DIGRAPHS WITH ISOMORPHIC UNDERLYING AND DOMINATION GRAPHS: CONNECTED $U G^{C}(D)$

Kim A.S. Factor
Marquette University
P.O. Box 1881, Milwaukee, WI 53201-1881, USA
e-mail: kim.factor@marquette.edu
AND
Larry J. Langley
University of the Pacific
3601 Pacific Avenue Stockton, CA 95211, USA
e-mail: llangley@pacific.edu
Dedicated to the memory of Kenneth P. Bogart

Abstract

The domination graph of a directed graph has an edge between vertices x and y provided either (x, z) or (y, z) is an arc for every vertex z distinct from x and y. We consider directed graphs D for which the domination graph of D is isomorphic to the underlying graph of D. We demonstrate that the complement of the underlying graph must have k connected components isomorphic to complete graphs, paths, or cycles. A complete characterization of directed graphs where $k=1$ is presented.

Keywords: domination graph, domination, graph isomorphism, underlying graph.

2000 Mathematics Subject Classification: 05C69.

1. Introduction

Domination graphs were first introduced by Fisher, Lundgren, Merz and Reid [15] to describe the structure of the domination graphs and competition graphs of tournaments. Further refinements were made on these characterizations for tournaments in later work, including Cho, Doherty, Kim, and Lundgren [4, 5], and Fisher et al. [11, 12, 13, 14, 16], but the characterization of the structure of domination graphs of arbitrary digraphs has proved elusive. Here we will examine digraphs D with the property that the underlying graph of D is isomorphic to its domination graph.

A directed graph $D=(V, A)$ will consist of a nonempty set of vertices V and a set of ordered pairs of vertices A. We do not permit loops, but we will allow for bidirectional arcs: That is, the pair of arcs $(x, y),(y, x)$. The complement of D, D^{c} has the vertex set V and the set of ordered pairs not in A, although we still exclude loops. The underlying graph of $D, U G(D)$ has the same set of vertices with the set of edges $\{x, y\}$ where either (x, y) or (y, x) is in A. If D has no bidirectional arcs then D is an orientation of $U G(D)$.

The union of two graphs or directed graphs is the graph formed by the union of their vertices as well as their sets of edges or arcs. The join of two graphs G and $H, G+H$, is the graph that consists of $G \cup H$ and all edges joining a vertex in G and a vertex in H. We extend this definition to directed graphs as follows. The join of D_{1} and D_{2} consists of $D_{1} \cup D_{2}$ together with all bidirectional arcs between any vertex of D_{1} and any vertex of D_{2}.

The study of domination graphs in tournaments arose from the goal of characterizing competition graphs in tournaments. A competition graph of D has vertex set V with an edge between x and y if and only if there is a third vertex z with both $\operatorname{arcs}(x, z)$ and (y, z) in A. Complementarily, a pair of vertices x, y in D are a dominating pair if and only if for all other vertices z, either (x, z) is an arc or (y, z) is an arc. The domination graph of $D, \operatorname{dom}(D)$ is the undirected graph consisting of vertex set V with an edge between every dominating pair.

In the second section of this paper, previous results are presented that build a foundation for the current work. We then examine the structural necessities in the underlying graph given that we have isomorphic underlying and domination graphs. Finally, a complete characterization of
digraphs with $U G(D) \cong \operatorname{dom}(D)$ is developed where the complement of the underlying graph, $U G^{c}(D)$ is connected.

Figure 1. The join of two directed graphs.

2. Symmetric and Antisymmetric Digraphs

The underlying graph of a tournament is the complete graph on n vertices, K_{n}. For tournaments on more than three vertices, $\operatorname{dom}(D)$ is not equal to K_{n}. A semicomplete digraph is a tournament with the possible addition of bidirectional arcs. Factor and Factor [8] characterize semicomplete digraphs which have domination graph equal to K_{n}. Factor and Langley [9] were able to fully characterize digraphs D with $U G(D)=\operatorname{dom}(D)$. The underlying graph of such a digraph is a complete multipartite graph.

If D is an orientation of $U G(D)$ then D is also called an antisymmetric digraph. Bergstrand and Friedler [2] show that if $\operatorname{dom}(D)$ is isomorphic to $U G(D)$ for an antisymmetric digraph, then $U G(D)$ must be a star or a collection of independent vertices.

If every arc in D is bidirectional, then D is a symmetric digraph. The characterization of $U G(D) \cong \operatorname{dom}(D)$ for symmetric digraphs follows from a number of equivalences.

Notice that in a tournament, D^{c} is the reversal of D. That is, create a new tournament by reversing every arc. Through this definition for tourna-
ments, Fisher et al. show that the competition graph of D is isomorphic to the domination graph of D^{c} [15].
The neighborhood graph or two-step graph, $N(G)$, of a graph G has an edge between vertices x and y provided both $\{x, z\}$ and $\{y, z\}$ exist in G for some third vertex z. Lundgren, Maybee and Rasmussen [18, 19] show that the competition graph of a symmetric digraph D is the neighborhood graph of $U G(D)$. Finally, Brigham and Dutton [3] characterize all graphs isomorphic to their own neighborhood graphs as follows:

Theorem 2.1 (Brigham and Dutton [3]). $N(G) \cong G$ if and only if every component of G is either an odd cycle or a complete graph having other than two nodes.

Following this chain of equivalences we have the following theorem,
Theorem 2.2 (Factor and Langley [9]). Let D be a symmetric digraph. Then $U G(D) \cong \operatorname{dom}(D)$ if and only if $U G(D)$ is the join of independent sets with other than two vertices and components that are the complements of odd cycles.

For example, if C_{n} is the cycle on n vertices, where $n \geq 3$ and n is odd, by making D the complete biorientation of C_{n}^{c}, we obtain $U G(D) \cong \operatorname{dom}(D)$.

In the following section we will consider what happens when some edges of an underlying graph are bioriented and some are not.

