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1. Introduction

Let G = (V, E) be a mixed graph with vertex set V = V (G) and edge
set E = E(G), which is obtained from a simple graph by orienting some
(possibly none or all) of its edges. For each e ∈ E(G), we define the sign of e
and denote by sgn e = 1 if e is unoriented and sgn e = −1 if e is oriented. Set
aij = sgn e if there exists an edge e joining vi and vj , and aij = 0 otherwise.
Then the resultant matrix A = (aij) is called the adjacency matrix of G. The
incidence matrix of G is an n×m matrix M = M(G) = (mij) whose entries
are given by mij = 1 if ej is an unoriented edge incident to vi or ej is an
oriented edge with head vi, mij = −1 if ej is an oriented edge with tail vi, and
mij = 0 otherwise. The Laplacian matrix of G is defined as L(G) = MMT

(see [1] or [10]), where MT denotes the transpose of M . Obviously L(G)
is symmetric and positive semi-definite, and L(G) = D(G) + A(G) (or see
[10, Lemma 2.1]), where D(G) = diag{d(v1), d(v2), . . . , d(vn)}. Therefore
the eigenvalues of L(G) can be arranged as follows:

λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G) ≥ 0.

We briefly called the eigenvalues and eigenvectors of L(G) as those of G,
respectively. G is called singular (or nonsingular) if L(G) is singular (or
nonsingular).

A mixed graph G is called quasi-bipartite if it does not contain a non-
singular cycle, or equivalently, G contains no cycles with an odd number of
unoriented edges (see [1, Lemma 1]). Denote by

−→
G the all-oriented graph

obtained from G by arbitrarily orienting every unoriented edge of G (if one
exists), and D the signature matrix with 1 or −1 along its diagonal of a
diagonal matrix. Then DT L(G)D is the Laplacian matrix of a graph with
the same underlying graph as that of G. So each signature matrix of order
n gives a re-signing of the edges of G (that is, some oriented edges of G may
turn to be unoriented and vise versa), and preserves the spectrum and the
singularity of each cycle of G. We now use the notation DG to denote the
graph obtained from G by a re-signing under the signature D, and assume
that the labelling of the vertices of DG is the same as that of G.

Lemma 1.1 ([10, Lemma 2.2], [4, Lemma 5]). Let G be a connected mixed
graph. Then G is singular if and only if G is quasi-bipartite.
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Theorem 1.2 ([1, Theorem 4]). Let G be a connected mixed graph. Then
G is quasi-bipartite if and only if there exists a signature matrix D such that
DT L(G)D = L(

−→
G).

If G is nonsingular, the number of edges of G is at least n (the number of
vertices of G), since such graph G contains at least one nonsingular cycle,
then nonsingular unicyclic mixed graphs may be considered as a class of
mixed graphs whose edge number is minimal. By Lemma 1.1 and Theorem
1.2, the spectrum of a singular mixed graph is exactly that of a simple graph
with the same underlying graph, one can refer to [10, 11, 3, 5]. So in this
paper, we consider only the connected nonsingular unicyclic mixed graphs,
and determine all those graphs G on at least 9 vertices with at most three
eigenvalues greater than two, i.e., λ4(G) ≤ 2. Then we could almost give all
mixed graphs with at most three eigenvalues greater than two, since we can
obtain the eigenvalues by mathematical softwares if G contains few vertices.
A reason for our research can be explained as follows. Consider the edge
version of the Laplacian matrix of G, K(G) = M(G)T M(G) = 2I + A(Gl)
(see [2]), where Gl is the line graph of G (see [10]). Since K(G) and L(G)
have the same nonzero eigenvalues, the distribution of eigenvalues of L(G)
greater than 2 is the same as that of A(Gl) greater than 0.

2. Preliminaries

Lemma 2.1 ([11, Lemma 2.2]). Let G be a mixed graph on n vertices and
let e be an (oriented or unoriented) edge of G. Then

λ1(G) ≥ λ1(G− e) ≥ λ2(G) ≥ . . . ≥ λn(G) ≥ λn(G− e).

