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Abstract

The domination graph of a directed graph has an edge between
vertices x and y provided either (x, z) or (y, z) is an arc for every vertex
z distinct from x and y. We consider directed graphs D for which the
domination graph of D is isomorphic to the underlying graph of D.
We demonstrate that the complement of the underlying graph must
have k connected components isomorphic to complete graphs, paths,
or cycles. A complete characterization of directed graphs where k = 1
is presented.

Keywords: domination graph, domination, graph isomorphism,
underlying graph.

2000 Mathematics Subject Classification: 05C69.



52 K.A.S. Factor and L.J. Langley

1. Introduction

Domination graphs were first introduced by Fisher, Lundgren, Merz and
Reid [15] to describe the structure of the domination graphs and competi-
tion graphs of tournaments. Further refinements were made on these char-
acterizations for tournaments in later work, including Cho, Doherty, Kim,
and Lundgren [4, 5], and Fisher et al. [11, 12, 13, 14, 16], but the charac-
terization of the structure of domination graphs of arbitrary digraphs has
proved elusive. Here we will examine digraphs D with the property that the
underlying graph of D is isomorphic to its domination graph.

A directed graph D = (V, A) will consist of a nonempty set of vertices
V and a set of ordered pairs of vertices A. We do not permit loops, but we
will allow for bidirectional arcs: That is, the pair of arcs (x, y), (y, x). The
complement of D, Dc has the vertex set V and the set of ordered pairs not
in A, although we still exclude loops. The underlying graph of D, UG(D)
has the same set of vertices with the set of edges {x, y} where either (x, y)
or (y, x) is in A. If D has no bidirectional arcs then D is an orientation of
UG(D).

The union of two graphs or directed graphs is the graph formed by the
union of their vertices as well as their sets of edges or arcs. The join of
two graphs G and H, G + H, is the graph that consists of G ∪ H and all
edges joining a vertex in G and a vertex in H. We extend this definition
to directed graphs as follows. The join of D1 and D2 consists of D1 ∪ D2

together with all bidirectional arcs between any vertex of D1 and any vertex
of D2.

The study of domination graphs in tournaments arose from the goal of
characterizing competition graphs in tournaments. A competition graph of
D has vertex set V with an edge between x and y if and only if there is
a third vertex z with both arcs (x, z) and (y, z) in A. Complementarily, a
pair of vertices x, y in D are a dominating pair if and only if for all other
vertices z, either (x, z) is an arc or (y, z) is an arc. The domination graph of
D, dom(D) is the undirected graph consisting of vertex set V with an edge
between every dominating pair.

In the second section of this paper, previous results are presented that
build a foundation for the current work. We then examine the structural
necessities in the underlying graph given that we have isomorphic
underlying and domination graphs. Finally, a complete characterization of
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digraphs with UG(D) ∼= dom(D) is developed where the complement of the
underlying graph, UGc(D) is connected.

D1 D2

D1 + D2

Figure 1. The join of two directed graphs.

2. Symmetric and Antisymmetric Digraphs

The underlying graph of a tournament is the complete graph on n vertices,
Kn. For tournaments on more than three vertices, dom(D) is not equal to
Kn. A semicomplete digraph is a tournament with the possible addition of
bidirectional arcs. Factor and Factor [8] characterize semicomplete digraphs
which have domination graph equal to Kn. Factor and Langley [9] were able
to fully characterize digraphs D with UG(D) = dom(D). The underlying
graph of such a digraph is a complete multipartite graph.

If D is an orientation of UG(D) then D is also called an antisymmetric
digraph. Bergstrand and Friedler [2] show that if dom(D) is isomorphic
to UG(D) for an antisymmetric digraph, then UG(D) must be a star or a
collection of independent vertices.

If every arc in D is bidirectional, then D is a symmetric digraph. The
characterization of UG(D) ∼= dom(D) for symmetric digraphs follows from
a number of equivalences.