3. The Structure of the Underlying Graph

It is the nature of an underlying graph of a digraph D that $U G(D)$ will have many edges when $U G(D) \cong \operatorname{dom}(D)$. This makes its complement a more desirable structure with which to work and to express results. Therefore, we refer to both the graphs of $U G(D)$ and $\operatorname{dom}(D)$ as well as their complements throughout the course of this paper.

To begin, we show that if we have a set of underlying graphs that are isomorphic to their associated domination graphs, then their join retains that isomorphic property.

Theorem 3.1. If D_{1}, \ldots, D_{k} are directed graphs such that $U G\left(D_{i}\right) \cong$ $\operatorname{dom}\left(D_{i}\right)$ for $i=1, \ldots, k$ and $D=D_{1}+D_{2}+\cdots+D_{k}$, then $U G(D) \cong$ $\operatorname{dom}(D)$. Also

1. $U G(D)=\sum_{i=1}^{k} U G\left(D_{i}\right)$,
2. $\operatorname{dom}(D)=\sum_{i=1}^{k} \operatorname{dom}\left(D_{i}\right)$,
3. $U G^{c}(D)=\bigcup_{i=1}^{k} U G^{c}\left(D_{i}\right)$,
4. $\operatorname{dom}^{c}(D)=\bigcup_{i=1}^{k} \operatorname{dom}^{c}\left(D_{i}\right)$.

Proof. Let D_{1}, \ldots, D_{k} be directed graphs such that $U G\left(D_{i}\right) \cong \operatorname{dom}\left(D_{i}\right)$ for $i=1, \ldots, k$. Let $D=\sum_{i=1}^{k} D_{i}$. Formula 1 follows directly from the definition of the join. Suppose $x \in D_{i}$ and $y \in D_{j}$. If $i=j$, and x and y are a dominating pair in D_{i}, then one or the other dominates every vertex in D_{i}. By the construction of the join, x and y dominate every vertex that is not in D_{i}, so they remain a dominating pair in D. If x and y are not a dominating pair, there must be some vertex z in D_{i} that both fail to dominate. They will not dominate z in the join, so they are not a dominating pair in D. If $i \neq j, x$ dominates D_{j}, y dominates D_{i} and both dominate the remaining vertices, so x and y form a dominating pair in D. Since both formula 1 and 2 hold, it follows that $U G(D) \cong \operatorname{dom}(D)$. Finally, formulas 3 and 4 follow immediately from the definition of complement.

The remainder of the results in this section builds the types of components that are possible in the four graph structures. Specifically, we discuss possible adjacencies of the vertices. These adjacencies lead to cycles in the complements, independent sets in the underlying and domination graphs, and the corresponding cliques in $U G^{c}(D)$ and $\operatorname{dom}^{c}(D)$. Using this foundation, the concluding theorem characterizes the possible structures for a graph where $U G(D)$ is isomorphic to $\operatorname{dom}(D)$.

Lemma 3.2. If a vertex y is adjacent to $x_{1}, x_{2}, \ldots, x_{r}$ in $U G^{c}(D)$ where $r \geq 2$, then x_{i} and x_{j} are adjacent in $\operatorname{dom}^{c}(D)$, for all $1 \leq i<j \leq r$.

Proof. Vertex y is adjacent to x_{1}, \ldots, x_{r} in $U G^{c}(D)$ so y is not adjacent to those vertices in $U G(D)$. Thus there is no orientation of $U G(D)$ that allows x_{i} and x_{j} to dominate y. Since x_{i} and x_{j} are not adjacent in $\operatorname{dom}(D)$, they must be adjacent in $\operatorname{dom}^{c}(D)$.

Corollary 3.3. If a vertex y is not adjacent to x_{1}, \ldots, x_{r} in $U G(D)$ where $r \geq 2$, then x_{i} and x_{j} are not adjacent in $\operatorname{dom}(D)$, for all $1 \leq i<j \leq r$.

Lemma 3.4. If $x_{1}, x_{2}, x_{3}, \ldots, x_{r}, x_{1}$ is an odd length cycle in $U G^{c}(D)$ then $x_{1}, x_{3}, \ldots, x_{r}, x_{2}, x_{4}, \ldots, x_{r-1}, x_{1}$ is an odd length cycle in $\operatorname{dom}^{c}(D)$.

Proof. Consider vertices x_{i}, x_{i+1}, x_{i+2} of the cycle. By Lemma 3.2, x_{i}, x_{i+2} are adjacent in $\operatorname{dom}^{c}(D)$. Since r is odd, we obtain the cycle $x_{1}, x_{3}, \ldots, x_{r}$, $x_{2}, x_{4}, \ldots, x_{r-1}, x_{1}$ in $\operatorname{dom}^{c}(D)$.

Corollary 3.5. If x_{1}, x_{2}, x_{3} is a 3 -cycle in $U G^{c}(D)$, then x_{1}, x_{2}, x_{3} is a 3 -cycle in $\operatorname{dom}^{c}(D)$.

Corollary 3.6. If x_{1}, x_{2}, x_{3} is an independent set in $U G(D)$, then x_{1}, x_{2}, x_{3} is an independent set in dom (D).

Lemma 3.7. Let $U G(D)$ be isomorphic to dom (D) and r be an integer, $r \geq$ 3. Then $x_{1}, x_{2}, \ldots, x_{r}$ are independent in $\operatorname{dom}(D)$ if and only if $x_{1}, x_{2}, \ldots, x_{r}$ are independent in $U G(D)$.

Proof. By Corollary 3.6, if x_{1}, x_{2}, x_{3} are independent in $U G(D)$ then x_{1}, x_{2}, x_{3} are independent in $\operatorname{dom}(D)$, so the set of independent triples of $U G(D)$ is a subset of the set of independent triples of $\operatorname{dom}(D)$. Since $U G(D)$ is isomorphic to $\operatorname{dom}(D)$, the number of independent triples of vertices is the same in both graphs. Therefore, the sets of independent triples must be the same as well. An independent set of vertices is completely determined by the independent triples contained within it.

