private neighbours with respect to Dt

r

of vertices belonging to V3. Denote by U6 and V6 the sets of all vertices
of V (T ) − Dt

r which are neighbours of vertices of U5 and V5, respectively,
and so on.

Generally, let k be a non-negative integer. Define U4k+5 to be the set of
vertices of V (T ) − U4k+2 which are private neighbours with respect to Dt

r

of vertices belonging to U4k+3 and define V4k+5 to be the set of vertices of
V (T ) − V4k+2 which are private neighbours with respect to Dt

r of vertices
belonging to V4k+3. Since Dt

r is a TRDS, each vertex of U4k+1∪V4k+1, where
k ≥ 0, has a neighbour in V (T )−Dt

r. Let U4k+2 be the set of all vertices of
V (T )−Dt

r which are neighbours of vertices of U4k+1 and let V4k+2 be the set
of all vertices of V (T )−Dt

r which are neighbours of vertices of V4k+1. Since
Dt

r is a dominating set, each vertex of U4k+2 ∪V4k+2 has a neighbour in Dt
r.

Denote by U4k+3 the set of all vertices belonging to Dt
r which are neighbours

of vertices of U4k+2 and denote by V4k+3 the set of all vertices belonging to
Dt

r which are neighbours of vertices of V4k+2. Finally, since Dt
r is a TRDS

of T , each vertex of U4k+3 ∪ V4k+3 has a neighbour in Dt
r. Denote by U4k+4

and V4k+4 the sets of all vertices belonging to Dt
r which are neighbours of

vertices of U4k+3 and V4k+3, respectively. Since T is a finite tree, there exist
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the smallest integer i such that U4i+5 = ∅ and the smallest integer j such
that V4j+5 = ∅.
Since T is a tree, we conclude that no two vertices of U4k+1 ∪ V4k+1 have
common neighbour in U4k+2 ∪ V4k+2. This implies that |U4k+1| ≤ |U4k+2|
and |V4k+1| ≤ |V4k+2|. Similarly, |U4k+2| ≤ |U4k+3| and |V4k+2| ≤ |V4k+3|.
Further, |U4k+3| ≤ |U4k+4| and |V4k+3| ≤ |V4k+4|. Moreover, every two of
defined sets are disjoint.

Now consider the set D = Dt
r − (U3 ∪ U7 ∪ · · · ∪ U4i+3 ∪ V3 ∪ V7 ∪ · · · ∪

V4j+3 ∪{u, v})∪U1 ∪U5 ∪ · · · ∪U4i+1 ∪V1 ∪V5 ∪ · · · ∪V4j+1. It is possible to
observe that D is a dominating set of T and 〈V (T ) −D〉 does not contain
an isolated vertex. Hence D is a RDS of T . Moreover |D| < |Dt

r|, which
implies that T is not a (γr, γ

t
r)-tree, a contradiction.

Case 3. Either 〈(V (T )−Dt
r)∪ {u}〉 or 〈(V (T )−Dt

r)∪{v}〉 contains an
isolated vertex, say u is an isolated vertex in 〈(V (T ) − Dt

r) ∪ {u}〉. Then
since T is a (γr, γ

t
r)-tree, we conclude that Dt

r −{v} is not a dominating set
of T . Let j and V0, V1, . . . , V4j+5 have the same meaning and properties as
in previous case. Consider the set D = Dt

r− (V3∪V7∪· · ·∪V4j+3∪{u, v})∪
V1 ∪ V5 ∪ · · · ∪ V4j+1. It is easy to observe that D is a dominating set of
T and 〈V (T ) −D〉 does not contain an isolated vertex. Hence D is a RDS
of T . Moreover |D| < |Dt

r|, which implies that T is not a (γr, γ
t
r)-tree, a

contradiction.
This proves the statement.

The above Lemma together with Lemma 1 imply what follows.

Corollary 5. If T is a (γr, γ
t
r)-tree with n(T ) ≥ 3, then Ω(T )∪S(T ) is the

unique γt
r(T )-set and γr(T ) = γt

r(T ) = |Ω(T ) ∪ S(T )|.
Corollary 6. If T is a (γr, γ

t
r)-tree with n(T ) ≥ 3, then S(T ) is a γ(T )-set

and γ(T ) = |S(T )|.
Corollary 7. If T is a (γr, γ

t
r)-tree with n(T ) ≥ 3, then γt

r(T ) = γ(T ) +
|Ω(T )|.
Lemma 8. Let T be a (γr, γ

t
r)-tree with n(T ) ≥ 3. If u, v ∈ S(T ), then

dT (u, v) ≥ 3.

Proof. It is possible to verify that the statement is true for all trees with
diameter between 2 and 5. For this reason we consider only trees with
diameter at least 6.
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Let T be a (γr, γ
t
r)-tree with n(T ) ≥ 3 and let Dt

r be a γt
r(T )-set. By

Corollary 5, u, v ∈ Dt
r and by Lemma 4, u and v are not adjacent. Suppose

that dT (u, v) = 2 and let x be the neighbour of u and v in T . Lemma 4
implies that x is not a support vertex and as x is not a leaf, x /∈ Dt

r. Since
both 〈(V (T ) − Dt

r) ∪ {u}〉 and 〈(V (T ) − Dt
r) ∪ {v}〉 are without isolated

vertices and T is a (γr, γ
t
r)-tree, we deduce that Dt

r − {u} and Dt
r − {v} are

not dominating sets of T . Therefore, both u and v have a private neighbour
with respect to Dt

r. Let j and V0, V1, . . . , V4j+5 have the same meaning and
properties as in the proof of Lemma 4. Consider the set D = Dt

r− (V3∪V7∪
· · · ∪ V4j+3 ∪ {v}) ∪ V1 ∪ V5 ∪ · · · ∪ V4j+1. It is possible to observe that D is
a dominating set of T and 〈V (T )−D〉 does not contain an isolated vertex.
Hence D is a RDS of T . Moreover |D| < |Dt

r|, which implies that T is not
a (γr, γ

t
r)-tree, a contradiction.