Notice that in a tournament, Dc is the reversal of D. That is, create a
new tournament by reversing every arc. Through this definition for tourna-
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ments, Fisher et al. show that the competition graph of D is isomorphic to
the domination graph of Dc [15].
The neighborhood graph or two-step graph, N(G), of a graph G has an edge
between vertices x and y provided both {x, z} and {y, z} exist in G for some
third vertex z. Lundgren, Maybee and Rasmussen [18, 19] show that the
competition graph of a symmetric digraph D is the neighborhood graph of
UG(D). Finally, Brigham and Dutton [3] characterize all graphs isomorphic
to their own neighborhood graphs as follows:

Theorem 2.1 (Brigham and Dutton [3]). N(G) ∼= G if and only if every
component of G is either an odd cycle or a complete graph having other than
two nodes.

Following this chain of equivalences we have the following theorem,

Theorem 2.2 (Factor and Langley [9]). Let D be a symmetric digraph.
Then UG(D) ∼= dom(D) if and only if UG(D) is the join of independent
sets with other than two vertices and components that are the complements
of odd cycles.

For example, if Cn is the cycle on n vertices, where n ≥ 3 and n is odd, by
making D the complete biorientation of Cc

n, we obtain UG(D) ∼= dom(D).
In the following section we will consider what happens when some edges

of an underlying graph are bioriented and some are not.

3. The Structure of the Underlying Graph

It is the nature of an underlying graph of a digraph D that UG(D) will have
many edges when UG(D) ∼= dom(D). This makes its complement a more
desirable structure with which to work and to express results. Therefore, we
refer to both the graphs of UG(D) and dom(D) as well as their complements
throughout the course of this paper.

To begin, we show that if we have a set of underlying graphs that are
isomorphic to their associated domination graphs, then their join retains
that isomorphic property.

Theorem 3.1. If D1, . . . , Dk are directed graphs such that UG(Di) ∼=
dom(Di) for i = 1, . . . , k and D = D1 + D2 + · · · + Dk, then UG(D) ∼=
dom(D). Also
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1. UG(D) =
∑k

i=1 UG(Di),
2. dom(D) =

∑k
i=1 dom(Di),

3. UGc(D) =
⋃k

i=1 UGc(Di),
4. domc(D) =

⋃k
i=1 domc(Di).

Proof. Let D1, . . . , Dk be directed graphs such that UG(Di) ∼= dom(Di)
for i = 1, . . . , k. Let D =

∑k
i=1 Di. Formula 1 follows directly from the

definition of the join. Suppose x ∈ Di and y ∈ Dj . If i = j, and x and y are
a dominating pair in Di, then one or the other dominates every vertex in Di.
By the construction of the join, x and y dominate every vertex that is not in
Di, so they remain a dominating pair in D. If x and y are not a dominating
pair, there must be some vertex z in Di that both fail to dominate. They
will not dominate z in the join, so they are not a dominating pair in D. If
i 6= j, x dominates Dj , y dominates Di and both dominate the remaining
vertices, so x and y form a dominating pair in D. Since both formula 1 and
2 hold, it follows that UG(D) ∼= dom(D). Finally, formulas 3 and 4 follow
immediately from the definition of complement.

The remainder of the results in this section builds the types of components
that are possible in the four graph structures. Specifically, we discuss pos-
sible adjacencies of the vertices. These adjacencies lead to cycles in the
complements, independent sets in the underlying and domination graphs,
and the corresponding cliques in UGc(D) and domc(D). Using this foun-
dation, the concluding theorem characterizes the possible structures for a
graph where UG(D) is isomorphic to dom(D).

Lemma 3.2. If a vertex y is adjacent to x1, x2, . . . , xr in UGc(D) where
r ≥ 2, then xi and xj are adjacent in domc(D), for all 1 ≤ i < j ≤ r.

Proof. Vertex y is adjacent to x1, . . . , xr in UGc(D) so y is not adjacent to
those vertices in UG(D). Thus there is no orientation of UG(D) that allows
xi and xj to dominate y. Since xi and xj are not adjacent in dom(D), they
must be adjacent in domc(D).

Corollary 3.3. If a vertex y is not adjacent to x1, . . . , xr in UG(D) where
r ≥ 2, then xi and xj are not adjacent in dom(D), for all 1 ≤ i < j ≤ r.