Corollary 3.8. Let $U G(D)$ be isomorphic to $\operatorname{dom}(D)$ and $r \geq 3$. Then $x_{1}, x_{2}, \ldots, x_{r}$ form a clique in $U G^{c}(D)$ if and only if $x_{1}, x_{2}, \ldots, x_{r}$ form a clique in $\operatorname{dom}^{c}(D)$.

Lemma 3.9. If $U G(D)$ is isomorphic to $\operatorname{dom}(D)$ and there is no edge between y and any of $x_{1}, x_{2}, \ldots, x_{r}, r \geq 3$ in $U G(D)$, then $y, x_{1}, x_{2}, \ldots, x_{r}$ are independent in $U G(D)$ and dom (D), and form a clique in $U G^{c}(D)$ and $\operatorname{dom}^{c}(D)$.

Proof. It follows from Corollary 3.3 that $x_{1}, x_{2}, \ldots, x_{r}$ are an independent set in $\operatorname{dom}(D)$ and thus by Lemma 3.7 must be independent in $U G(D)$. Since there are no arcs between y and x_{i}, y can be added to this independent set in $U G(D)$ and hence in $\operatorname{dom}(D)$. Thus they form a clique in $U G^{c}(D)$ and $\operatorname{dom}^{c}(D)$ as well.

Lemma 3.10. If $U G(D)$ is isomorphic to dom(D) and $x_{1}, x_{2}, \ldots, x_{r}, r \geq 3$ form a maximal clique in $U G^{c}(D)$, then $x_{1}, x_{2}, \ldots, x_{r}$ form a connected component isomorphic to K_{r} in $U G^{c}(D)$.

Proof. Let $x_{1}, x_{2}, \ldots, x_{r}, r \geq 3$ form a maximal clique in $U G^{c}(D)$. Suppose y is a vertex such that $y \neq x_{i}$ for $i=1, \ldots, r$ and there is an edge between y and x_{j} in $U G^{c}(D)$. Without loss of generality, let $j=1$. Then there is no edge between x_{1} and y, x_{2}, \ldots, x_{r} in $U G(D)$, so by Lemma 3.9, $y, x_{1}, x_{2}, \ldots, x_{r}$ form an independent set in $U G(D)$, contradicting the maximality assumption. Therefore, there are no edges between any vertex x_{i} and any vertex y not in the clique. Thus the clique is a connected component isomorphic to K_{r} in $U G^{c}(D)$.

Theorem 3.11. If $U G(D)$ is isomorphic to $\operatorname{dom}(D)$, then $U G^{c}(D)$ is comprised of one or more connected components, each either a complete graph, a path, or a cycle.

Proof. It follows from Lemma 3.9 that any vertex of degree $r \geq 3$ or more in $U G^{c}(D)$ must be in a clique of 4 or more vertices and consequently, by Lemma 3.10 in a component isomorphic to K_{r+1}. So every vertex in $U G^{c}(D)$ that isn't in a component isomorphic to K_{r} must be degree 2 or less. It follows that every component of $U G^{c}(D)$ is isomorphic to a complete graph, path, or cycle.

Corollary 3.12. If $U G(D)$ is isomorphic to $\operatorname{dom}(D)$, then $U G(D)$ is the join of one or more independent sets, complements of paths, and complements of cycles.

Since it is now shown that if $U G(D) \cong \operatorname{dom}(D)$, each component of $U G^{c}(D)$ must be a complete graph, a cycle or path, we consider the question of which paths, cycles or complete graphs may actually be components of $U G^{c}(D)$. In partial answer to this question, Theorem 2.1 demonstrates that a complete biorientation of an underlying graph whose complement has components consisting of complete graphs on other than 2 vertices and odd cycles will work. What remains unanswered is whether there exist biorientations of $U G(D)$ where K_{2}, even cycles, and paths are structures which may be components of $U G^{c}(D)$.

In [9], the authors of the present paper find that a digraph D exists where $U G(D)=\operatorname{dom}(D)$ and K_{2} is a component of $U G^{c}(D)$.

Theorem 3.13 ([9]). A biorientation D of a graph G on $n \geq 3$ vertices exists such that $U G(D)=\operatorname{dom}(D)$ if and only if

1. $G=\sum_{i=1}^{p} G_{i}$ where $G_{i}, i=1, \ldots, p-1$ are independent sets and $G_{p}=K_{m}$ for some $m \geq 0$, and
2. if we let s be the number of independent sets of size 2 , then $s \leq m$.

Theorem 3.13 guarantees that there are digraphs with $U G^{c}(D)$ containing K_{2}, where $U G(D)=\operatorname{dom}(D)$ and, thus $U G(D) \cong \operatorname{dom}(D)$.

Similarly for even cycles of the form $C_{2^{i}}, i \geq 2$, we are able to construct digraphs where $U G(D) \cong \operatorname{dom}(D)$ and $C_{2^{i}}$ is a component of $U G^{c}(D)$. However, not all graphs whose complements contain these cycles as components have a biorientation yielding $U G(D) \cong \operatorname{dom}(D)$. As we see in the following lemma, the existence of an even length cycle on more than 4 vertices as a component in $U G^{c}(D)$ necessarily requires smaller cycles.

Lemma 3.14. If $U G^{c}(D)$ contains a component isomorphic to a cycle on an even number of vertices, $C_{2 k}$ where $k \geq 3$, then $\operatorname{dom}^{c}(D)$ contains at least two cycles of length k.

Proof. Let $x_{1}, x_{2}, x_{3}, \ldots, x_{2 k}, x_{1}$ form a cycle in $U G^{c}(D)$. By Lemma $3.2 x_{i}$ and $x_{i+2}(\bmod 2 k)$ will be adjacent in $\operatorname{dom}^{c}(D)$. This means that x_{1}, x_{3}, \ldots, $x_{2 k-1}, x_{1}$ and $x_{2}, x_{4}, \ldots, x_{2 k}, x_{2}$ form two cycles of length k in $\operatorname{dom}^{c}(D)$.