Corollary 9. If T is a (γr, γ
t
r)-tree with n(T ) ≥ 3, then each vertex of

V (T )− S(T ) has exactly one neighbour in S(T ).

Corollary 10. If T is a (γr, γ
t
r)-tree with n(T ) ≥ 3, then S(T ) is the unique

γ(T )-set.

Lemma 11. If T is a (γr, γ
t
r)-tree with n(T ) ≥ 3, then T belongs to the

family T .

Proof. It is easily seen that the statement is true for all trees with with
diameter between 2 and 5. For this reason we consider only trees with
diameter at least 6.

Let T be a (γr, γ
t
r)-tree and assume that the result holds for all trees

on n(T )− 1 and fewer vertices. We proceed by induction on the number of
vertices of a (γr, γ

t
r)-tree. Let P = (s0, s1, . . . sl), l ≥ 6, be a longest path in

T and let Dt
r be a γt

r(T )-set. We consider two cases.

Case 1. dT (s1) > 2. In this case s1 is a neighbour of at least two
leaves of T . Denote T ′ = T − s0. Of course Dt

r − {s0} is a TRDS of T ′, so
γt

r(T
′) ≤ γt

r(T )−1. Moreover, any γt
r(T

′)-set may be extended to a γt
r(T )-set

by adding to it s0, so γt
r(T

′) = γt
r(T ) − 1. By similar arguments it may be

concluded that γr(T ′) = γr(T ) − 1. Hence, γr(T ′) = γt
r(T

′). Consequently,
T ′ is a (γr, γ

t
r)-tree and by induction hypothesis, T ′ ∈ T . As s1 is a support

vertex in T ′, we deduce that T may be obtained from T ′ by Operation T1.
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Case 2. dT (s1) = 2. Then Corollary 5 and Lemma 8 imply that
dT (s2) = 2 and s3 is not a support vertex. Moreover, s3 is a neighbour
of exactly one support vertex, say x.

Suppose that x 6= s4. Then s4 is not a support vertex, but s4 is a
neighbour of exactly one support vertex, say y. Denote A = NT (s3)−{x}−
V (P ) and observe that since x is a support vertex, Lemma 8 implies that
A ∩ S(T ) = ∅. Corollary 9 says that each vertex of A has exactly one
neighbour in S(T ). Let A′ be the set of neighbours of vertices of A which
belong to S(T ). Hence s0, s1, x, y ∈ Dt

r and s2, s3, s4 /∈ Dt
r. Consider the set

D = Dt
r − {s1, y} − A′ ∪ {s3}. It is easy to observe that D is a dominating

set in T and 〈V (T ) − D〉 does not contain an isolated vertex. Hence D is
a RDS of T . Moreover |D| < |Dt

r| even when A = ∅, which implies that
T is not a (γr, γ

t
r)-tree, a contradiction. Therefore s4 is the unique support

vertex in NT (s3).
Now suppose that dT (s3) > 2. Denote A = NT (s3)− V (P ) and observe

that since dT (s3) > 2, A 6= ∅. Moreover, since s4 is a support vertex,
A ∩ S(T ) = ∅. Let A′ be the set of neighbours of vertices of A which
belong to S(T ). Then s0, s1, s4 ∈ Dt

r and s2, s3 /∈ Dt
r. Consider the set

D = ((Dt
r −{s1})−A′)∪ {s3}. It is easy to observe that D is a dominating

set of T and 〈V (T )−D〉 does not contain an isolated vertex. Hence D is a
RDS of T . Moreover |D| < |Dt

r|, which implies that T is not a (γr, γ
t
r)-tree,

a contradiction. Therefore dT (s3) = 2 and s4 is the unique neighbour of s3

belonging to S(T ).
Denote T ′ = T − {s0, s1, s2, s3}. Of course s0 and s1 belong to every

γt
r(T )-set. For this reason, γt

r(T
′) ≤ γt

r(T )− 2. Since s4 is a support vertex
in T ′, any γt

r(T
′)-set may be extended to a TRDS of T by adding to it s0 and

s1, so γt
r(T

′) = γt
r(T )− 2. Further, γr(T ′) ≤ γt

r(T
′) = γt

r(T )− 2 = γr(T )− 2
and any γr(T ′)-set may be extended to a RDS of T by adding to it s0 and
s3. Hence γr(T ′) = γr(T )− 2 and so γr(T ′) = γt

r(T
′). Consequently, T ′ is a

(γr, γ
t
r)-tree and by induction hypothesis, T ′ ∈ T . As s4 is a support vertex

in T ′, we conclude that T may be obtained from T ′ by Operation T2.

As an immediate consequence of Lemmas 4 and 11 we have the following
characterization of (γr, γ

t
r)-trees.

Theorem 12. A tree T is a (γr, γ
t
r)-tree if and only if T belongs to the

family T .
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