Lemma 3.4. If x1, x2, x3, . . . , xr, x1 is an odd length cycle in UGc(D) then
x1, x3, . . . , xr, x2, x4, . . . , xr−1, x1 is an odd length cycle in domc(D).
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Proof. Consider vertices xi, xi+1, xi+2 of the cycle. By Lemma 3.2, xi, xi+2

are adjacent in domc(D). Since r is odd, we obtain the cycle x1, x3, . . . , xr,
x2, x4, . . . , xr−1, x1 in domc(D).

Corollary 3.5. If x1, x2, x3 is a 3-cycle in UGc(D), then x1, x2, x3 is a
3-cycle in domc(D).

Corollary 3.6. If x1, x2, x3 is an independent set in UG(D), then x1, x2, x3

is an independent set in dom(D).

Lemma 3.7. Let UG(D) be isomorphic to dom(D) and r be an integer, r ≥
3. Then x1, x2, . . . , xr are independent in dom(D) if and only if x1, x2, . . . , xr

are independent in UG(D).

Proof. By Corollary 3.6, if x1, x2, x3 are independent in UG(D) then
x1, x2, x3 are independent in dom(D), so the set of independent triples of
UG(D) is a subset of the set of independent triples of dom(D). Since UG(D)
is isomorphic to dom(D), the number of independent triples of vertices is
the same in both graphs. Therefore, the sets of independent triples must be
the same as well. An independent set of vertices is completely determined
by the independent triples contained within it.

Corollary 3.8. Let UG(D) be isomorphic to dom(D) and r ≥ 3. Then
x1, x2, . . . , xr form a clique in UGc(D) if and only if x1, x2, . . . , xr form a
clique in domc(D).

Lemma 3.9. If UG(D) is isomorphic to dom(D) and there is no edge be-
tween y and any of x1, x2, . . . , xr, r ≥ 3 in UG(D), then y, x1, x2, . . . , xr

are independent in UG(D) and dom(D), and form a clique in UGc(D) and
domc(D).

Proof. It follows from Corollary 3.3 that x1, x2, . . . , xr are an independent
set in dom(D) and thus by Lemma 3.7 must be independent in UG(D). Since
there are no arcs between y and xi, y can be added to this independent set
in UG(D) and hence in dom(D). Thus they form a clique in UGc(D) and
domc(D) as well.

Lemma 3.10. If UG(D) is isomorphic to dom(D) and x1, x2, . . . , xr, r ≥ 3
form a maximal clique in UGc(D), then x1, x2, . . . , xr form a connected
component isomorphic to Kr in UGc(D).
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Proof. Let x1, x2, . . . , xr, r ≥ 3 form a maximal clique in UGc(D). Sup-
pose y is a vertex such that y 6= xi for i = 1, . . . , r and there is an edge
between y and xj in UGc(D). Without loss of generality, let j = 1. Then
there is no edge between x1 and y, x2, . . . , xr in UG(D), so by Lemma 3.9,
y, x1, x2, . . . , xr form an independent set in UG(D), contradicting the maxi-
mality assumption. Therefore, there are no edges between any vertex xi and
any vertex y not in the clique. Thus the clique is a connected component
isomorphic to Kr in UGc(D).

Theorem 3.11. If UG(D) is isomorphic to dom(D), then UGc(D) is com-
prised of one or more connected components, each either a complete graph,
a path, or a cycle.

Proof. It follows from Lemma 3.9 that any vertex of degree r ≥ 3 or
more in UGc(D) must be in a clique of 4 or more vertices and consequently,
by Lemma 3.10 in a component isomorphic to Kr+1. So every vertex in
UGc(D) that isn’t in a component isomorphic to Kr must be degree 2 or
less. It follows that every component of UGc(D) is isomorphic to a complete
graph, path, or cycle.

Corollary 3.12. If UG(D) is isomorphic to dom(D), then UG(D) is the
join of one or more independent sets, complements of paths, and comple-
ments of cycles.

