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Abstract

For a graph H, we compare two notions of uniquely H-colourable
graphs, where one is defined via automorphisms, the second by vertex
partitions. We prove that the two notions of uniquely H-colourable
are not identical for all H, and we give a condition for when they are
identical. The condition is related to the first homomorphism theorem
from algebra.
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1. Introduction

A homomorphism from G to H is an edge-preserving vertex-mapping. If
there is a homomorphism from G to H, then we say that G is H-colourable.
For background and notation on graph homomorphisms, the reader is di-
rected to [6]. Uniquely H-colourable graphs, where H is a fixed finite graph,
have been studied by many authors; see, for example, [1, 2, 4, 9, 10]. The
usual definition of uniquely H-colourable uses automorphisms of H, and as
such, makes no explicit mention of vertex partitions. To be more explicit,
recall that a graph H is a core if every endomorphism of H is an automor-
phism. For a core H, G is uniquely H-colourable if G is H-colourable, every
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homomorphism from G to H is surjective, and for all homomorphisms f, h
from G to H, there is an automorphism g of H so that f = gh. We denote
the class of uniquely H-colourable graphs by Cu(H).

Given a homomorphism f from G to H, define ker(f) = {(x, y) ∈
V (G)× V (G) : f(x) = f(y)}. Then ker(f) is an equivalence relation whose
equivalence classes, called colour blocks, are independent sets partitioning
V (G). A graph G is weakly uniquely H-colourable if the last condition in
the definition of uniquely H-colourable is replaced by: for all homomor-
phisms f, h from G to H, ker(f) = ker(h). The class of weakly uniquely
H-colourable graphs is written Cwu(H). It is straightforward to see that
Cu(H) ⊆ Cwu(H). The classical notion of uniquely n-colourable graph intro-
duced in [6] corresponds to weakly uniquely Kn-colourable graphs. Further,
Cu(Kn) = Cwu(Kn).

However, perhaps surprisingly, there are cores H such that Cu(H) $
Cwu(H). We demonstrate that there are infinitely many graphs H with this
property; see Theorem 2. If Cu(H) = Cwu(H), then we say that the core
H is good ; otherwise, we say that H is bad. Our goal in this short note is
to present a condition for a core to be good that applies to a large number
of cases; see Theorem 3 (2). We give an equivalent algebraic formulation
of this condition in Theorem 3 (1). For related work on H-colourings and
properties of cores, the reader is directed to [7, 8].

2. Good, Great, and Bad Cores

All graphs we consider are finite, undirected, and simple. Define Hom(G,H)
be the set of homomorphisms from G into H. The monoid Hom(H, H)
of endomorphisms of H under composition is denoted End(H). We write
Aut(H) for the group of automorphisms of H under composition. If X is a
set, then we write Sym(X) for the set of bijections from X to itself.

Before we can give examples of bad cores, we need the following straight-
forward lemma.

Lemma 1. Let H be a core graph. Then G ∈ Cwu(H) if and only if G is
H-colourable, every element of Hom(G,H) is surjective, and for all f, h ∈
Hom(G,H), there is a g ∈ Sym(V (H)) so that f = gh.

Proof. Assume |V (H)| = n, for some n ≥ 1. For the forward direction, fix
f, h ∈ Hom(G,H). Label the colour blocks of ker(f) as B1, . . . , Bn. For each
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1 ≤ i ≤ n, choose bi ∈ Bi. Define g : V (H) → V (H) by g(h(bi)) = f(bi).
Then g is well-defined as ker(f) = ker(h) and as h is surjective. As f is
surjective, it follows that g is surjective, and hence, g ∈ Sym(V (H)). As
f = gh, the forward direction follows.

For the converse, let f, h ∈ Hom(G,H). By hypothesis, there is a g ∈
Sym(V (H)) so that f = gh. Then for x, y ∈ V (G), f(x) = f(y) if and only
if g−1f(x) = g−1f(y). But the latter is equivalent to h(x) = h(y). Hence,
(x, y) ∈ ker(f) if and only if (x, y) ∈ ker(h), so ker(f) = ker(h).

For an integer n ≥ 2, let G = K2n−2 with 1, 2 fixed distinct vertices of
G. Define a graph Hn as follows. Let G1 and G2 be two disjoint copies
of G, so that the vertices of G2 are {x′ : x ∈ V (G)}. The vertices of Hn

are the vertices of G1 and G2, along with three new vertices a, b, and c.
The edges of Hn include the edges of G1 and G2; the vertex a is joined to
every vertex in V (G1)∪V (G2) and no other vertex; the vertex b is joined to
vertices in {c}∪V (G1) and no other vertex; the vertex c is joined to vertices
in {b} ∪ V (H2) and no other vertex; the only edge “between” V (G1) and
V (G2) is 12′. See Figure 1 for H2.

If x is a vertex of G, then G − x is the graph that results when x is
deleted. A nontrivial graph is critical if χ(G− x) < χ(G) for all x ∈ V (G).

Theorem 2. Each graph Hn is a bad core.

Proof. The graph H = Hn is critical with χ(H) = 2n. Hence, H is a core.
Define J by deleting the edge 12′, so that 1 and 2 have the same neighbors
in J . Then J is critical with χ(J) = 2n.