We now extend some known results on eigenvalues distribution of simple
graphs to mixed graphs.

Theorem 2.2. Let G be a connected mixed graph on n vertices, and let
µ(G) be the matching number of G. Then

(i) mG(2, +∞) ≥ µ(G) if n > 2µ(G);
(ii) mG(2, +∞) ≥ µ(G)− 1 if n = 2µ(G).

Proof. Let M ⊆ E(G) be a matching of G with maximum cardinality
µ(G). There exists a spanning tree T of G which contains the matching M ,
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and a signature matrix D such that DT is all-oriented in the graph DG by
Theorem 1.2. Note that µ(T ) = µ(G). Then by Lemma 2.1 and the result
of [8, Theorem 3], for the case of n > 2µ(G),

mG(2, +∞) = mDG(2,+∞) ≥ mDT (2, +∞) ≥ µ(G).

For the case of n = 2µ(G), by [8, Theorem 2], λµ(G)(DT ) = 2, and
mDT (2,+∞) = µ(G)− 1 from the fact that any integral eigenvalue greater
than 1 of a tree has multiplicity one [7]. Then the result (ii) can be obtained
similarly.

Corollary 2.3. Let G be a nonsingular unicyclic mixed graph on at least 9
vertices. If mG(2, +∞) ≤ 3, then G contains no cycles with length greater
than 6.

Proof. If follows from Theorem 2.2 that µ(G) ≥ 4 cannot happen.

A pendent vertex of G is a vertex of degree 1, a quasi-pendant vertex is a
vertex adjacent to a pendant vertex. Denote by η(G) the number of quasi-
pendent vertices of G.

Lemma 2.4. Let G be a connected mixed graph. Then mG[0, 1) ≥ η(G) and
mG(2, +∞) ≥ η(G).

Proof. Let v1, v2, . . . , vη(G) be all quasi-pendant vertices of G. By Lemma
2.1, there exists a signature matrix D such that the pendant edges of DG
are all oriented. Let Li (i = 1, 2, · · · , η(G)) be the principal submatrix of
L(DG) corresponding to the vertex vi and all pendent vertices incident to
it, which permutes to the following matrix form:

L′i =




d(vi) −1 · · · −1

−1 1 · · · ...
...

...
. . .

...
−1 0 · · · 1




.

It is seen that the left-up 2× 2 principal submatrix of L′i has one eigenvalue
less than 1 and one eigenvalue greater than 2 as d(vi) ≥ 2. By Courrant-
Fischer interlacing theorem [9, Theorem 4.3.15], L′i has at least one eigen-
value less than 1 and at least one eigenvalue greater than 2. As

⊕η(G)
i=1 L′i
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is a principal submatrix of L(DG), L(G) has at least η(G) eigenvalues less
than 1 and at least η(G) eigenvalues greater than 2 (including multiplicity).

3. Main Results

Let G be a connected graph with the property

(3.1) λ4(G) ≤ 2.

The property (3.1) is hereditary, because as a direct consequence of Lemma
2.1, for any (not necessarily induced) subgraph U(⊆ G) also satisfies (3.1).
The inheritance(hereditary) of property (3.1) implies that there exist mini-
mal connected graphs that do not obey (3.1); such graphs are called forbid-
den subgraphs for λ4(G) ≤ 2. It is easy to verify that the graphs H1(1, 2, 2),
H1(1, 1, 3), H2(3, 3), H2(4, 2), H3(2, 3), H3(3, 2) and H4 listed in Figure 3.1
are forbidden subgraphs for λ4(G) ≤ 2, where Kc

p (the complement graph of
a complete graph on p vertices) is a graph consisting of p isolated vertices.
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The nonsingular cycle of length k will be denoted by Ck, the set of neighbors
of v in G will be denoted by N(v), the cardinality of the set S will be denoted
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by |S|. If G is a connected nonsingular unicyclic mixed graph, by Lemma 1.1
and Theorem 1.2, the spectrum of G is exactly that of a graph G′, which has
the same underlying graph with G and which contains all oriented except an
(arbitrary) unoriented edge on the cycle. So in the following, to convenience
our discussion, we always consider the graph G(|G| ≥ 9) with all oriented
except an (arbitrary) unoriented edge on the cycle.