Since it is now shown that if UG(D) ∼= dom(D), each component of UGc(D)
must be a complete graph, a cycle or path, we consider the question of which
paths, cycles or complete graphs may actually be components of UGc(D).
In partial answer to this question, Theorem 2.1 demonstrates that a com-
plete biorientation of an underlying graph whose complement has compo-
nents consisting of complete graphs on other than 2 vertices and odd cycles
will work. What remains unanswered is whether there exist biorientations
of UG(D) where K2, even cycles, and paths are structures which may be
components of UGc(D).

In [9], the authors of the present paper find that a digraph D exists
where UG(D) = dom(D) and K2 is a component of UGc(D).

Theorem 3.13 ([9]). A biorientation D of a graph G on n ≥ 3 vertices
exists such that UG(D) = dom(D) if and only if
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1. G =
∑p

i=1 Gi where Gi, i = 1, . . . , p − 1 are independent sets and
Gp = Km for some m ≥ 0, and

2. if we let s be the number of independent sets of size 2, then s ≤ m.

Theorem 3.13 guarantees that there are digraphs with UGc(D) containing
K2, where UG(D) = dom(D) and, thus UG(D) ∼= dom(D).

Similarly for even cycles of the form C2i , i ≥ 2, we are able to construct
digraphs where UG(D) ∼= dom(D) and C2i is a component of UGc(D). How-
ever, not all graphs whose complements contain these cycles as components
have a biorientation yielding UG(D) ∼= dom(D). As we see in the following
lemma, the existence of an even length cycle on more than 4 vertices as a
component in UGc(D) necessarily requires smaller cycles.

Lemma 3.14. If UGc(D) contains a component isomorphic to a cycle on
an even number of vertices, C2k where k ≥ 3, then domc(D) contains at
least two cycles of length k.

Proof. Let x1, x2, x3, . . . , x2k, x1 form a cycle in UGc(D). By Lemma 3.2 xi

and xi+2 (mod 2k) will be adjacent in domc(D). This means that x1, x3, . . . ,
x2k−1, x1 and x2, x4, . . . , x2k, x2 form two cycles of length k in domc(D).

UGc(D) ∼= C8 domc(D) contains at least two 4-cycles.

Figure 2. UGc(D) is an even length cycle.

For existence of digraphs Di where C2i is a component of UGc(Di) and
UG(D) ∼= dom(D), consider the following construction.

Define Di to be a digraph with (i − 1)2i + 2i−1 vertices. Begin by
constructing UGc(D). Choose 2i vertices to form one cycle of length 2i in
UGc(Di), 2i vertices to form two cycles of length 2i−1 in UGc(Di) and so
on, down to 2i−3 cycles of length 23. This leaves 2i + 2i−1 vertices. Of
these vertices, 2i will be split into 4-cycles in UGc(Di) and the rest will
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be isolated vertices. For 1 ≤ j ≤ 4 and 1 ≤ k ≤ 2i−2, label 2i of the
remaining vertices xj,k, and label the last 2i−1 vertices y1,k, y2,k. Form
the 4-cycles in UGc(Di) as x1,k, x2,k, x3,k, x4,k, x1,k for k = 1, . . . , 2i−2. Of
course any edge between two vertices in UGc(Di) means there will be no
arcs between those vertices in Di. Next, to continue the construction of
Di, place single arcs (y1,k, x2,k), (y1,k, x1,k+1), (y2,k, x3,k), and (y2,k, x4,k+1),
for k = 1, . . . , 2i−2 − 1 as well as the single arcs (y1,2i−2 , x1,1), (y1,2i−2 , x4,1),
(y2,2i−2 , x2,2i−2), and (y2,2i−2 , x3,2i−2). Place double arcs between all pairs
of vertices not otherwise accounted for, so UGc(Di) contains one cycle of
length 2i, two cycles of length 2i−1 and so on down to 2i−2 cycles of length
4, and 2i−1 components isomorphic to K1.

By the proof of Lemma 3.14 each cycle of length 2r, r ≥ 3 in UGc(Di)
will form two cycles of length 2r−1 in domc(Di). So, domc(Di) will contain
the correct number of cycles of length less than 2i. The collection of vertices
xj,k, y1,k, y2,k will form the missing cycle of length 2i on the xj,k and the
y1,k, y2,k will remain components isomorphic to K1 in domc(Di).