$\operatorname{dom}^{c}(D)$ contains at least two 4 -cycles.
Figure 2. $U G^{c}(D)$ is an even length cycle.
For existence of digraphs D_{i} where $C_{2^{i}}$ is a component of $U G^{c}\left(D_{i}\right)$ and $U G(D) \cong \operatorname{dom}(D)$, consider the following construction.

Define D_{i} to be a digraph with $(i-1) 2^{i}+2^{i-1}$ vertices. Begin by constructing $U G^{c}(D)$. Choose 2^{i} vertices to form one cycle of length 2^{i} in $U G^{c}\left(D_{i}\right), 2^{i}$ vertices to form two cycles of length 2^{i-1} in $U G^{c}\left(D_{i}\right)$ and so on, down to 2^{i-3} cycles of length 2^{3}. This leaves $2^{i}+2^{i-1}$ vertices. Of these vertices, 2^{i} will be split into 4 -cycles in $U G^{c}\left(D_{i}\right)$ and the rest will
be isolated vertices. For $1 \leq j \leq 4$ and $1 \leq k \leq 2^{i-2}$, label 2^{i} of the remaining vertices $x_{j, k}$, and label the last 2^{i-1} vertices $y_{1, k}, y_{2, k}$. Form the 4 -cycles in $U G^{c}\left(D_{i}\right)$ as $x_{1, k}, x_{2, k}, x_{3, k}, x_{4, k}, x_{1, k}$ for $k=1, \ldots, 2^{i-2}$. Of course any edge between two vertices in $U G^{c}\left(D_{i}\right)$ means there will be no arcs between those vertices in D_{i}. Next, to continue the construction of D_{i}, place single $\operatorname{arcs}\left(y_{1, k}, x_{2, k}\right),\left(y_{1, k}, x_{1, k+1}\right),\left(y_{2, k}, x_{3, k}\right)$, and $\left(y_{2, k}, x_{4, k+1}\right)$, for $k=1, \ldots, 2^{i-2}-1$ as well as the single $\operatorname{arcs}\left(y_{1,2^{i-2}}, x_{1,1}\right),\left(y_{1,2^{i-2}}, x_{4,1}\right)$, $\left(y_{2,2^{i-2}}, x_{2,2^{i-2}}\right)$, and $\left(y_{2,2^{i-2}}, x_{3,2^{i-2}}\right)$. Place double arcs between all pairs of vertices not otherwise accounted for, so $U G^{c}\left(D_{i}\right)$ contains one cycle of length 2^{i}, two cycles of length 2^{i-1} and so on down to 2^{i-2} cycles of length 4 , and 2^{i-1} components isomorphic to K_{1}.

By the proof of Lemma 3.14 each cycle of length $2^{r}, r \geq 3$ in $U G^{c}\left(D_{i}\right)$ will form two cycles of length 2^{r-1} in $\operatorname{dom}^{c}\left(D_{i}\right)$. So, $\operatorname{dom}^{c}\left(D_{i}\right)$ will contain the correct number of cycles of length less than 2^{i}. The collection of vertices $x_{j, k}, y_{1, k}, y_{2, k}$ will form the missing cycle of length 2^{i} on the $x_{j, k}$ and the $y_{1, k}, y_{2, k}$ will remain components isomorphic to K_{1} in $\operatorname{dom}^{c}\left(D_{i}\right)$.

We illustrate the construction of D_{3} in Figure 3 where $C_{2^{3}}$ is a component of $U G^{c}\left(D_{3}\right)$. Dotted lines represent pairs of vertices with no arcs between them, hence the dotted lines are edges in $U G^{c}\left(D_{3}\right)$. Single arcs are shown. All other pairs of vertices have double arcs, but these are not shown in the figure. The vertices $v_{1}, v_{2}, \ldots, v_{8}, v_{1}$ form the single 8 -cycle in $U G^{c}\left(D_{3}\right)$. The remaining vertices are labeled as in the construction to form two 4-cycles and four independent vertices in $U G^{c}\left(D_{3}\right)$.

Figure 3. Construction of D_{3}.

The graph $\operatorname{dom}^{c}\left(D_{3}\right)$ is not shown, but it will contain two components isomorphic to 4 -cycles: $v_{1}, v_{3}, v_{5}, v_{7}, v_{1}$ and $v_{2}, v_{4}, v_{6}, v_{8}, v_{2}$ and one 8 -cycle: $x_{1,1}, x_{3,1}, x_{4,2}, x_{2,2}, x_{3,2}, x_{1,2}, x_{2,1}, x_{4,1}, x_{1,1}$. The vertices $y_{1,1}, y_{1,2}, y_{2,1}$, and $y_{2,2}$ will remain independent in $\operatorname{dom}^{c}\left(D_{3}\right)$ as well, so $\operatorname{dom}^{c}\left(D_{3}\right) \cong U G^{c}\left(D_{3}\right)$.

To conclude our discussion on cycles for this paper, we now consider cycles $C_{r}, r=2^{l} k$, where $k \geq 3$ is an odd integer, and l is a positive integer. Cycles of this form cannot be components of $U G^{c}(D)$ when $U G(D) \cong \operatorname{dom}(D)$.

Lemma 3.15. If $U G(D) \cong \operatorname{dom}(D)$, and x_{1}, \ldots, x_{r} form an odd length cycle in $\operatorname{dom}^{c}(D)$, then x_{1}, \ldots, x_{r} are vertices of an odd length cycle in $U G^{c}(D)$.

Proof. From Lemma 3.4, every odd length cycle in $U G^{c}(D)$ generates an odd length cycle on the same set of vertices in $\operatorname{dom}^{c}(D)$. If $U G^{c}(D) \cong$ $d^{c}{ }^{c}(D)$, each graph must contain the same number of odd cycles. Thus, there can be no odd length cycles that are not generated as described in Lemma 3.4.

Theorem 3.16. Let $r=2^{l} k$ where $k \geq 3$ is an odd integer and l is a positive integer. If $U G(D)$ is isomorphic to dom (D), then no component of $U G^{c}(D)$ is isomorphic to C_{r}, a cycle of length r.