Let G1 = G1(p, q, r, s, t); G2 = G2(p); G3 = G3(p, q); G4 = G4(p, q);
G5 = G5(p, q, r); G6 = G6(p, q, r); G7 = G7(p, q, r, s) listed in Figure 3.2
be unicyclic mixed graphs on at least nine vertices, where p ≥ 0, q ≥ 0,
r ≥ 0, s ≥ 0 and t ≥ 0. They will play an important role in our discussion.
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Lemma 3.1. Let G be a connected nonsingular unicyclic mixed graph on
at least 9 vertices. If mG(2, +∞) ≤ 3, then G contains cycle of length less
than 7, and G is one of the following types:

(1) types U1 of Figure 3.3, G1(p, q, 0, 0, 0), G1(0, 0, 0, s, t), G1(p, 0, r, s, 0),
G1(p, 0, r, 0, t), G2, G3 and G4 of Figure 3.2, if G contains cycle C3;

(2) types U2 of Figure 3.3, G5, G6(p, q, 1), G6(1, 1, r), G7(p, 0, r, s),
G7(0, q, 0, s) (q ≤ 2 and s ≥ 0, or q ≥ 0 and s ≤ 1), or graphs G6(2, 1, 2)
and G7(0, 3, 0, 2) of Figure 3.2, if G contains cycle C4;

(3) types U3 (or U4) of Figure 3.3, if G contains cycle C5 (or C6).

Proof. By Theorem 2.2 and Corollary 2.3, we have

(3.2) µ(G) ≤ 3,

and G contains exactly one cycle Ci for some i (3 ≤ i ≤ 6).
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We discuss the problem in the following cases.

Case 1. G contains cycle C3. Let U1 = U1(p, q, r) (assuming that
p ≥ q ≥ r) be the subgraph of G induced by the vertices of C3 together with
those vertices incident to this cycle (see Figure 3.3).

(1.1) r ≥ 2. Then G = U1.
(1.2) r = 1. If G 6= U1, by (3.2) G contains a subgraph isomorphic to

H1(1, 1, 1), and each pendant vertex of H1(1, 1, 1) is also the pendant ver-
tex of G. Without loss of generality, let G1(1, 1, 0, 0, 0) be the subgraph of
G. By the fact that G contains at least 9 vertices and H1(1, 2, 2),H1(1, 1, 3)
of Figure 3.1 are forbidden subgraphs, G has the structure of type
G1(p, q, 0, 0, 0) of Figure 3.2.
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(1.3) r = 0, q ≥ 1. If p = 1 (necessarily q = 1), then G has the structure
of type G4(p, q) of Figure 3.2. If p ≥ 2, by (3.2) there exists at most one
pendant vertex adjacent to v1 or v2 in U1, denote by v4, which joins vertices
of G except those of U1. If v4 joins exactly one vertex of V (G)\V (U1), then
G has the structure of type G1(p, 0, r, 0, t); otherwise G has the structure of
type G1(p, 0, r, s, 0) of Figure 3.2.

(1.4) r = 0, q = 0, p ≥ 3. Then there exists at most one pendant vertex
adjacent to v1 in U1, also denoted by v4, which joins vertices of G except
those of U1. If |N(v4)\{v1}| ≥ 2, then G has structure of type G1(0, 0, r, s, 0);
and if |N(v4)\{v1}| = 1, then G must be of the type G1(0, 0, r, 0, t).

(1.5) r = 0, q = 0, p = 2. If there exists at most one pendant vertex
incident to v1 in U1, which joins vertices of G except those of U1, then the
discussion is similar to the case (4). Otherwise, the two pendant vertices
incident to v1 in U1 have their own neighbors in G except v1. Hence the
structure of G must be of type G3(p, q).