We illustrate the construction of D3 in Figure 3 where C23 is a com-
ponent of UGc(D3). Dotted lines represent pairs of vertices with no arcs
between them, hence the dotted lines are edges in UGc(D3). Single arcs
are shown. All other pairs of vertices have double arcs, but these are not
shown in the figure. The vertices v1, v2, . . . , v8, v1 form the single 8-cycle in
UGc(D3). The remaining vertices are labeled as in the construction to form
two 4-cycles and four independent vertices in UGc(D3).

y1,2

x1,1

x4,1 x3,1

x2,1 x1,2

x4,2 x3,2

x2,2

y2,1

y1,1

y2,2

v1

v2

v3

v
4

v8

v7

v6

v5

Figure 3. Construction of D3.

The graph domc(D3) is not shown, but it will contain two components iso-
morphic to 4-cycles: v1, v3, v5, v7, v1 and v2, v4, v6, v8, v2 and one 8-cycle:
x1,1, x3,1, x4,2, x2,2, x3,2, x1,2, x2,1, x4,1, x1,1. The vertices y1,1, y1,2, y2,1, and
y2,2 will remain independent in domc(D3) as well, so domc(D3) ∼= UGc(D3).
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To conclude our discussion on cycles for this paper, we now consider cycles
Cr, r = 2lk, where k ≥ 3 is an odd integer, and l is a positive integer. Cycles
of this form cannot be components of UGc(D) when UG(D) ∼= dom(D).

Lemma 3.15. If UG(D) ∼= dom(D), and x1, . . . , xr form an odd length
cycle in domc(D), then x1, . . . , xr are vertices of an odd length cycle in
UGc(D).

Proof. From Lemma 3.4, every odd length cycle in UGc(D) generates an
odd length cycle on the same set of vertices in domc(D). If UGc(D) ∼=
domc(D), each graph must contain the same number of odd cycles. Thus,
there can be no odd length cycles that are not generated as described in
Lemma 3.4.

Theorem 3.16. Let r = 2lk where k ≥ 3 is an odd integer and l is a positive
integer. If UG(D) is isomorphic to dom(D), then no component of UGc(D)
is isomorphic to Cr, a cycle of length r.

Proof. This follows by induction on l. Suppose l = 1. Then r = 2k where
k is odd. Suppose x1, x2, x3, . . . , xr, x1 form a component isomorphic to Cr

in UGc(D). Consider the indices mod r. Since r is even, by the proof of
Lemma 3.14 x1, x3, . . . , xr−1, x1 form a cycle of length k in domc(D), (and
x2, x4, . . . , xr, x2 form a cycle of length k in domc(D) as well). However,
it follows by Lemma 3.15 that x1, x3, . . . , xr−1, x1 are vertices of an odd
cycle in UGc(D) which contradicts the fact that these vertices are part of a
component isomorphic to Cr.

Suppose l ≥ 2 and the theorem holds for cycles of length 2l−1k. Suppose
r = 2lk where k is odd and x1, x2, x3, . . . , xr, x1 form a component isomor-
phic to Cr in UGc(D). It follows that there are two cycles of length 2l−1k in
domc(D). Since domc(D) is isomorphic to UGc(D), these two cycles must
also be in UGc(D). By Theorem 3.11, they are either connected compo-
nents isomorphic to C2l−1k or contained within components isomorphic to
Km, where m ≥ 2l−1k. However, the first case contradicts the inductive hy-
pothesis. The second case is contradicted by Lemma 3.7 as each set would
be independent in UG(D) and so could not be in Cr in UGc(D).

Finally, we discuss two basic results related to the structure of the underlying
graph when UGc(D) = Pn. The actual construction of a path in domc(D)
relies upon careful orientation of specific edges in UG(D). Thus that portion
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of the characterization is in Section 4, where the complete characterization
of the digraph D, with UGc(D) connected, is developed.