Proof. This follows by induction on l. Suppose $l=1$. Then $r=2 k$ where k is odd. Suppose $x_{1}, x_{2}, x_{3}, \ldots, x_{r}, x_{1}$ form a component isomorphic to C_{r} in $U G^{c}(D)$. Consider the indices mod r. Since r is even, by the proof of Lemma $3.14 x_{1}, x_{3}, \ldots, x_{r-1}, x_{1}$ form a cycle of length k in $\operatorname{dom}^{c}(D)$, (and $x_{2}, x_{4}, \ldots, x_{r}, x_{2}$ form a cycle of length k in $\operatorname{dom}^{c}(D)$ as well). However, it follows by Lemma 3.15 that $x_{1}, x_{3}, \ldots, x_{r-1}, x_{1}$ are vertices of an odd cycle in $U G^{c}(D)$ which contradicts the fact that these vertices are part of a component isomorphic to C_{r}.

Suppose $l \geq 2$ and the theorem holds for cycles of length $2^{l-1} k$. Suppose $r=2^{l} k$ where k is odd and $x_{1}, x_{2}, x_{3}, \ldots, x_{r}, x_{1}$ form a component isomorphic to C_{r} in $U G^{c}(D)$. It follows that there are two cycles of length $2^{l-1} k$ in $\operatorname{dom}^{c}(D)$. Since $\operatorname{dom}^{c}(D)$ is isomorphic to $U G^{c}(D)$, these two cycles must also be in $U G^{c}(D)$. By Theorem 3.11, they are either connected components isomorphic to $C_{2^{l-1} k}$ or contained within components isomorphic to K_{m}, where $m \geq 2^{l-1} k$. However, the first case contradicts the inductive hypothesis. The second case is contradicted by Lemma 3.7 as each set would be independent in $U G(D)$ and so could not be in C_{r} in $U G^{c}(D)$.

Finally, we discuss two basic results related to the structure of the underlying graph when $U G^{c}(D)=P_{n}$. The actual construction of a path in $\operatorname{dom}^{c}(D)$ relies upon careful orientation of specific edges in $U G(D)$. Thus that portion
of the characterization is in Section 4, where the complete characterization of the digraph D, with $U G^{c}(D)$ connected, is developed.

Lemma 3.4 describes the odd length cycle that is created in $\operatorname{dom}^{c}(D)$ when $U G^{c}(D)$ is an odd cycle. Here, we make a similar observation for the structure $U G^{c}(D)=P_{n}$. Unlike the case of the cycle, the path can have an odd or even number of vertices.

Lemma 3.17. If $U G^{c}(D)=P_{n}=x_{1}, x_{2}, \ldots, x_{n}$ for $n \geq 3$, then

1. if n is odd, $x_{1}, x_{3}, \ldots, x_{n}$ and $x_{2}, x_{4}, \ldots, x_{n-1}$ are paths in $\operatorname{dom}^{c}(D)$, and
2. if n is even, $x_{1}, x_{3}, \ldots, x_{n-1}$ and $x_{2}, x_{4}, \ldots, x_{n}$ are paths in $\operatorname{dom}^{c}(D)$.

Proof. Vertices x_{i-1} and $x_{i+1}, i=2, \ldots n-1$, are not adjacent to vertex x_{i} in $U G(D)$, so cannot dominate x_{i}. Thus $\left\{x_{i-1}, x_{i+1}\right\}$ is not an edge of $\operatorname{dom}(D)$, but is an edge of $\operatorname{dom}^{c}(D)$. This implies that $x_{1}, x_{3}, \ldots, x_{n}$ and $x_{2}, x_{4}, \ldots, x_{n-1}$ are paths in $\operatorname{dom}^{c}(D)$ when n is odd, while $x_{1}, x_{3}, \ldots, x_{n-1}$ and $x_{2}, x_{4}, \ldots, x_{n}$ are paths in $\operatorname{dom}^{c}(D)$ when n is even.

4. Characterization of D where $U G^{c}(D)$ is Connected

Now that we know what each component of $U G^{c}(D)$ must be, we focus our attention on the case where $U G^{c}(D)$ is a single component.

What exact form do the digraphs take where $U G(D)$ is isomorphic to $\operatorname{dom}(D)$ and $U G^{c}(D)$ is connected? To answer this question, we first introduce a simple result that links the degree of vertices in an underlying graph of any digraph to the existence of a K_{3} in $\operatorname{dom}^{c}(D)$. Although similar to the results in Section 2 regarding K_{3} in $U G^{c}(D)$ and $\operatorname{dom}^{c}(D)$, it is not identical. Here, the use of an orientation of an existing edge of $U G(D)$ does not translate into an adjacency issue in $U G^{c}(D)$. Thus, we approach the K_{3} in $\operatorname{dom}^{c}(D)$ through $\operatorname{dom}(D)$.

Lemma 4.1. Let D be a digraph on n vertices, and (u, v) be an arc in D where (v, u) is not an arc in D and $\operatorname{deg}(u)=k$ in $U G(D)$. If $k<n-2$, then K_{3} is a subgraph of $\operatorname{dom}^{c}(D)$.

Proof. Suppose $\operatorname{deg}(u)<n-2$ in $U G(D)$. This implies that there are two vertices x_{1}, x_{2} that are not adjacent to u in $U G(D)$. Since in D there is no
arc from v to u, then v, x_{1}, x_{2} do not dominate u, so form an independent set in $\operatorname{dom}(D)$. Thus, they create a copy of K_{3} in $\operatorname{dom}^{c}(D)$.

Using the preceding result, we introduce the following two lemmas, which examine the existence of arcs that are not in a 2 -cycle in some biorientation D of C_{n}^{c} or of P_{n}^{c} where $U G(D) \cong \operatorname{dom}(D)$.

Lemma 4.2. Let D be a directed graph on $n \geq 5$ vertices, where n is odd and $U G(D)=C_{n}^{c}$. Then, $U G(D) \cong \operatorname{dom}(D)$ if and only if D is symmetric.