(1.6) r = 0, q = 0, p = 1. Then the longest path P of the subgraph
G− U1 has length not greater than 2 by (3.2). If the length of P is 2, then
G has the structure of type G2(p); and if the length of P is at most 1, then
the structure of G must be of type G1(0, 0, 0, s, t).

Case 2. G contains cycle C4. Let U2 be the subgraph of G induced by
the vertices of C4 together with all vertices incident to the cycle, see Figure
3.3 (assuming that p ≥ r). Note that by (3.2) there exists at most one
pendant vertex of U2 adjacent to vertices of V (G)\V (U2). We discuss the
problem in following subcases.

(2.1) Each of p, q, r is nonzero. If q ≥ 2, then G = U2 by (3.2). If q = 1
and p ≥ 2, then, in the graph U2, only the pendant vertex adjacent to v2 has
neighbors in G−U2. As the graphs H2(3, 3), H2(4, 2) and H3(2, 3),H3(3, 2)
of Figure 3.1 are forbidden, G is of type G6(2, 1, r) with r ≤ 2, or of type
G6(p, q, 1). If q = 1 and p = 1 (necessarily r = 1), then, in the graph U2,
only the pendant vertex adjacent to v2 or v4 has neighbors in G − U2, and
G is of type G6(1, 1, r).

(2.2) Exactly two of p, q, r are nonzero. Then U2 is of type U2(0, q, r)
or U2(p, 0, r). For U2 being the former type, as H2(3, 3) and H2(4, 2) are
forbidden, G is of type G7(0, q, 0, s) (q ≤ 2 and s ≥ 0, or q ≥ 0 and s ≤ 1), or
graph G7(0, 3, 0, 2); and for U2 being the latter type, G is of type G7(p, 0, r, s)
or G5(p, q, r).

(2.3) Exactly one of p, q, r is nonzero. Without loss of generality, let U2

be the type U2(0, 0, r). Then G is of type G7(0, 0, r, s) or G5(0, q, r).
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Case 3. G contains cycle C5 or C6. By (3.2) and the forbidden graph
H4 of Figure 3.1, the structure of G must be of type U3 or U4 of Figure 3.3.

Let G = (V,E) be a mixed graph with V = {v1, v2, . . . , vn}, and let x =
(x1, x2, . . . , xn) ∈ Rn be a real vector. It will be convenient to adopt the
following terminology from [6]: x is said to give a valuation of the vertices
of V , that is, for each vertex vi of V , we associate the value xi, i.e., x(vi) =
xi. Then λ is an eigenvalue of G with the corresponding eigenvector x =
(x1, x2, . . . , xn) if and only if x 6= 0 and

(3.3) [λ− d(vi)]x(vi) =
∑

e={vi,vj}∈E

(sgn e)x(vj), for i = 1, 2, . . . , n.

Proposition 3.2. Suppose G is a connected nonsingular unicyclic mixed
graph on at least 9 vertices. If G is one of types U1, G1(p, q, 0, 0, 0),
G1(0, 0, 0, s, t), G1(p, 0, r, s, 0), G1(p, 0, r, 0, t), G2, G3 and G4 as in Figure
3.2 or 3.3, where p ≥ 0, q ≥ 0, r ≥ 0, s ≥ 0 and t ≥ 0, then mG(2,+∞) ≤ 3.

Proof. For the graph U1, by Lemma 2.1, it suffices to prove the graph
U1(m,m,m) (denoted still by U1) holds mU1(2, +∞) ≤ 3, where m =
max(p, q, r) ≥ 1, since U1(p, q, r) ⊆ U1(m,m, m). By (3.3) and a direct
calculation, we have that all eigenvalues of the graph U1 distinct from 1 are
determined by the equation

ΨU1(λ) = (λ2 −mλ− 5λ + 4)(λ2 −mλ− 2λ− 1)2.