Lemma 3.4 describes the odd length cycle that is created in domc(D)
when UGc(D) is an odd cycle. Here, we make a similar observation for the
structure UGc(D) = Pn. Unlike the case of the cycle, the path can have an
odd or even number of vertices.

Lemma 3.17. If UGc(D) = Pn = x1, x2, . . . , xn for n ≥ 3, then
1. if n is odd, x1, x3, . . . , xn and x2, x4, . . . , xn−1 are paths in domc(D),

and
2. if n is even, x1, x3, . . . , xn−1 and x2, x4, . . . , xn are paths in domc(D).

Proof. Vertices xi−1 and xi+1, i = 2, . . . n − 1, are not adjacent to vertex
xi in UG(D), so cannot dominate xi. Thus {xi−1, xi+1} is not an edge of
dom(D), but is an edge of domc(D). This implies that x1, x3, . . . , xn and
x2, x4, . . . , xn−1 are paths in domc(D) when n is odd, while x1, x3, . . . , xn−1

and x2, x4, . . . , xn are paths in domc(D) when n is even.

4. Characterization of D where UGc(D) is
Connected

Now that we know what each component of UGc(D) must be, we focus our
attention on the case where UGc(D) is a single component.

What exact form do the digraphs take where UG(D) is isomorphic to
dom(D) and UGc(D) is connected? To answer this question, we first intro-
duce a simple result that links the degree of vertices in an underlying graph
of any digraph to the existence of a K3 in domc(D). Although similar to
the results in Section 2 regarding K3 in UGc(D) and domc(D), it is not
identical. Here, the use of an orientation of an existing edge of UG(D) does
not translate into an adjacency issue in UGc(D). Thus, we approach the K3

in domc(D) through dom(D).

Lemma 4.1. Let D be a digraph on n vertices, and (u, v) be an arc in D
where (v, u) is not an arc in D and deg(u) = k in UG(D). If k < n − 2,
then K3 is a subgraph of domc(D).

Proof. Suppose deg(u) < n−2 in UG(D). This implies that there are two
vertices x1, x2 that are not adjacent to u in UG(D). Since in D there is no
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arc from v to u, then v, x1, x2 do not dominate u, so form an independent
set in dom(D). Thus, they create a copy of K3 in domc(D).

Using the preceding result, we introduce the following two lemmas, which
examine the existence of arcs that are not in a 2-cycle in some biorientation
D of Cc

n or of P c
n where UG(D) ∼= dom(D).

Lemma 4.2. Let D be a directed graph on n ≥ 5 vertices, where n is odd
and UG(D) = Cc

n. Then, UG(D) ∼= dom(D) if and only if D is symmetric.

Proof. Let D be a directed graph with UGc(D) = Cn, n ≥ 5. As
UGc(D) = Cn, all degrees of the vertices of UG(D) are n − 3. Suppose
that UG(D) ∼= dom(D). Then domc(D) contains no K3, and by Lemma
4.1, if (u, v) is an arc in D, then (v, u) must also be an arc in D. That is,
D must by symmetric. On the other hand, if D is symmetric, we know by
Theorem 2.2 that UG(D) ∼= dom(D).

Lemma 4.3. Let D be a directed graph on n ≥ 3 vertices and UGc(D) =
Pn = x1, . . . , xn. Then, domc(D) ∼= Pn if and only if every arc of D is in a
two-cycle except

1. if n is odd, exactly one of the following sets of arcs are in D but not in
a two-cycle:

(a) (x1, xn),
(b) (xn, x1),
(c) (x1, xn) and (xn, xn−3), or
(d) (xn, x1) and (x1, x4), and

2. if n is even, exactly one of the following sets of arcs are in D but not in
a two-cycle:
(a) (x1, xn−1),
(b) (xn, x2),
(c) (x1, xn−1) and (xn, x2),
(d) (xn, x2) and (x1, x4), or
(e) (x1, xn−1) and (xn, xn−3).