Proof. Let D be a directed graph with $U G^{c}(D)=C_{n}, n \geq 5$. As $U G^{c}(D)=C_{n}$, all degrees of the vertices of $U G(D)$ are $n-3$. Suppose that $U G(D) \cong \operatorname{dom}(D)$. Then $\operatorname{dom}^{c}(D)$ contains no K_{3}, and by Lemma 4.1, if (u, v) is an arc in D, then (v, u) must also be an arc in D. That is, D must by symmetric. On the other hand, if D is symmetric, we know by Theorem 2.2 that $U G(D) \cong \operatorname{dom}(D)$.

Lemma 4.3. Let D be a directed graph on $n \geq 3$ vertices and $U G^{c}(D)=$ $P_{n}=x_{1}, \ldots, x_{n}$. Then, $\operatorname{dom}^{c}(D) \cong P_{n}$ if and only if every arc of D is in a two-cycle except

1. if n is odd, exactly one of the following sets of arcs are in D but not in a two-cycle:
(a) $\left(x_{1}, x_{n}\right)$,
(b) $\left(x_{n}, x_{1}\right)$,
(c) $\left(x_{1}, x_{n}\right)$ and $\left(x_{n}, x_{n-3}\right)$, or
(d) $\left(x_{n}, x_{1}\right)$ and $\left(x_{1}, x_{4}\right)$, and
2. if n is even, exactly one of the following sets of arcs are in D but not in a two-cycle:
(a) $\left(x_{1}, x_{n-1}\right)$,
(b) $\left(x_{n}, x_{2}\right)$,
(c) $\left(x_{1}, x_{n-1}\right)$ and $\left(x_{n}, x_{2}\right)$,
(d) $\left(x_{n}, x_{2}\right)$ and $\left(x_{1}, x_{4}\right)$, or
(e) $\left(x_{1}, x_{n-1}\right)$ and $\left(x_{n}, x_{n-3}\right)$.

Proof. Let D be a directed graph such that $U G^{c}(D)=P_{n}=x_{1}, \ldots, x_{n}$ for $n \geq 3$. Lemma 3.17 shows that $\operatorname{dom}^{c}(D)$ contains the edges $\left\{x_{1}, x_{3}\right\}, \ldots$, $\left\{x_{n-2}, x_{n}\right\},\left\{x_{2}, x_{4}\right\}, \ldots,\left\{x_{n-3}, x_{n-1}\right\}$ if n is odd, or the edges $\left\{x_{1}, x_{3}\right\}, \ldots$,
$\left\{x_{n-3}, x_{n-1}\right\},\left\{x_{2}, x_{4}\right\}, \ldots,\left\{x_{n-2}, x_{n}\right\}$ if n is even. Thus $\operatorname{dom}^{c}(D)$ contains at least $n-2$ edges.
(\Rightarrow) Suppose $\operatorname{dom}^{c}(D) \cong P_{n}$. Thus $U G^{c}(D) \cong \operatorname{dom}^{c}(D)$ and $U G(D) \cong$ $\operatorname{dom}(D)$. By Theorem 2.2, since $U G^{c}(D) \cong P_{n}, D$ cannot be symmetric. Thus, at least one arc must not be in a two-cycle of D.

Since $\operatorname{dom}^{c}(D) \cong P_{n}, \operatorname{dom}^{c}(D)$ contains no subgraph isomorphic to K_{3}. Thus, for any arc (u, v) in D where (v, u) is not in D, Lemma 4.1 states $\operatorname{deg}(u) \geq n-2$ in $U G^{c}(D)$. Vertices x_{1} and x_{n} are the only vertices that meet this criterion. This indicates that if (u, v) is an arc in D but (v, u) is not, $u=x_{1}$ or $u=x_{n}$.

Suppose that $\left(x_{1}, x_{i}\right)$ is an arc, but $\left(x_{i}, x_{1}\right)$ is not. Then, $\left\{x_{2}, x_{i}\right\}$ is not an edge in $\operatorname{dom}(D)$, since neither dominates x_{1} in D. This ensures that $\left\{x_{2}, x_{i}\right\}$ is an edge in $\operatorname{dom}^{c}(D)$. If $i=3$ or $5 \leq i \leq n-2$, then x_{i} will be adjacent to three vertices, x_{i-2}, x_{i+2} and x_{2} in $\operatorname{dom}^{c}(D)$, but P_{n} has no vertices of degree three. Also, by the structure of $U G^{c}(D)$, there are no arcs between x_{1} and x_{2}. Consequently, there are three possibilities to consider: $i=4, i=n-1$, or $i=n$. Likewise if $\left(x_{n}, x_{i}\right)$ is an arc but $\left(x_{i}, x_{n}\right)$ is not, then $i=1, i=2$, or $i=n-3$.

Suppose that both $\left(x_{1}, x_{i}\right)$ and $\left(x_{1}, x_{j}\right)$ are arcs in D, with $i \neq j$, but neither $\left(x_{i}, x_{1}\right)$ nor $\left(x_{j}, x_{1}\right)$ is an arc in D. Then, x_{i}, x_{j}, and x_{2} all fail to dominate x_{1}. Consequently, x_{i}, x_{j}, and x_{2} form a K_{3} in $\operatorname{dom}^{c}(D)$, which is impossible if $\operatorname{dom}^{c}(D)$ is isomorphic to a path. Thus at most one of $\left(x_{4}, x_{1}\right)$, $\left(x_{n-1}, x_{1}\right),\left(x_{n}, x_{1}\right)$ is missing from D. Similarly, at most one of $\left(x_{1}, x_{n}\right)$, $\left(x_{2}, x_{n}\right),\left(x_{n-3}, x_{n}\right)$ is missing from D. All other arcs must be in two-cycles.