Then, by Lemma 2.4, mU1(0, 1) ≥ 3 as η(U1) = 3. Hence, mU1(2, +∞) ≤ 3.
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For the graphs of types G1(p, q, 0, 0, 0), G1(0, 0, 0, s, t) and G3, by Lemma
2.1, it suffices to discuss the graph of type U5(p, q) (p ≥ 0, q ≥ 0 and
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p + q ≥ 4) of Figure 3.4, since G1(p, q, 0, 0, 0) = U5(p, q) − (v3, v5),
G1(0, 0, 0, s, t) = U5(p, q)−(v2, v3) and the spectrum of G3 is same to that of
the graph U5(p, q)− (v1, v2). For U5(p, q), let m = max(p, q) ≥ 2. Similarly,
the eigenvalues of U5(m, m) (denoted by U5) distinct from 1 are determined
by the equation ΨU5(λ) = f1(λ)g1(λ) = 0, where

f1(λ) = λ2 −mλ− 2λ + 1,

g1(λ) = λ4 − (m + 11)λ3 + (7m + 39)λ2 − (10m + 53)λ + 24.

Then mU5(1, 2) ≥ 1, since g1(1) = −4m < 0, g1(2) = 2 > 0, and mU5(0, 1)
≥ 1 as η(U5) = 2, by Lemma 2.4. Hence mU5(2, +∞) ≤ 3.

For the graphs of types G1(p, 0, r, s, 0) and G1(p, 0, r, 0, t), similar to
above, it suffices to discuss the graph U6(p, r, t) (p ≥ 0, r ≥ 0, t ≥ 0 and
p+r+t ≥ 4) of Figure 3.4, since G1(p, 0, r, s, 0) = U6(p, r, t)−(v3, v5) and the
spectrum of G1(p, 0, r, 0, t) is same to that of the graph U6(p, r, t)− (v2, v3).
For U6(p, r, t), let m = max(p, r, t) ≥ 2. Then the eigenvalues of U6(m,m, m)
(denoted by U6) distinct from 1 are determined by the equation ΨU6(λ) =
f2(λ)g2(λ) = 0, where

f2(λ) = λ3 − (m + 5)λ2 + (2m + 7)λ− 3,

and
g2(λ) = λ5 − (2m + 10)λ4 + (m2 + 12m + 32)λ3

−(2m2 − 19m + 46)λ2 + (9m + 31)λ− 8.

Then, by a discussion similar to that of U5, mU6(2, +∞) ≤ 3.
For the graph of type G2, by a direct calculation, the eigenvalues of

the graph G2 distinct from 1 are determined by the equation ΨG2(λ) =
(λ− 1)g3(λ) = 0, where

g3(λ) = λ6 − (p + 12)λ5 + (10p + 53)λ4 − (33p + 108)λ3

+(41p + 104)λ2 − (15p + 42)λ + 4.

Then 2 ≤ mG2(2,+∞) ≤ 4, since g3(1) = 2p > 0, g3(2) = −2p < 0 and
η(G2) = 1. If mG2(2,+∞) = 4, then yield a contradiction to ΨG2(2) =
(2− 1)× g3(2) = −2p < 0. Hence mG2(2, +∞) ≤ 3.

For the graph of type G4(p, q), by a similar method to that of U1, it suf-
fices to consider the graph G4(m,m), where m = max(p, q) ≥ 2. By a direct
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calculation, the eigenvalues of the graph G4(m,m) distinct from 1 are de-
termined by the equation

ΨG4(λ) = λ7 − (2m + 12)λ6 + (m2 + 22m + 54)λ5 − (10m2 + 88p + 120)λ4

− (34m2 − 160m− 144)λ3 − (48m2 + 164m + 94)λ2

− (24m2 − 78m− 31)λ− 14m− 4.

Then mG4(1, 2) ≥ 1 as ΨG4(1) = m2 > 0 and ΨG4(2) = 2− 2m < 0. On the
other hand, by Theorem 2.2(i) and Theorem 2.4, we have mG4(2,∞) ≥ 3
and mG4 [0, 1) ≥ 2. Consequently, mG4(2,+∞) ≤ 3, otherwise, it will yield
a contradiction to ΨG4(2) < 0.