Proof. Let D be a directed graph such that UGc(D) = Pn = x1, . . . , xn for
n ≥ 3. Lemma 3.17 shows that domc(D) contains the edges {x1, x3}, . . . ,
{xn−2, xn}, {x2, x4}, . . . , {xn−3, xn−1} if n is odd, or the edges {x1, x3}, . . . ,
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{xn−3, xn−1}, {x2, x4}, . . . , {xn−2, xn} if n is even. Thus domc(D) contains
at least n− 2 edges.

(⇒) Suppose domc(D) ∼= Pn. Thus UGc(D) ∼= domc(D) and UG(D) ∼=
dom(D). By Theorem 2.2, since UGc(D) ∼= Pn, D cannot be symmetric.
Thus, at least one arc must not be in a two-cycle of D.

Since domc(D) ∼= Pn, domc(D) contains no subgraph isomorphic to K3.
Thus, for any arc (u, v) in D where (v, u) is not in D, Lemma 4.1 states
deg(u) ≥ n − 2 in UGc(D). Vertices x1 and xn are the only vertices that
meet this criterion. This indicates that if (u, v) is an arc in D but (v, u) is
not, u = x1 or u = xn.

Suppose that (x1, xi) is an arc, but (xi, x1) is not. Then, {x2, xi} is
not an edge in dom(D), since neither dominates x1 in D. This ensures that
{x2, xi} is an edge in domc(D). If i = 3 or 5 ≤ i ≤ n − 2, then xi will
be adjacent to three vertices, xi−2, xi+2 and x2 in domc(D), but Pn has no
vertices of degree three. Also, by the structure of UGc(D), there are no arcs
between x1 and x2. Consequently, there are three possibilities to consider:
i = 4, i = n − 1, or i = n. Likewise if (xn, xi) is an arc but (xi, xn) is not,
then i = 1, i = 2, or i = n− 3.

Suppose that both (x1, xi) and (x1, xj) are arcs in D, with i 6= j, but
neither (xi, x1) nor (xj , x1) is an arc in D. Then, xi, xj , and x2 all fail to
dominate x1. Consequently, xi, xj , and x2 form a K3 in domc(D), which is
impossible if domc(D) is isomorphic to a path. Thus at most one of (x4, x1),
(xn−1, x1), (xn, x1) is missing from D. Similarly, at most one of (x1, xn),
(x2, xn), (xn−3, xn) is missing from D. All other arcs must be in two-cycles.

If (x1, xi) is an arc in D, but (xi, x1) is not, xi and x2 fail to dominate x1,
so {x2, xi} must be an edge in domc(D). If i = 4, by Lemma 3.17, {x2, xi}
is already an edge in domc(D). If n is odd, {x2, xn−1} cannot be an edge in
domc(D), since x2, . . . , xn−1 would form a cycle, which is impossible. Thus
if n is odd, i 6= n− 1. If n is even, {x2, xn} cannot be an edge in domc(D),
otherwise x2, . . . , xn would form a cycle. Thus if n is even, i 6= n. Similarly,
if we assume (xn, xi) is an arc but (xi, xn) is not, {xi, xn−1} is an edge in
domc(D), and if n is odd, i 6= 2, and if n is even i 6= 1.

Since we need at least one additional edge in domc(D) to form a path,
at least one of (xn, x1), (xn−1, x1), (x1, xn), (x2, xn) must be missing from
D. Finally, notice that, since {x1, xn} is an edge in UG(D), at least one of
(x1, xn), (xn, x1) is an arc in D.

Consequently, every arc in D will be in a two cycle, except for one of the
following cases: If n is odd, either (x1, xn) is not in D, (x1, xn) and (x4, x1)
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are not in D, (xn, x1) is not in D, or (xn, x1) and (xn−3, xn) are not in D.
If n is even, either (x2, xn) is not in D, (x2, xn) and (x4, x1) are not in D,
(xn−1, x1) is not in D, (xn−1, x1) and (xn−3, xn) is not in D, or (xn−1, x1)
and (x2, xn) is not in D.