If $\left(x_{1}, x_{i}\right)$ is an arc in D, but $\left(x_{i}, x_{1}\right)$ is not, x_{i} and x_{2} fail to dominate x_{1}, so $\left\{x_{2}, x_{i}\right\}$ must be an edge in $\operatorname{dom}^{c}(D)$. If $i=4$, by Lemma $3.17,\left\{x_{2}, x_{i}\right\}$ is already an edge in $d o m^{c}(D)$. If n is odd, $\left\{x_{2}, x_{n-1}\right\}$ cannot be an edge in $d_{o m}{ }^{c}(D)$, since x_{2}, \ldots, x_{n-1} would form a cycle, which is impossible. Thus if n is odd, $i \neq n-1$. If n is even, $\left\{x_{2}, x_{n}\right\}$ cannot be an edge in $\operatorname{dom}^{c}(D)$, otherwise x_{2}, \ldots, x_{n} would form a cycle. Thus if n is even, $i \neq n$. Similarly, if we assume $\left(x_{n}, x_{i}\right)$ is an arc but $\left(x_{i}, x_{n}\right)$ is not, $\left\{x_{i}, x_{n-1}\right\}$ is an edge in $\operatorname{dom}^{c}(D)$, and if n is odd, $i \neq 2$, and if n is even $i \neq 1$.

Since we need at least one additional edge in $\operatorname{dom}^{c}(D)$ to form a path, at least one of $\left(x_{n}, x_{1}\right),\left(x_{n-1}, x_{1}\right),\left(x_{1}, x_{n}\right),\left(x_{2}, x_{n}\right)$ must be missing from D. Finally, notice that, since $\left\{x_{1}, x_{n}\right\}$ is an edge in $U G(D)$, at least one of $\left(x_{1}, x_{n}\right),\left(x_{n}, x_{1}\right)$ is an arc in D.

Consequently, every arc in D will be in a two cycle, except for one of the following cases: If n is odd, either $\left(x_{1}, x_{n}\right)$ is not in $D,\left(x_{1}, x_{n}\right)$ and $\left(x_{4}, x_{1}\right)$
are not in $D,\left(x_{n}, x_{1}\right)$ is not in D, or $\left(x_{n}, x_{1}\right)$ and $\left(x_{n-3}, x_{n}\right)$ are not in D. If n is even, either $\left(x_{2}, x_{n}\right)$ is not in $D,\left(x_{2}, x_{n}\right)$ and $\left(x_{4}, x_{1}\right)$ are not in D, $\left(x_{n-1}, x_{1}\right)$ is not in $D,\left(x_{n-1}, x_{1}\right)$ and $\left(x_{n-3}, x_{n}\right)$ is not in D, or $\left(x_{n-1}, x_{1}\right)$ and $\left(x_{2}, x_{n}\right)$ is not in D.
(\Leftarrow) Suppose D has one of the patterns in the previous paragraph. If n is odd, and $\left(x_{1}, x_{n}\right)$ is an arc in D, but $\left(x_{n}, x_{1}\right)$ is not, then $\left\{x_{2}, x_{n}\right\}$ will be an edge in $d o m^{c}(D)$ and thus $x_{1}, x_{3}, \ldots, x_{n}, x_{2}, x_{4}, \ldots, x_{n-1}$ is a path in $\operatorname{dom}^{c}(D)$. Similarly, if $\left(x_{n}, x_{1}\right)$ is an arc in D, but $\left(x_{1}, x_{n}\right)$ is not, then $\left\{x_{1}, x_{n-1}\right\}$ is an edge in $\operatorname{dom}^{c}(D)$. Thus $\operatorname{dom}^{c}(D)$ contains the path $x_{2}, x_{4}, \ldots, x_{n-1}, x_{1}, \ldots, x_{n}$. If n is even, since either $\left(x_{1}, x_{n-1}\right)$ is an arc but $\left(x_{n-1}, x_{1}\right)$ is not, or $\left(x_{n}, x_{2}\right)$ is an arc but $\left(x_{2}, x_{n}\right)$ is not an arc in D, $\left\{x_{2}, x_{n-1}\right\}$ is an edge in $\operatorname{dom}^{c}(D)$. Thus $\left\{x_{1}, x_{3}, \ldots, x_{n-1}, x_{2}, \ldots, x_{n}\right\}$ is a path in $\operatorname{dom}^{c}(D)$.

Now consider any pair of vertices x_{i}, x_{j}, not in a path described above, with $i<j$. Note that $j \neq i+2$. By the construction of D, every vertex x_{i} has an arc to every vertex x_{k} with the following possible exceptions: $k=i, i-1, i+1,1, n$. Suppose that there is an edge between x_{i} and x_{j} in $d o m^{c}(D)$. There must be some $k \neq i, j$ so that neither $\left(x_{i}, x_{k}\right)$ is an arc, nor $\left(x_{j}, x_{k}\right)$ is an arc. Since $i+1 \neq j-1$, this means $k=1$ or $k=n$. Suppose $k=1$. By the way D is constructed, there are only a limited number of possibilities. i must equal 2. If n is odd, j might equal n, in which case $\left\{x_{2}, x_{n}\right\}$ will already be in $\operatorname{dom}^{c}(D)$. If n is even, j might equal $n-1$, in which case $\left\{x_{2}, x_{n-1}\right\}$ is already in $\operatorname{dom}^{c}(D)$. In either case no additional edges are in $d o m^{c}(D)$. Similar arguments suffice for $k=n$. In either case $\operatorname{dom}^{c}(D)=P_{n}$.

Figure 4. Example biorientations of the complement of paths.

It is now possible to completely characterize all digraphs with isomorphic underlying graphs and domination graphs where $U G^{c}(D)$ is connected.