We next show that J ∈ Cwu(H) \ Cu(H), which will witness that H is
bad. To see this, note first that J ∈ Cwu(H): clearly J is H-colourable; since
J and H are critical with chromatic number 2n, every f ∈ Hom(J,H) is
surjective; and as |V (J)| = |V (H)|, ker(f) has only singleton colour blocks,
so any two elements of Hom(J,H) have the same kernel. Let f = idJ ∈
Hom(J,H) and define h so that it interchanges 1 and 2 and fixes all other
vertices. Then h ∈ Hom(J,H) as 1 and 2 have the same neighbors in J . If
there is a g ∈ Aut(H) so that f = gh, then g interchanges 1 and 2 leaving
all other vertices of H fixed. But 1 and 2 have different neighbours in H, so
that g 6∈ End(H), which is a contradiction.

By Theorem 2, there are infinitely many bad cores. By a direct check, each
core of order at most 6 is good. Hence, the minimum order of a bad core is
7, with an explicit example given in Figure 1.
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Figure 1. A bad core of minimum order.

Let G and H be graphs and let f ∈ Hom(G,H) be surjective. The quotient
graph G/ ker(f) has vertices the colour blocks of ker(f), and two colour
blocks B and C are joined if and only if there is some vertex in B joined
to some vertex in C. Note that the colour blocks are just the preimages
under f of vertices of H. The natural map ηf : V (G/ ker(f)) → V (H)
defined by ηf (f−1(x)) = x is a well-defined homomorphism. Observe that
if G ∈ Cwu(H), then ηf is a bijection.

The next definition is inspired by the homomorphism theorems that
hold in varieties of algebraic systems. Let H be a core graph. The class
Cwu(H) satisfies the first homomorphism theorem if for all G ∈ Cwu(H) and
all f : Hom(G, H), the homomorphism ηf : V (G/ ker(f)) → V (H) is an iso-
morphism (that is, f is a complete homomorphism). By preceding remarks
we need only show that ηf is an embedding (an injective homomorphism
which preserves non-edges). The classes Cwu(H) satisfying the first homo-
morphism theorem can be characterized by an intrinsic condition of H. If e
is an edge of H, then H − e is the graph formed by deleting e. We say that
a graph H is great if for all e ∈ E(H), there is some f ∈ Hom(H − e, H)
so that f is not surjective. For example, each clique and cycle is great. We
now state and prove our main result.

Theorem 3. Let H be a core graph.

(1) The class Cwu(H) satisfies the first homomorphism theorem if and only
if H is great.

(2) If H is great, then H is good.

Proof. For the forward direction of item (1), to obtain a contradiction we
assume that for all e ∈ E(H), every f ∈ Hom(H − e,H) is surjective, and
therefore, a bijection. Fix f, h ∈ Hom(H − e,H). Hence, ker(f) and ker(h)
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have all singleton blocks. In particular,

(1.1) (H − e) / ker(f) ∼= H − e.

The mapping g : V (H) → V (H) defined by g(f(x)) = h(x) is well-defined
and bijective as ker(f) = ker(h) and f is surjective. Hence, gf = h for
some g ∈ Sym(V (H)). As f and h were arbitrary, H − e ∈ Cwu(H) by
Lemma 1. Since Cwu(H) satisfies the first homomorphism theorem, ηf :
V ((H − e) / ker(f)) → V (H) is an isomorphism, so that H − e ∼= H by (),
which is a contradiction.

For the reverse direction of (1), fix H a great core. Fix G ∈ Cwu(H)
and h ∈ Hom(G,H). If the natural map ηh : V (G/ ker(h)) → V (H) is not
an isomorphism, then it is not an embedding. Hence, there are x, y ∈ V (H)
such that xy ∈ E(H) but the colour blocks h−1(x) and h−1(y) are not joined
in G/ ker(h). Let e = xy ∈ E(H). Note that h : V (G) → V (H − e) is a
homomorphism. As H is great, there is some f ∈ Hom(H − e,H) that is
not surjective. But then fh : V (G) → V (H) is a homomorphism that is not
surjective, which contradicts that G ∈ Cwu(H).

For item (2), as H is great, Cwu(H) satisfies the first homomorphism
theorem by item (1). Fix G ∈ Cwu(H) and fix f, h ∈ Hom(G,H). Then
by Lemma 1 there is a g ∈ Sym(V (H)) so that f = gh. We show that
g ∈ Aut(H). As H is a core, it is enough to show that g ∈ End(H). To
see this, fix xy ∈ E(H). By hypothesis, h−1(x)h−1(y) ∈ E(G/ker(h)), so
that there is some a ∈ h−1(x) and b ∈ h−1(y) with ab ∈ E(G). Now f(a) =
g(h(a)) = g(x); similarly, f(b) = g(y). As f is a homomorphism, we have
that f(a)f(b) ∈ E(H), and hence, g(x)g(y) ∈ E(H).

Cliques and odd cycles are great cores, and hence, are good by Theorem 3
(2). If G and H are graphs, recall that their join, written G + H, is the
graph formed by adding edges between each vertex of G and H. If G is a
great core, then an analysis of cases demonstrates that G + Kn is a great
core for each n ≥ 1. In particular, the odd wheels W2n+1 for n ≥ 2 are great
cores. For a large class of great cores, we consider a recent construction of
[3]. If G is a graph, then define C(G) to be G with edge replaced by a path
with 3 edges. As proven in [3], if G is connected with at least three vertices,
then G is a core if and only if C(G) is. It is not hard to see that for all
graphs G, C(G) is great.
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We note that not all good cores are great. Direct checking (which is tedious,
and so omitted) demonstrates that the Petersen graph is a good but not
great core. Hence, the converse of Theorem 3 (2) is false.
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