(⇐) Suppose D has one of the patterns in the previous paragraph. If
n is odd, and (x1, xn) is an arc in D, but (xn, x1) is not, then {x2, xn}
will be an edge in domc(D) and thus x1, x3, . . . , xn, x2, x4, . . . , xn−1 is a
path in domc(D). Similarly, if (xn, x1) is an arc in D, but (x1, xn) is not,
then {x1, xn−1} is an edge in domc(D). Thus domc(D) contains the path
x2, x4, . . . , xn−1, x1, . . . , xn. If n is even, since either (x1, xn−1) is an arc
but (xn−1, x1) is not, or (xn, x2) is an arc but (x2, xn) is not an arc in D,
{x2, xn−1} is an edge in domc(D). Thus {x1, x3, . . . , xn−1, x2, . . . , xn} is a
path in domc(D).

Now consider any pair of vertices xi, xj , not in a path described above,
with i < j. Note that j 6= i + 2. By the construction of D, every vertex
xi has an arc to every vertex xk with the following possible exceptions:
k = i, i − 1, i + 1, 1, n. Suppose that there is an edge between xi and xj in
domc(D). There must be some k 6= i, j so that neither (xi, xk) is an arc, nor
(xj , xk) is an arc. Since i + 1 6= j − 1, this means k = 1 or k = n. Suppose
k = 1. By the way D is constructed, there are only a limited number of
possibilities. i must equal 2. If n is odd, j might equal n, in which case
{x2, xn} will already be in domc(D). If n is even, j might equal n − 1, in
which case {x2, xn−1} is already in domc(D). In either case no additional
edges are in domc(D). Similar arguments suffice for k = n. In either case
domc(D) = Pn.

UGc(D) ∼= domc(D) ∼= P5

UGc(D) ∼= domc(D) ∼= P6

Figure 4. Example biorientations of the complement of paths.

It is now possible to completely characterize all digraphs with isomorphic
underlying graphs and domination graphs where UGc(D) is connected.
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Theorem 4.4. For any digraph D, UG(D) ∼= dom(D) and UGc(D) is con-
nected if and only if

1. D is a digraph of k isolated vertices other than k = 2, or
2. D is a complete biorientation of Cc

n where n is odd, or
3. D is the biorientation of P c

n where Pn = x1, . . . , xn with n ≥ 3, and

(a) if n is odd, exactly one of the following sets of arcs are in D but not
in a two-cycle:
(i) (x1, xn),
(ii) (xn, x1),
(iii) (x1, xn) and (xn, xn−3), or
(iv) (xn, x1) and (x1, x4), and

(b) if n is even, exactly one of the following sets of arcs are in D but
not in a two-cycle:
(i) (x1, xn−1),
(ii) (xn, x2),
(iii) (x1, xn−1) and (xn, x2),
(iv) (xn, x2) and (x1, x4), or
(v) (x1, xn−1) and (xn, xn−3).

(c) for all other arcs (x, y) of D, (y, x) is also an arc.

Proof. Recall that Theorem 3.11 states that UGc(D) must be a complete
graph, a cycle, or a path, so D must be an orientation of the complement of
such graphs. We know from Theorem 2.2 that D exists with UGc(D) = Kn

for n 6= 2 or Cn, where n is odd. Lemma 4.3 provides constructions when
UGc(D) ∼= Pn, n ≥ 3.

If UGc(D) is isomorphic to Kn then D has no arcs so there is no choice
of orientation. If n = 2, then dom(D) = K2 6∼= UG(D). In all other cases
dom(D) will be isomorphic to k isolated vertices.

Suppose UGc(D) is an odd length cycle. If n = 3 then D is isomorphic
to 3 isolated vertices listed in the previous case. If n ≥ 5, Lemma 4.2 states
that D must be a complete biorientation of UG(D), the complement of Cn.
It follows from Lemma 3.14 that if UGc(D) is an even length cycle on more
than 4 vertices then domc(D) will contain two smaller cycles which will
result in a disconnected graph. Finally, let x1, x2, x3, x4, x1 be a 4 cycle in
UGc(D), so UG(D) has two edges {x1, x3} and {x2, x4}. There are only
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three non-isomorphic orientations of two edges. Each of these orientations
results in domc(D) 6∼= C4.

The final case, where UGc(D) is isomorphic to a path is fully described
in Lemma 4.3
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