Theorem 4.4. For any digraph $D, U G(D) \cong \operatorname{dom}(D)$ and $U G^{c}(D)$ is connected if and only if

1. D is a digraph of k isolated vertices other than $k=2$, or
2. D is a complete biorientation of C_{n}^{c} where n is odd, or
3. D is the biorientation of P_{n}^{c} where $P_{n}=x_{1}, \ldots, x_{n}$ with $n \geq 3$, and
(a) if n is odd, exactly one of the following sets of arcs are in D but not in a two-cycle:
(i) $\left(x_{1}, x_{n}\right)$,
(ii) $\left(x_{n}, x_{1}\right)$,
(iii) $\left(x_{1}, x_{n}\right)$ and $\left(x_{n}, x_{n-3}\right)$, or
(iv) $\left(x_{n}, x_{1}\right)$ and $\left(x_{1}, x_{4}\right)$, and
(b) if n is even, exactly one of the following sets of arcs are in D but not in a two-cycle:
(i) $\left(x_{1}, x_{n-1}\right)$,
(ii) $\left(x_{n}, x_{2}\right)$,
(iii) $\left(x_{1}, x_{n-1}\right)$ and $\left(x_{n}, x_{2}\right)$,
(iv) $\left(x_{n}, x_{2}\right)$ and $\left(x_{1}, x_{4}\right)$, or
(v) $\left(x_{1}, x_{n-1}\right)$ and $\left(x_{n}, x_{n-3}\right)$.
(c) for all other arcs (x, y) of $D,(y, x)$ is also an arc.

Proof. Recall that Theorem 3.11 states that $U G^{c}(D)$ must be a complete graph, a cycle, or a path, so D must be an orientation of the complement of such graphs. We know from Theorem 2.2 that D exists with $U G^{c}(D)=K_{n}$ for $n \neq 2$ or C_{n}, where n is odd. Lemma 4.3 provides constructions when $U G^{c}(D) \cong P_{n}, n \geq 3$.

If $U G^{c}(D)$ is isomorphic to K_{n} then D has no arcs so there is no choice of orientation. If $n=2$, then $\operatorname{dom}(D)=K_{2} \not \approx U G(D)$. In all other cases $\operatorname{dom}(D)$ will be isomorphic to k isolated vertices.

Suppose $U G^{c}(D)$ is an odd length cycle. If $n=3$ then D is isomorphic to 3 isolated vertices listed in the previous case. If $n \geq 5$, Lemma 4.2 states that D must be a complete biorientation of $U G(D)$, the complement of C_{n}. It follows from Lemma 3.14 that if $U G^{c}(D)$ is an even length cycle on more than 4 vertices then $\operatorname{dom}^{c}(D)$ will contain two smaller cycles which will result in a disconnected graph. Finally, let $x_{1}, x_{2}, x_{3}, x_{4}, x_{1}$ be a 4 cycle in $U G^{c}(D)$, so $U G(D)$ has two edges $\left\{x_{1}, x_{3}\right\}$ and $\left\{x_{2}, x_{4}\right\}$. There are only
three non-isomorphic orientations of two edges. Each of these orientations results in $\operatorname{dom}^{c}(D) \not \neq C_{4}$.

The final case, where $U G^{c}(D)$ is isomorphic to a path is fully described in Lemma 4.3

References

[1] B.D. Acharya and M.N. Vartak, Open neighbourhood graphs, Indian Institute of Technology Dept. of Mathematics Research Report No. 7, Bombay-400 076, India (1973).
[2] D.B. Bergstrand and L. Friedler, Domination graphs of tournaments and other digraphs, Ars Combinatoria 74 (2005) 89-96.
[3] R.C. Brigham and R.D. Dutton, On neighbourhood graphs, J. Combin., Information \& System Sciences 12 (1987) 75-85.
[4] H.H. Cho, S.R. Kim and J.R. Lundgren, Domination graphs of regular tournaments, Discrete Math. 252 (2002) 57-71.
[5] H.H. Cho, F. Doherty, S.R. Kim and J.R. Lundgren, Domination graphs of regular tournaments II, Congress. Numer. 130 (1998) 95-111.
[6] C. Cocking and K.A.S. Factor, Domination-stable forms of complete biorientations of some classes of graphs, Congress. Numer. 160 (2003) 83-96.
[7] G. Exoo and F. Harary, Step graphs, J. Combin. Information \& System Sciences 5 (1987) 52-53.
[8] J.D. Factor and K.A.S. Factor, Partial domination graphs of extended tournaments, Congress. Numer. 158 (2002) 119-130.
[9] K.A.S. Factor and L.J. Langley, Characterization of Digraphs with Equal Domination Graphs and Underlying Graphs, preprint (2005).
[10] K.A.S. Factor, Domination graphs of compressed tournaments, Congress. Numer. 157 (2002) 63-78.
[11] D.C. Fisher, D. Guichard, S.K. Merz and J.R. Lundgren, Domination graphs with nontrivial components, Graphs and Combin. 17 (2001) 227-228.
$[12]$ D.C. Fisher, D. Guichard, J.R. Lundgren, S.K. Merz and K.B. Reid, Domination graphs with 2 or 3 nontrivial components, Bulletin of the ICA 40 (2004) 67-76.
[13] D.C. Fisher, D. Guichard, J.R. Lundgren, S.K. Merz and K.B. Reid, Domination graphs of tournaments with isolated vertices, Ars Combin. 66 (2003) 299-311.
[14] D.C. Fisher, J.R. Lundgren, S.K. Merz and K.B. Reid, Connected domination graphs of tournaments, JCMCC 31 (1999) 169-176.
[15] D.C. Fisher, J.R. Lundgren, S.K. Merz and K.B. Reid, The domination and competition graphs of a tournament, J. Graph Theory 29 (1998) 103-110.
[16] D.C. Fisher, J.R. Lundgren, S.K. Merz and K.B. Reid, Domination graphs of tournaments and digraphs, Congress. Numer. 108 (1995) 97-107.
[17] H.J. Greenburg, J.R. Lundgren and J.S. Maybee, The inversion of 2-step graphs, J. Combin. Information \& System Sciences 8 (1983) 33-43.
[18] J.R. Lundgren, J.S. Maybee and C.W. Rasmussen, Interval competition graphs of symmetric digraphs, Discrete Math. 119 (1993) 113-123.
[19] J.R. Lundgren, J.S. Maybee and C.W. Rasmussen, An application of generalized competition graphs to the channel assignment problem, Congress. Numer. 71 (1990) 217-224.