Proposition 3.3. Suppose G is a connected nonsingular unicyclic mixed
graph on at least 9 vertices. If G is one of types U2, G5, G6(p, q, 1),
G6(p, q, 1), G6(1, 1, r), G7(p, 0, r, s), G7(0, q, 0, s) (q ≤ 2 and s ≥ 0, or q ≥ 0
and s ≤ 1), G6(2, 1, 2) and G7(0, 3, 0, 2) listed in Figure 3.2 or 3.3, where
p ≥ 0, q ≥ 0, r ≥ 0, s ≥ 0, then mG(2,+∞) ≤ 3.

Proof. The result can be verified directly if G is G6(2, 1, 2) or G7(0, 3, 0, 2).
For the graph of type U2, by (3.3), the eigenvalues of the graph U2(m,m, m)
(still denoted by U2) distinct from 1 are determined by the equation ΨU2(λ)
= f4(λ)g4(λ) = 0, where

f4(λ) = λ3 − (m + 5)λ2 + (2m + 6)λ− 2,

g4(λ) = λ4 − (2m + 6)λ3 + (m2 + 6m + 11)λ2 − (4m + 8)λ + 2,

and m = max(p, q, r) ≥ 1. Then mU2(2,+∞) ≤ 3, since f4(1) = p > 0,
f4(2) = −2 < 0, g4(1) = m2 > 0, g4(2) = 4m2 − 2 > 0 and η(U2) = 3.

For the graph of type G5, by Lemma 2.1, it suffices to discuss the graph
G5+e, where e = (v3, v), v ∈ Kc

r , is unoriented. Let m = max(p, q, r) ≥ 1, by
(3.3), the eigenvalues of the graph G5(m,m, m+1)+e (still denoted by G5)
distinct from 1 are determined by the equation ΨG5(λ) = (λ−2)f5(λ)g2

5(λ) =
0, where

f5(λ) = λ3−(m+7)λ2+(2m+10)λ−4, g5(λ) = λ3−(m+5)λ2+(2m+6)λ−2.

Then mG5(1, 2) ≥ 3, since f5(1) = m > 0, f5(2) = −4 < 0, g5(1) = m > 0,
g5(2) = −2 < 0. And mG5(0, 1) ≥ 3 as η(G5) = 3 by Lemma 2.4. Hence,
mG5(2, +∞) ≤ 3.
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For the graph of type G6(p, q, 1), it suffices to discuss the graph
G6(m, m, 1) with m = max(p, q) ≥ 1, denoted by G61. By (3.3), the eigen-
values of the graph G61 distinct from 1 are determined by the equation
ΨG61(λ) = f61(λ)g61(λ) = 0, where

f61(λ) = λ3 − (m + 5)λ2 + (2m + 6)λ− 2, g61(λ)

= λ5 − (m + 9)λ4 + (6m + 27)λ3 − (9m + 33)λ2 + (2m + 16)λ− 2.

Then mG61(1, 2) ≥ 2, since f61(1) = m > 0, f61(2) = −2 < 0, g61(1) =
−2m < 0, g61(2) = 2 > 0. And, by Lemma 2.3, mG61(0, 1) ≥ 3 as η(G61) =
3. Hence, mG61(2, +∞) ≤ 3.

For the graph of type G6(1, 1, r), denote by G62. By (3.3), the eigen-
values of the graph G62 distinct from 1 are determined by the equation
ΨG62(λ) = f(λ)g(λ) = 0, where

f62(λ) = λ3 − 6λ2 + 8λ− 2,

g62(λ) = λ5 − (r + 9)λ4 + (7r + 26)λ3 − (12r + 30)λ2 + (4r + 14)λ− 2.

By a discussion similar to the graph G61, we have mG62(2, +∞) ≤ 3.

For the graph of type G7(p, 0, r, s), similarly, the eigenvalues of the graph
G7(m, 0,m, m) with m = max(p, r, s) ≥ 1 distinct from 1 are determined by
the equation ΨG7(λ) = f7(λ)g7(λ) = 0, where

f7(λ) = λ3 − (m + 5)λ2 + (2m + 6)λ− 2,

g7(λ) = λ5 − (2m + 8)λ4 + (m2 + 10m + 21)λ3

−(2m2 + 14m + 24)λ2 + (6m + 12)λ + 4p− 2.

By a discussion similar to that of the graph G61, we also have mG7(2,+∞)
≤ 3.

For the graph of type G7(0, q, 0, s) (q ≤ 2 and s ≥ 0, or q ≥ 0 and s ≤ 1),
it suffices to discuss the graphs G7(0, 2, 0, s) (s ≥ 2) and G7(0, q, 0, 1) (q ≥ 3),
denoted respectively by G71 and G72. The eigenvalues of G71 distinct from
1 are determined by the equation

Ψ71(λ) = λ7 − (s + 14)λ6 + (73 + 12s)λ5 − (49s + 180)λ4

+(80s + 224)λ3 − (48s + 140)λ2 + (8s + 40)λ− 4 = 0.
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Observe that Ψ71(1) = 2s > 0 and Ψ71(2) = −4 < 0 so that mG71(1, 2) ≥ 1.
By Lemma 2.4, mG71(0, 1) ≥ 2 as η(G71) = 2. Hence, Ψ71(λ) = 0 has at
most 4 roots greater than two. If it has exactly 4 roots greater than two,
then Ψ71(2) > 0 which yields a contradiction to Ψ71(2) = −4. So we have
mG71(2, +∞) ≤ 3. The eigenvalues of G72 distinct from 1 are determined
by the equation

Ψ72(λ) = λ7 − (q + 13)λ6 + (65 + 10q)λ5 − (35q + 159)λ4

+(51q + 202)λ3 − (28q + 132)λ2 + (4q + 40)λ− 4 = 0.

By discussion in a similar way we also have mG72(2,+∞) ≤ 3.

Proposition 3.4. If G is of type U3(p, q, r) or U4(p, q, r) listed in Figure
3.3, where p ≥ 0, q ≥ 0, r ≥ 0, then mG(2,+∞) ≤ 3.

Proof. Obviously, it suffices to discuss the graphs U3(m, m,m) and
U4(m,m,m), where m = max(p, q, r), still denoted respectively by U3, U4.
By (3.3), the eigenvalues of the graphs U3 and U4 distinct from 1 are respec-
tively determined by the equations ΨU3(λ) = 0, ΨU4(λ) = 0, where

ΨU3(λ) = (λ3 −mλ2 − 4λ2 + 2mλ + 4λ− 1)

× (λ5 − 2mλ4 − 9λ4 + m2λ3 + 11mλ3 + 28λ3

−2m2λ2 − 16mλ2 − 37λ2 + 7mλ + 21λ− 4),

ΨU4(λ) = (λ− 2)(λ2 −mλ− 3λ + 2)(λ3 −mλ2 − 5λ2 + 2mλ + 5λ− 1)2.

By a discussion similar to the Proposition 3.2 and 3.3, the result follows.

By Proposition 3.1, 3.2, 3.3 and 3.4, we get the main result of this paper
directly.

Theorem 3.5. Let G = (V,E) be a connected nonsingular unicyclic mixed
graph on at least 9 vertices. Then mG(2,+∞) = 3 if and only if there exists
a signature matrix D such that DG is one of the following types:
(1) types U1, G1(p, q, 0, 0, 0), G1(0, 0, 0, s, t), G1(p, 0, r, s, 0), G1(p, 0, r, 0, t),

G2, G3 and G4 of Figure 3.2 and 3.3 if G contains the cycle C3;
(2) types U2, G5, G6(p, q, 1), G6(1, 1, r), G7(p, 0, r, s), G7(0, q, 0, s) (q ≤ 2

and s ≥ 0, or q ≥ 0 and s ≤ 1), and G6(2, 1, 2), G7(0, 3, 0, 2) of Figure
3.2 or 3.3 if G contains the cycle C4;
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(3) type U3 (and type U4, respectively) of Figure 3.3 if G contains the cycle
C5 (and the cycle C6, respectively), where p ≥ 0, q ≥ 0, r ≥ 0, s ≥ 0,
t ≥ 0.
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